Commander S — The shell as a browser

Martin Gasbichler

Eric Knauel

Universitét Tubingen
{gasbichl,knauel}@informatik.uni-tuebingen.de

Abstract

® O O ..De.knauel:~/cool-stuff/scsh-nuit/scheme — scshvm

Commander S is a new approach to interactive Unix shellsthase
on interpretation of command output and cursor-orientenhite
nal programs. The user can easily refer to the output of pusvi
commands when composing new command lines or use intezactiv
viewers to further explore the command results. Commandsr S
extensible by plug-ins for parsing command output and ferwi

ing command results interactively. The included job cdraxmids
garbling of the terminal by informing the user in a separaitiget

and running background processes in separate terminatsn@o-

der S is also an interactive front-end to scsh, the Schemié 8he

it closely integrates Scheme evaluation with command di@tu
The paper also shows how Commander S employs techniques from
object-oriented programming, concurrent programming, famc-
tional programming techniques.

1. Introduction

Common Unix shells such ascsh or bash make no effort to
understand the output of the commands and built-in commands
they execute on the behalf of the user. Instead they simpécdi

the output to the terminal and force the user to interprettéte

own her own. As subsequent commands often build on the output
of previous commands, the user needs to enter text that leas be
output by previous commands. As an example, consider alser t
wants to terminate her browser because it hangs once agan. S

=]
Commander S -
[Command J—
=
sod ~/oool-stuff /sceh/re-stable
=(runsbg (caty)
=
o -1 scsh % .som
smake &
=ls
>
[run:@ ready:Z stop:@ out:@ in:l]
Paths relative to tuebingen.de/home/knouel/cool—stuff/scsh/ré-stable/scsh
libzcsh.h 315 knauel :PUstaff TW-r—-f-—
libzcsh.o 2 KB knouel :PUstaff Th—F -t
libscsh.sca 1 kB knouel -PUstaff ™-T—T—
libzcshvm.a 315 KB knauel :PUstaff TW-r—-f-—
Linuss Z KB knauel :PUstaff TWXr—XF-X
low-interrupt .scm 2 KB knauel :PUstaff I'W-r——T——
machine/ knauel :PUstaff , :
b .C 16 KB knouel :PUstaff ™-T—T—
md5 .o 5 KB knauel :PUstaff TW-r—-f-—
w5 _scm 2 kB knouel -PUstaff ™-T—T—
md5.zcm.orig 2 KB knouel :PUstaff Th—Y——F—
meta-arg.scm 5 KB knouel :PUstaff Th—Y——F—
A
v
V]

only knows the name of the executable{scape) but not the
process ID. Hence she first executesgheommand:

ps
PID
704

1729
1740
5823

TIME
0:00.30
6:01.35
8:10.03
0:00.07

COMMAND

tcsh

xemacs (xemacs-21.4.17)
netscape

tcsh

From the output, she learns that the process ID of the broisser
1740. Now she can issue thell command:

kill 1740

Even though the previoyss command already emitted the process
ID 1740, the user has to enter the number manually and double-
check to get the right one. Killing processes by name is scicom

that there is a wide-spread Perl program calletlall that termi-
nates all running processes with a given name. How&iar,all

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copresier made or distributed
for profit or commercial advantage and that copies bear titissand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.

Copyright(© 2005 Martin Gasbichler, Eric Knauel.

55

Figure 1. Commander S

is not appropriate if multiple processes with the same naxist e
but only one of them is to be terminated.

Commander S takes a different approach to the concept of
an interactive Unix shell: Commander S tries to understdued t
output of the commands it executes and present it to the oser i
such a way that the user can easily refer to the output of guevi
commands. To that end, Commander S draws a user interface on
the terminal using the ncurses library. It divides the strigo
three areas as shown in Figure 1: The upper half of the screen
occupies theommand windowhere the user enters the command
line. The command line provides the usual line editing faed
such as cursor movement. Below is a small window, called the
current command windovwhich shows the last command being
executed. Theesult windowcovers the rest of the screen and
contains the output of the last command. The crucial poirthef
result window is that Commander S presents—for an extensél
of known commands—the result of the commands not simply as
text but as structured data. The user can change the focusliie
command buffer to the result buffer amdplorethe result. This
means that through various key-bindings, the user can auttker
commands that apply to the data presented in the result windo
Furthermore, the user cgrastethe data from the result window
into the command window to complete the next command line.

In the case of the example above, Commander S knows that the2. Preliminaries

result of theps command is a list of processes. It presents this list
in the result window as follows:

PID TIME COMMAND

1729 6:01.35 xemacs (xemacs-21.4.17)
1740 8:10.03 netscape

5823 0:00.07 tcsh

The result window shows the first line with inverted colorsdngse

it is the focus objectSome key-bindings modify the focus object
only, while others affect the entire result window. Of cayrthe
user can also change the focus object with key strikes. Foligh

of processes, she needs to press the up and down arrowsufio ret
to the task of killing the browser, user needs to press thenxday
twice and can then press the key for sending the focus olgj¢leet
command window. Now, she only needs to addikh&l command

to the command line and press the return key to invoke it.df th
user were to kill several processes, she would have to mark th
for selection by making one after the other the focus object a
pressing the marking key. Then the key for pasting the seleuwill
send them to the command window. Sometimes it is desirable to
build the command line not only from the results for the mesent

command but from one or more commands that were executed

earlier. To support this, Commander S maintains a historyhe
result buffer in which the user can go backwards and forwasds
necessary. This history makes the old results immediatelyedle

and the user does not need to use the scrolling facility of the
terminal if a command with a larger amount of output happened
be before the result the user is searching for. The currentrand
window always informs the user, which command line produced
the output in the result window.

Commander S is also an interactive front-end to scsh, the
Scheme Shell. This is realized by a second mode, c&8dtbme
mode for the command window, to which the user can switch from
the standaredommand modwith a single key press. The interac-
tion between result window and command window also works for
the Scheme mode, but the representation of the pasted ®hject
s-expressions in this case. The combination of both mod&sien
the user to combine the power of Scheme with the brevity of she
commands.

In addition, Commander S extends the job control features of
common Unix shells. First, the job control facility disptaghe
list of current jobs in the result buffer with key-bindingsr fthe
common commands such as putting a job into foreground or-back
ground. Second, Commander S uses the ncurses library tm-cont
uously display the status of the all current jobs. Finallgn@nan-
der S can execute a background job with a separate termidal an
allows the user to switch to the terminal, view the runningpat,
or enter new input. To that end, Commander S provides a tatmin
emulation which stores the output of the process.

1.1 Overview

Section 2 explains some programming techniques and planticu
braries used for implementing Commander S. Section 3 gimes a
overview on Commander S’s kernel and describes the implemen
tation of some central features of the user interface. Geetide-
scribes the interface for writing new viewers. Section Siyies
some standard viewers such as the process viewer and thodjre
viewer. Section 6 provides details on the job control impeated

by Commander S. Section 7 lists some related work, and $e8tio
concludes and presents future work.

56

This section explains some programming techniques anariés
used to implement Commander S. A reader familiar with the par
ticular techniques may choose to skip the correspondintipsesc

2.1 Object-oriented Programming in Scheme

Theviewersdescribed in Section 5 and Section 4 undertake the task
of displaying the result of a command according to its strect
Viewers are implemented in terms of object-oriented progning
(Section 4 motivates this design decision). We used thecobyes-
tem proposed by Adams and Rees [2] as a foundation. Thisnsyste
is elegant, easy to implement and very powerful. The coraptet-
chinery needed for the object system is given by functiomsvsh

in Figure 2. The system represents an object as a procedatre th
binds the instance variables in its closure and accepts sagega
symbol) as its sole argument. It dispatches on the messabean
turns the corresponding method as a proceduregseenethod).

All methods accept the object as their first argument to enthat
overridden methods always get the correct object. Heswsg, the
construct for calling a method, caligt-method first to acquire
the actual method and calls that method with the objectfifdes

the arguments passeddend.

2.2 Concurrent Programming using the Concurrent ML API

Commander S is implemented as a concurrent applicationrspaw
ing various threads. To synchronize the threads, Comméahder-
ploys a Scheme implementation of the Concurrent ML (CML, for
short) concurrency functionality [7]. The implementatisrgiven

as a library that is part oBunterlih the Scheme Untergrund Li-
brary [1]. This section provides a short introduction to Hubset

of the CML API used throughout the implementation of Comman-
der S.

CML offers a collection of data-structures for the commanic
tion between threads. For the implementation of Commander S
synchronous channebnd placeholdersare important. A channel
offers asend operation that posts a value to channel and@ive
operation that reads a value posted to the channel. The commu
nication is synchronous, thus,sand operation returns exactly at
the time when another thread triesteceive a value from the
channel (and vice versa). A placeholder is an updateableatel
lowing exactly one assignment. A thread reading the valua of
placeholder witlplaceholder-value blocks until another thread
updates placeholder with a value usipiaceholder-set!. Up-
dating a placeholder already containing a value yields eor.er

The CML frameworks allows the decoupling of describing a
synchronous operation from actually performing the openat
Thus, synchronous operations become first-class valudled ca
rendezvousn the CML notation. Thereceive operation on a
synchronous channel, for example, is composed of gengratin
rendezvous that describes synchronous operation (e. ggiveea
message on a channel”) and waiting till the rendezvous tytua
occurs. Thusreceive is implemented as follows:

(define (get-method object message)
(object message))

(define method? procedure?)

(define (send object message . args)
(let ((method (get-method object message)))
(if (method? method)
(apply method (cons object args))
(error "No method" message))))

Figure 2. Machinery for the object system.

(define (receive channel)
(sync (receive-rv channel)))

In whichreceive-rv is a constructor for rendezvous that describe
a receive operation on a synchronous channel sintt is the
function that blocks the thread until a rendezvous actutalkes
place, or phrased in CML terminology, beconeesbledSend and
placeholder-value may be decomposed in the very same way
usingsend-rv andplaceholder-value-rv.

CML provides combinators that combine multiple rendezvous
to a more complex rendezvous. The most important combinator
is choose, which waits for the first rendezvous from a given list
of rendezvous to become enabled. Commander S frequently use
select, the synchronous variant ehoose. Thewrap combinator
allows associating post-synchronization actioin form of a func-

tion with a rendezvous. When the rendezvous becomes enabled

the associated action is carried out. Function that sertleeggost-
synchronization actions accept one value — the value tleatrhes
available upon synchronization of the corresponding evenit a
receive operation, for example, the value given to the adtioc-
tion is the value received via the channel. The followingregke
code illustrateselect andwrap:

(select
(wrap (receive-rv channel-1)
(lambda (value)
(placeholder-set! p value)))
(wrap (placeholder-value-rv q)
(lambda (value)
(send channel-2 value))))

Here, select combines two rendezvous associated with post-
synchronization actions and blocks until the first rendesvo
becomes enabled. The first rendezvous in question desaibes
receive-operation on a synchronous channel naniethnel-1.
Wrap associates a function with this rendezvous that places the
value received vighannel-1 in a placeholdep. The second ren-
dezvous describes the synchronous operation of waitinghier
value of placeholdeq becoming available. This rendezvous is also
associated with a post-synchronization function whiclesathe
value that just became on-hand and sendsdhtmnel-2.

2.3 The ncurses library

Ncurses [3] is a C library that provides a high-level integfdo
terminal control. In practice a multiplicity of terminal eations,
each having their own control sequences, is in use. Thus,ssaall
tasks like placing the cursor at a certain position on theestbe-
come complex. To assure that an application is portableagthe
plications needs to know the escape codes of many terminal em
ulations. Ncurses relieves the programmer of this taskeGig
standardized abstract description of a terminal emulatoso-
calledterminfoentry, usually provided by the maker of the oper-
ating system, ncurses learns a particular terminal enaulaiihe
high-level interface of ncurses provides functions foatirey over-
lapping windows, outputting text, controlling the color aditput,
and placing the cursor. Ncurses also offers a functigetch for
reading input from the terminal that decodes the controliseges
the terminal emulation uses to encode special keys (suctirasrc
movement), to a standard representation. We set aside eysoirv
the ncurses functions used and instead explain their fomality
where occur in the following sections.

A separate library for scsh, callestsh-ncurses, provides
Scheme bindings for all ncurses functions using scsh’sigore
function interface. Writing the stubs needed to encode aad d
code C and Scheme values and calling the ncurses functiahs is
most straightforward. Jusigetch requires special attention. The
wgetch function reads a character from the terminal, decodes the
control sequence if necessary, and returns an integer lag. ¢
no input is available, the behavior egetch depends on a global

57

mode: indelay modethe function blocks the process until the in-
put becomes available, whereasnon-delay modéhe functions
yields an error. From the perspective of a scsh user, eitbeleris
unfavorable. Callingigetch in delay-mode blocks the whole scsh-
process and subsequently all Scheme thréadsion-delay mode,

a Scheme thread waiting for input would have to wait buskyst
waste processor time. A preferable mode of operation isdokbl
solely the Scheme thread callirgetch. To achieve this behavior,
scsh-ncurses callswgetch in non-delay mode at first. tfgetch
yields an errorscsh-ncurses calls scsh'sselect on the termi-
nal to block the Scheme thread callisglect until the terminal
becomes available for reading. Scsh uses the Wabect call in-
ternally to wait for the file and socket descriptors assediatith
Scheme ports to become ready for reading and writing. Sssh al
offers select as Scheme function, which adds the Scheme ports
supplied as arguments to the list of file descriptors to watith
the internakelect.

3. Commander S’s kernel

The introduction left unspecified how Commander S recogrtize
meaning of a command’s output. The idea is not to executertie p
gram directly, but hand over this task to a function that rtires
program and parses its output. In the notion of CommandersS th
function is acommand plug-inA command plug-in registers itself
as a wrapper for the execution of a certain program. Disptathe
parsed output in the result buffer is not in the field of dutytha#
command plug-in. Insteadjewer plug-ingresent the output in a
structured way. A viewer plug-in registers itself as thespreer for
results of a certain type. Command plug-ins are expecteddo p
duce a result value of a distinguishable type. Thus, Comera&d
decouples command evaluation from presentation of theubutp
The kernel of Commander S may be regarded as a read-eval-
print-loop. Basically, a central event loop processes tipait, in-
vokes a command plug-in or executes an external program, and
chooses the viewer plug-in to present the result in the résifier.
In Scheme mode, usual Scheme evaluation takes place, bug-the
sult is displayed using viewer plug-ins as well. Thus, thelev
ation of Scheme expressions also benefits of the power ofeview
plug-ins. This section describes the crucial parts of ConueaS’s
kernel.

3.1 Eventloop

A central event loop receives all input of the terminal andides
what to do. Basically, the decision depends on two factotschv
window has the focus and whether the key pressed has special
meaning.

Keys with special meaning, such as thecurn key, are treated
by the kernel. Thereturn key triggers the evaluation of a com-
mand.Cursor-up andpage-up Or cursor-down andpage-down
keys move through the command history and result histospee-
tively (see Section 3.6). The key sequememtrol-x is treated
as a prefix, and thus modifies the meaning of the next key press.
The sequenceontrol-x o switches the buffer currently focused.
Control-x p andControl-x P paste the current selection and
the current focus value, respectively, into the commanéeby(see
Section 3.3).

If the command window has the focus and the key has no special
meaning to the kernel, the key event is passed to the funiction
plementing line-editing (see Section 3.5), which intetptbe key
accordingly and updates the command buffer. Before coimignn
the event loop, the command window needs to be updated totrefle
the new state of the command buffer. Thus, the event loop eall
function to repaint the affected part of the command window.

1Scsh employs a user-level thread system

(command-ling = (cmd) ((comb (cmd)* (job)’
(cmd) = (prog (arg™ (redin*
(rediny == (>]<|>>) (fnamé
| << (s-exph
(comh == | |&& | Il |;
(iob) = & | &
(progg == (str) | (unquote
(fnrame = (str) | (unquote
(unquote == ,(s-exph | ,@(s-exp)
(

(str)

scheme-string
| cted{e1,<>.}

Figure 3. Command language

If the result window has the focus, the key event is passdueto t
viewer currently visible in the result window. Thus, excémtthe
key sequences listed above, a viewer gets all key events.

3.2 Executing commands

How Commander S executes a command depends on whether th
command has been entered in Scheme mode or command mode.
the command buffer is in Scheme mode, the kernel expect@the |
entered to be a Scheme expression and evaluates iteisingThe
command mode, in contrast, works akin the prompt of a trawuki
shell.

The commands entered in the command mode must conform
to the command languagef Commander S. Figure 3 shows a
grammar for the command language. Except for some minor dif-
ferences, this language largely accords to the syntax fontands
that users are accustomed to by traditional shells. A netelft
ference concerns strings, which Commander S models like scs
While a shell liketcsh distinguishes strings in single quotes,
double quotes, and backward quotes (for using the output of a
command as a string), strings in Commander S’s command lan-

guage are always Scheme strings. The command language is im

plicitly quasiquoted. Thus, in contexts where a string ipested,

the user may use unquote and specify a Scheme expression to b

evaluated. Results of the evaluated expression may beng st
symbol, or an integer. This way, thesh commandkill ‘cat
/var/run/httpd.pid‘ that employs backward quotes to use the
contents of the fil¢var/run/httpd.pid as an argument fa&ill
may be written aill , (run (cat /var/run/httpd.pid))

in Commander S’s command language.

Scsh already supplies a mechanism for running an exteroal pr
gram: therun macro. This macro expects a specification for the
program to run and the redirections of the input and outpaheh
nels as its arguments. The specification has special simtast
tions calledprocess formsnd extended process fornfg]. Com-
mander S includes a little compiler, which translates a camun
language command to a process form suitable for the usage wit

symbols and replaces them. To implement globbing, Comma®ide
uses the C shell compatible implementatiorgdéb that is part of
the scsh API.

The evaluation of Scheme expressions takes place in a sepa-
rate environment called th&hell environmentThe basis for this
environment is the module definition of ttelell modulewhich
imports scheme-with-scsh, a module providing RRS and the
whole scsh API. The Scheme 48 module system facilitatesngirn
a module into an environment suitable as an argument fonreke
eval function. Thus, evaluating Scheme expressions boils down t
calling eval and using the shell environment as the environment
for evaluation.

The shell module redefines a choice of scsh functions torretur
a value with a distinguishable typPirectory-files serves as
an example; if called without arguments, this function nesuthe
contents of the current working directory as a list of stsinghis
representation is very handy when writing scripts. Howgtlas
representation of directory contents is indistinguisbdtdm an ar-
bitrary list of strings. This poses a problem: the vieweregaised to
display a result is selected by examining the result. Thesshell
module introduces a new record type-object, which encapsu-
lates a file-system object, and redefidggectory-files to re-

Ieiurn a list of fs-objects. The redefinition oflirectory-files

alls the original definition ofiirectory-files, imported with
a different name, and wraps the resulting filenamessirobject
records. So far the shell module only redefines a few funstibat
return filenames. An aim of future work is to apply this tecius
to other parts of the scsh API as well.

3.3 Focus value table

Pasting values into the command window running in Schemesmod
requires an external representation of the value. Thisregvee-
stricts the set of values usable for pasting. For examplecsh s
records, continuations, and procedures have no exteprasenta-
tion. Thus, Commander S allows pasting objects as a refeliatw

a global table called thi@cus value tableView plug-ins may regis-
ter a value in the table usingid-focus-object which returns an
integer index. The functiofiocus-value-ref returns the stored

galue at a given index. Hence, the viewer plug-in may avoia-co

verting a value to an external representation and returrildaca
focus-value-ref instead.

3.4 Command plug-ins

Command plug-ins undertake the task of running a partice®ar
ternal program, parsing the program’s output and reprawgttie
result as an distinguishable type. The command plug-ip$oex-
emplifies this. If a user enteps to see the list of running processes,
in the command mode of Commander S, this invokespthplug-

in. Theps plug-in runs the actugls program provided by the op-
erating system and parses its output. The result is repgezsas a
list of process records, thereby making the result distinguishable
from an arbitrary list of strings and enabling viewers toogtize

run. Thus, when a user submits a command, the compiler gener-the type of the result.

ates a corresponding process form and Commander Segallsto
actually run the program as specified.

However, the compiled process form demands some prepara-

tions before it may be evaluated leyal: the run macro doesn'’t
substitute shortcuts symbols widely-used by traditiontalls.
These shortcuts include the tilde, which denotes the uberise
directory, environment variable names, aidb-patternsA glob-
pattern specifies a list of files by a regular expression. Thb g
pattern{/var/tmp,/tmp}/*.scm, for example, specifies a list of
all files with names ending inscm in the directoriegvar/tmp and

The functionregister-plugin! registers a new plug-in with
Commander S. The construct@ke-command-plugin creates
a new command plug-in record which contains three entries: A
name for invoking the plug-in, a completion function thatcca
lates completions for the arguments (see Section 3.7) heaplug-
in function The kernel calls the plug-in function to run the com-
mand, parse the output, and produce the result value. thstea
executing an external program, a plug-in function may allbeac
scsh function. The following code shows the command pluigiin
printenv as examplePrintenv returns a list of all environment
variables:

/tmp. Thus, Commander S inserts an expansion pass before evalu-(register-plugin!

ating a command that searches the compiled command focsit®rt

58

(make-command-plugin "printenv"

no-completer 3.7 Programmable completion
(lambda (command args)

(env->alist)))) Most shells offer an automatic completion for commands agd-a

ments entered partially at the prompt. Usually pressingghelator
key while editing a command line at the prompt triggecoeple-
tion function This function considers the token of the command
line the user is currently editing (that is, the token whéeedursor

is) and finds a set of strings to which the partially enteréeds a
prefix. This set depicts the set of possible completion fertttken.

If there is more than one possible completion, most shetplyi
display the possible completions and expect the user tamuent
editing the token until the prefix becomes unambiguous. Deépe
The feature users miss most when using scsh in an intera&s/¢ ing on the position of the token in the command line, the token

Theno-completer is a completion functions that offers no com-
pletions for a command (see Section 3.7). The scsh function
env->alist returns all environment variables as an association
list.

3.5 Line-editing

sion is line-editing. Line-editing involves making the kapace denotes a program to be executed or an argument to a program.
key work as expected, allowing the user to move the cursmigusi ~ Thus, only executable files come into question as completion
the cursor keys, inserting text at an arbitrary positionhef tom- the command token, whereas, intuitively there no such cainst

mand line, and some extra features the user is accustomeahto f for argument tokens. Most shells accommodate this obsenvay
text editors. The scsh REPL does not provide line-edititabse using different completion functions for the particulakéas of a
it appliesread directly to standard input to read from the termi- command line.

nal. However, the command buffer of Commander S offers a line Popular shells likecsh, bash, andzsh offer aprogrammable
editing functionality with the features mentioned above &eds completion functiorwhich allow users to write completion func-
the input intoread (or the parser for the command language) only tions tailored to syntax of arguments of a specific commaine: T
after the user has pressed thecurn key. The line-editing func- ~ file transfer prograndtp, for example, expects a host name to con-
tionality is implemented in terms of the ncurses (see Se@is), nect to as its first argument. The followingsh commands estab-
thus is portable and involves no emulation specific code. lishes an appropriate completion function fozp:

> set preferred_ftp_hosts=(ftp.gnu.org ftp.x.org)

> complete ftp ’p/1/\$preferred_ftp_hosts/’

3.6 Command and result histo
v This example specifies a completion for the first argumeny.onl

The possible completions for this argument are given asta lis
specified in the variablpreferred ftp_hosts.

Commander S provides a similar programmable completion
function for the command mode. If the user presses the taisula
key a general completion function calls the parser for thea-co
mand language and identifies the token the cursor is poiriing
This token is considered for completion. Depending on th&-po
tion of this token a more specific completion function is stdd.
The completion function for command tokens is a built inta€o
mander S and uses the union of executables available in the pa
listed in PATH and the set of registered command plug-in names
as possible completions. However, the user may wish to fgpeci
an executable by entering a complete path. In this case time co
mand completion function callsomplete-with-filesystem-
objects to build the list of completions. This function checks
whether there is a file or directory that matches the paytiedi-
tered path. If the token matches a directory namwgplete-
with-filesystem-objects offers the contents of this directory
as possible completions. Otherwise the parent directotlyeopar-
tial names is searched for completions.

Like conventional shells, Commander S offers a so-cadledh-
mand history A command history provides a way to access the
prior commands entered during the session. Most Unix sheits
the cursor keys to a function that cycles through the listahe
mands and displays prior commands at the prompt. This fedur
especially useful when the user executes a series of sioolar
mands.

Besides the command history Commander S also provides a
sult history The motivation for this novel feature is a limitation of
traditional Unix shells that don't provide a method to asctse
output or result of a prior command execution. In this caseutter
falls back on a feature of her terminal emulation programesgh
programs usually buffer the output of the terminal sessibus,
the user may scroll up and view the output of commands issued
afore. To reuse a prior result the user copies the text to dhe c
mand prompt using a copy and paste mechanism provided by the
terminal program. This method, although exercised by nooeer
users, has at least two drawbacks. First, it may be hard taHiad
wanted result — there may be lots of output to search throangh a
the wanted output may even be mingled with another processges
put (see Section 6). Second, there is only access to a teefra- If a completion function returns a single possible completi
sentation of the result. . _ __Commander S may replace the token on the command line with

Commander S saves the result objects created during asessio iig completion and repaint the command prompt. Howevereife
in the result history. Thus, the user may go back in the résstiory is more than one completion, Commander S uses the resuérbuff
at any time and continue to use a saved result object. Thét resu display the list of completions. The user may use the kst
history facilitates the task of finding the desired result acle aide to memory and continue to type the token, or by pressiag t

command is associated clearly with the result it producebiléV o 15t0r key a second time switch the buffer focus and selec
cycling through the result history, the active command wimd completion using the cursor keys directly.

shows the command used to produce the result shown in thie resu ~ The general completion functions also handles the comple-

buffer. tion of arguments. Unless a specific a completion function fo
In the notion of Commander S, a result history is easy to im- the current command token is specified, it cabgiplete-with-

plement. Having the viewer objects (see Section 4) insthrte filesystem-objects to complete the argument. Specific com-

kernel stores the object along with the corresponding comshira pletion functions are tied to command plug-ins. Thus, tojgl@ a

a list that serves as the history. Thus, going back and forthe special completion function, the user adds a command piLige

following command plug-in for thétp command provides such a

history selects an existing viewer object that is set asitéetirrent 2 -
completion function.

result object. Subsequently, the kernel clears the resottaw and
sends @aint message to the new current result object to make the
object visible. 2p/1 stands for “position one”

59

(register-plugin!
(make-command-plugin
"ftp"
(let* ((hosts ’("ftp.gnu.org" "ftp.x.org"))
(cs (make-completion-set hosts)))
(lambda (command to-complete)
(completions-for
cs (or (to-complete-prefix to-complete) ""))))
just-run-in-foreground))

In this example, the second argumeninttke-command-plugin

is the completion function. A completion function has twgwar
ments; the abstract syntax of the command line and the taken t
completed. The completion function in question uses a-uiist

of host names as possible completiongske-completion-set
creates a special caching data-structure which speedsugth-
putation of matching completions. This is especially useflien

the set of possible completion is big, for example, whendear
ing the completions for file names. The procedasgpletions-

for searches and returns the matching completions for the prefix

returned byto-complete-prefix in the completion set.

4. Implementing Viewer Plug-ins

In the notion of Commander Swvaewer plug-in(viewerfor short)
undertakes the task of displaying the result value of a comima
in a structured fashion. However, a viewer may go beyond just
displaying data and implement a small application runnmthee
result window. The predefined file system viewer (see Se&)on
for example, not only displays files and directories but allbowvs
navigating through subdirectories.

Given a result value, Commander S tries to find the apprapriat
viewer. Each viewer comes with a predicate that identifieseisult
values the viewer handles. Commander S applies the predicat
provided by the registered viewers to the result value. Tibeer
belonging to the first predicate to evaluate to true accétdid.

is only available if the command buffer is in Scheme mode,
thus, the return value of this method has to be a piece of Sehem
code (as a string).

get-selection-as-text This message asks the viewer to
return the current selection in a textual representaticselec-
tions don't make sense in context of a result value, this otkth
may return false. A boolean delivered as an argument says
whether the selection is to be inserted into the command or
Scheme mode. Thus, a viewer may deliver an adequate string
(see Section 4.2 for an example). It is conceivable though th
representing the selection as a string makes no sense.sin thi
case a viewer may choose to understancstite-selection-
as-text message as get-selection-as-ref Mmessage,
hence, requiring a reference to thecus-value-table. To
facilitate this, thefocus-value-table is passed as a second
argument to thget-selection-as-text messages.

4.1 Selection lists

Before giving an example for the implementation of a viewler o
ject, we shall describselection lists Selection lists are an impor-
tant user interface widget, akin to menus, used by almostealer
objects. A selection list displays a given set of entrieseagiential
lines at an arbitrary position inside an ncurses windowngshe
cursor keys, the user may move a selection bar over the finfes t
cus a particular entry, and mark and unmark entries. Mosterie
employ a selection list using marking to facilitate selegtitems
which are to be processed together. The selection list ater-d
mines the area in view if the number of items to display exseed
the space assigned to the selection list.

The constructomake-selection-list expects as its argu-
ment a list of records of typelement that denote the items of
the selection list, and returns a Scheme record repregethinse-
lection list. Anelement record consists of a field that carries the
object to be returned if the user marks the accordant linepéeln

Now, Commander S instances a new viewer using the accordantsaying whether this entry may be marked at all, and the teketo

constructor and asks the viewer to paint itself to the resintiow.

Viewers are implemented using object-oriented progrargmin
(see Section 2.1 for an introduction of the object systenduge
viewer depicts an object that accepts the messages sentrsl ke
and encapsulates a state. In this setting, an object-edeqproach
appeared to be a natural choice. Commander S sends theifalow
messages to viewer objects:

e paint The paint message asks the object to paint itself to
the result window. This message is sent to objects justadeat
or if an result object becomes the current result objed., (i.
if the user cycles through the result history, see Sectiéh 3.
As arguments, the objects receives the ncurses window o pai
in, a result buffer object which contains information abthe
result window’s size, and a boolean indicating whether the
result window has the focus.

key-press If the result window has the focus, the current
result object receivesieey-press message whenever the user

displayed.

Thepaint-selection-list-at operation accepts a selection
list, window-based coordinates, and an ncurses windove asgu-
ments and paints the selection list in its current state @giten
coordinates to the window. To pass key events to a seledsgn |
viewer objects call the functiogelection-list-handle-key-
press which updates and returns the state of selection list aecord
ingly.

Implementing gget-selection-as-text method in a viewer
frequently boils down to getting the list of marked entriesnf
a selection list usingelection-list-get-selection, or, if
this list is empty because no entries are marked, gettingmniy
currently focused by the selection bar usisglection-list-
selected-entry. The selection list implementation offers the
functionmake-get-selection-as-ref-method which returns a
function suitable as an implementation of@t-selection-as-
ref method. The focus objects returned by methods implemented
using this function stand for the return object specified hip t

presses a key. The object receives the key code and a boolearny-ordant1ement record.

saying whether the special prefix key sequedegtrol+x is
active as arguments. The kernel expects this method tonretur
an instance of the viewer and stores this instance in therkist
This is a clincher, since this allows a viewer to instanteate
return a different viewer. The viewer responsible for digjohg

the contents of a user record, for example, uses this case to

instance a directory viewer object if the user pressesmédey
on the line displaying the path to a user’s home directory.

get-selection-as-ref This message asks the viewer to re-
turn the current selection as a reference ifil@us-value-

4.2 Example: process viewer

As an example for the implementation of viewers, this sectie-
scribes the implementation of the process viewer from ti-in
duction and sketches the implementation of the commandiplug
for ps.

The process viewer views the output of figecommand. Thes
command is acommand plug-in based ongbetable ps library
from Sunterlib [1]. As theps command is not standardized, the li-
brary dispatches on the type of the host operating systenthamd

table (see Section 3.3) received as an argument. The messagdssues theps command with options chosen to get all processes

60

and a set of additional information available on all suppdplat-
forms. It then parses the output and stuffs it info a recortypé
process. Theps command plug-in does not currently support ad-
ditional options but returns this list unchanged. In thaifat the
ps command should accept arguments to restrict the returred pr
cesses and customize the additional information. Whilerasnt
parsing is certainly more work, a user who often switchesatpe
systems would certainly be happy to use the same set of gation
all platforms. Of course, the syntax of the options couldlgdme
made customizable.

Figure 4 contains the implementation of the viewer plugen f
processes. The functiarake-process-viewer is the constructor
for process viewer objects. The constructor is called bykigre
nel, if the predicate for this viewelList-of-processes?, iden-
tified a result value as a list of process objects. The keunmgblees
the result value in question and the buffer to draw to as aemis
to the constructor. The constructor returns a function ¢an a
message name returns a function implementing the methednth
stance variables of the object are bound in the closure sftimic-
tion. The process viewer employs a selection list (see Gedtil)
to display a list of processeMake-process-selection-list
formats the process objects and useRe-selection-list to
create a selection list that fits into the result window lagvone
line free for a heading. On paint message, the viewer displays
the header and calls the procedpagnt-selection-list-at to
draw the selection list beneath the headekeAk-press message
is also forwarded to the selection list. Org@t-selection-as-
text message, it returns the PIDs of the selected processesfor th
command mode and a list of PIDs in the Scheme mode.

Finally, the last two lines of the figure register the process
viewer plug-in registers as viewer for a list of records opety
process and hands out the constructor to the kernel.

5. Predefined viewers

The previous section already presented Commander S's vfewe
processes. In this section, we present further viewerslémystem
objects, user and group information and results of commagds
lated to AFS. In addition, a viewer for inspecting arbitr&gheme
values is described.

5.1 The filesystem viewer

Dealing with files is another common scenario where the wser i
forced to re-enter text that appeared in the output of a puevi
command. A common pattern is that the user first issuedsan
command to list the files within a directory and then usesaatot
command to manipulate certain files. To view the most receat e
log file of an Apache web-server, the user could firstusse-1at,
which prints the files sorted by date:

1s -1t

-rw-r--r-- 5543 Jun 15 02:00 error_log.1118275200
drwx--x--- 512 Jun 15 02:00 ./

-rw-r--r-- 49024 Jun 14 15:04 access_log.1118275200
-rw-r--r-- 66312 Jun 8 21:59 access_log.1117670400
-rw-r--r-- 11498 Jun 8 21:59 error_log.1117670400
-rw-r--r-- 140048 Jun 1 18:17 access_log.1117065600
-rw-r--r-- 4688 Jun 1 05:36 error_log.1117065600
drwx--x--- 512 Mar 25 2004 ../

Next, she would invoke a viewer such asss on the latest file
error_log.1118275200

less error_log.1118275200

Again, the user has to enter text that appeared in the outpuire-
vious command. Modern shells suchtash or tcsh will help the
user to enter by providingpmmand line completioThis means
that the shell examines the command line already typed amd co
pletes the last token as far as possible or presents the ge¢o&

61

(define (make-process-viewer processes buffer)
(let* ((processes processes)
(cols (result-buffer-num-cols buffer))
(lines (result-buffer-num-lines buffer))
(sel-list
(make-process-selection-list
cols (- lines 1) processes))
(header (make-header-line cols)))

(define (get-selection-as-text
self for-scheme-mode?
focus-object-table)
(let* ((marked
(selection-list-get-selection sel-list)))
(cond
((null? marked)
(number->string
(process-info-pid
(selection-list-selected-entry sel-list))))
(for-scheme-mode?
(string-append
" (exp->string
(map process-info-pid marked))))
(else
(string-join
(map process-info-pid marked))))))

(lambda (message)
(case message
((paint)

(lambda (self win buffer have-focus?)
(mvwaddstr win O O header)
(paint-selection-list-at
sel-list 0 1 win buffer have-focus?)))

((key-press)
(lambda (self key control-x-pressed?)
(set! sel-list
(selection-list-handle-key-press
sel-list key))
self))
((get-selection-as-text) get-selection-as-text)
((get-selection-as-ref)
(make-get-selection-as-ref-method sel-list))
(else
(error "process-viewer unknown message"))))))

(register-plugin!
(make-viewer make-process-viewer list-of-processes?))

Figure 4. Implementation of the process viewer (excerpt).

possible completions. The shell derives the possible cetiopls
from the leading command, the default mode is to completéathe
ken as a filename. In the example above, the user could ashele s
to complete the command liness e. The shell will expand this
toless error_log.111 and listall error files as possible comple-
tions. Now the user needs to inspect the output of the previsu
-1t command to learn that the name of the most recent file contin-
ues with arB. After entering this character, the shell is able to fully
complete the filename. However, while command line commteti
is certainly of great aid for the programmer, the shell aga#kes
no use of the output of previous commands, which containsiin o
example the files in chronological order. If the example sgiace
within the tcsh shell, this is especially disappointing as thaee
is a built-in command. This means, the output is not produmed
some external command but by the shell itself.

The user could try to save typing by combining entering a
command line that extracts the name of the newest error Iog fo
the output ofLs and callsless onit:

less ‘ls -1t err* | head -n 1° group-info arename, gid, andmembers, the latter containing
the users of the group as a list of strings. Commander S cntai
viewers for theuser-info andgroup-info records that present
the contents of the records in a selection list. The mairufeabf
these viewers is that the user may navigate through the miezbse
information by selecting an entry and pressing the retugn Ker
thegid field, Commander S presents the corresponding group in-
formation, for thehome-dir, it invokes the filesystem viewer from

While this approach is close in the spirit of the Unix philpkg to
combine little tools to perform the work, the command linesiher
long and fragile. We would not dare to use such a construction
the command-line for a command suchras It also requires the
user to know in advance that error logs (and only these) wignt
err.

Commander S knows that the result of tte -1at command

is a list of files. It presents this list in the result windowfaiows: Section 5.1 on the home directory, likewise for the11 field, and
) for the members of a group, Commander S presents the agsbciat

Paths relative to /usr/local/svn/logs user information. Here is an example for the value of the@sgion
- " 5 ny-

-ru-r--r-- 5543 Jun 16 02:00 error_log.1118275200 (user-info "gasbichl"):

drwx--x--- 512 Jun 15 02:00 ./ [0: name] gasbichl

-rw-r--r-- 49024 Jun 14 15:04 access_log.1118275200 [uid] 666

-rw-r--r-- 66312 Jun 8 21:59 access_log.1117670400 [gid] 4711

-rw-r--r-- 11498 Jun 8 21:59 error_log.1117670400 . . .

-ru-r--r-- 140048 Jun 1 18:17 access_log.1117065600 [home-dir] /afs/wsi/home/gasbichl

-rw-r--r-- 4688 Jun 1 05:36 error_log.1117065600 [shell] /bin/tcsh

drwx—-x--- 512 Mar 25 2004 ../

If the user presses the return key, Commander S presentstine i
That is, the presentation of a list of files is the list of the fiames mation for GID 4711 as follows:
relative to a directory, which is displayed in the first linkthe

focus object is a directory and the user presses the retyrrile [name] PUstaff
result window will display the contents of this directory fleturn [gid] 4711

to the task of viewing the latest log file, the user can immtetija members:

press the key for sending the focus object to the commandamind gasbichl

as the focus object is already the most recent file. Now, she on klaeren
needs to add theess command to the command line and press the ~ knauel
return key to invoke it. Pasting files to the command windoseits
them as absolute filenames. If the command window is in Scheme
mode, pasting inserts filenames as strings.

If the user enters thies command, Commander S does not re-
ally invoke thels program and parse its output. Instead, it uses
the scsh functioffile-info to obtain the file status information and
the functiondirectory-files to get the contents of a directory.
From this information, it generates a list of records of tyjze 5.3 AFS
object. An fs-object combines a filename with file status infor- ~ This section presents two viewers related to the Andrew $ie-

The viewers are implemented in about 130 lines of code but al-
ready provide a nice tool for browsing user and group infdioma
We think that in this style a lot of information in the realmdiix
can be presented and thus enable the user to browse thisnafor
tion very conveniently and fast.

mation. The filesystem viewer registers itself as the vidaet s- tem (AFS for short) as an example for using Commander S for

objects and for lists off s-objects. viewing the result of special purpose programs. AFS is a otw
As Commander S provides its own binding for the scsh proce- filesystem based on a client-server model. AFS stores the dat

duredirectory-files, which returns a list ofs-objects in- on the server in logical partitions callaglumes Each volume

stead of a list of strings, and extends the scsh functionstwdper- is mounted at some directory below the globafs root. On the

ate on filenames tos-objects, the viewer is also able to present client, a local daemon transparently fetches and storesathients

the values of Scheme expressions returning lists of filesame of the volumes from the server and maps it into the local fdezy.
The functionality of filesystem viewer could be extended in AFS also introduces permissions for directories based crsac

various aspects: additional key-bindings for renaminggtéey, or control list (acl for short) and has its own user managemEeme.

copying files, manipulation of file mode bits, invoking of afalet user views the permissions with tfe listacl command and

application based on the filename suffix, and so forth. Howeve manipulates them with thes setacl command. For example:
while we would certainly like to have these features, it i$ the)
focus of our current work as programs like midnight commande # fs listacl .

or the dired plug-in for Emacs already show the merits of dps Access list for . is

proach. Instead, Commander S aims combine graphical fieesen Normal rights:

tion with command execution and shell programming. Unlikegp system:administrators rlidwka
front-ends for filesystem browsers, Commander S is alsoimet | gasbichl rlidwka

ited to the presentation of filesystem objects. knauel rl

fs setacl . knauel rli

5.2 User and group information viewer . . — .
group adds the right to insert files into the current directory foe tiser

User and group information are ubiquitous in Unix. For user i gnauel. Commander S saves the user from entering the username
formation, scsh provides the procedurger-info as wrapper that already occurred in the output by displaying the restits

for the standard C functiongetpwnam/getpwuid to return the listacl using a selection list:

user information from a given login name or UID. It returns a

record user-info with the fieldsname, uid, gid, home-dir, Access list for . is

and shell which contain the corresponding entries form the Normal rights:

user database (usuallfetc/passwd). For the group informa- system:administrators rlidwka

tion, scsh analogously provides a wrapgebup-info for the C gasbichl rlidwka

functionsgetgrnan/getgrgid. The fields of the returned record

62

By pressing the key for sending the selection, the user cste jize
string knauel rl to the command window running in command
mode behind &s setacl. Alternatively, the user may paste the
entry as a pair while in Scheme mode. This is especially lsefu
set the rights of several users at once. For example, thenfiolg
expression grants the right to read, list and insert files listaf
such entries which the user would paste from the result wirato
the place of. . .:

(for-each (lambda (acl)
(fs setacl "." (car acl) "rli")) ...)

On the other hand, the viewer fds listacl also supports di-
rect editing of the acl entries. Currently, pressing thestieh key
removes an entry from the acl. More features such as diredit-mo
fication of the rights would be desirable but requires funriity
beyond the current capabilities of the selection list.

Commander S also supports management of volumes. The com-

mandfs listquota takes as argument a directory and prints the
quota information for the volume the directory resides ihisTis
also a convenient way to obtain the name of the volume neéxed t
most volume-related commands. Commander S prints thet i&sul
fs listquota as

Volume Name: home.gasbichl

Quota: 1000000
Used 899724
% Used 907
Partition 28%

From here, the user can either paste the volume name intothe c
mand window or press the return key to executevib® examine
command on the volume. A future version will also supporéchir
editing of the quota.

The commands for volume manipulation also have command
line completion for the volume name argument. Commander S
receives the list of all volumes from the commarud 1listvldb.
Executing this command may take some time, therefore it {s no
desirable to initialize this list during startup. Fortuelstt command
completion is completely programmable in Scheme and during
startup the corresponding plug-in can simply spawn a thnéach
issuesros listvldb and initializes the volume list. This way, the
user has to wait only if she wants command completionvies
before the thread finishes its work.

5.4 Value inspector
The domain of viewers is not limited to the results of Unix com

value or press the key return form the inspection of a sub-value.
For continuations, thé key selects the parent continuation. If there
are more than 14 sub-values, thdey switches the presentation
of the menu to the next 14 sub-values and so on. Finallygthe
key ends the inspector and sets the focus object of the cothman
processor to the last value that has been inspected. The aodhm
processor also comes with glebug command which inspects
the continuation of the last exception that occurred. Apéaetion

of a continuation displays an excerpt of the source code ®f th
corresponding function call before presenting the menis, ith
enough to implement a very useful debugger.

For Commander S we implemented a viewer, caifespector
which shows the sub-values of an arbitrary Scheme value in a
selection list. The user may select a sub-value by moving the
selection bar to it and pressing the return key. In additiemhave
adopted the key-bindings farandd from Scheme 48.

For the implementation of the inspector, Commander S mainly
reverts to the procedufgrepare-menu from the implementation
of the ,inspect command. The procedure takes as its argument
a Scheme value and returns the list of its sub-values as @iaérs
name (or#f) and the sub-value. Commander S turns these pairs
into element records for a selection list: The object to be returned
on marking is the sub-value itself, all elements are markadnd
the text is the external representation shortened to thehwitthe
window. For the latter, we make use bfmited-write, another
utility from Scheme 48 which is a variant efrite that limits
the output to a certain depth and output length. Unfortupate
the single line within a selection list of often not enouglasp
to present complex data structures in a useful manner. 8gsid
the preparation of the selection list, there is not much tdato
the inspector: As theinspect command, it prints a source code
excerpt for continuation in a header line and being able tiorme
from a sub-value requires the viewer to maintain a stack sifed
values. Invoking the inspector on a sub-value pushes thermur
value on the stack and thekey pops a value from the stack and
makes it the current value. Thanspect command in Scheme 48
proceeds likewise.

We could use the inspector to display any value but we have
currently only registered it for the continuations of exieps, but
this may be extended for arbitrary values.

6. Job control

Most Unix shells allow the user to run multiple processesusim
taneously. In shell terminology these processes are called A

mands. In fact, the user may add viewers for any kind of Scheme shell usually provides commands to stop and continue jolesy v

value. Scheme 48 already comes with an inspection facidity t
browse arbitrary Scheme values. We have lifted the inspedé4-
cility into our ncurses-based framework and use it as thaudef
viewer for exceptions which effectively implements a deiperg

We briefly review the inspection facility in Scheme 48: Its
command processor provides a commatielspect that takes as
its argument a Scheme expression, evaluates it and prebents
outermost structure of the resulting value in a menu. Thera i
menu entry for every immediate sub-value. For a list, the- sub
values are the entries of the list, for a record the sub-gaare
the components of the record, for a continuation the costefithe
stack frame makes up the sub-values. A menu entry consists of
number for selection by the user, an optional name for ratere
and the external representation of the sub-value. The sairthe
name depends on the kind of value being inspected: for redbrd
is the name of the record field, for environment frames it & th
name of the variables. List or vector entries do not have same
After the presentation of the menu, the user may enter thebeum
of a menu entry to continue inspection with the correspomdirb-

63

the list of jobs and their status, and the job’s access rigttse ter-
minal. All processes share a single terminal as their stamlztput
and input. The POSIX job control interface [5] enables thellsh
to control which process may read or write to a terminal. Frad
tional shells pursue the following policy: A single foregral job
has read and write access to the terminal and all backgralosd |
are allowed write to the terminal only. If a background jaledrto
read from the terminal, the shell suspends the executiomeojob
until the job becomes the foreground job.

Thus, running multiple background jobs, which write to the
terminal yield a mingled output. Basically, the user hastoices
to avoid this: redirecting the output of each job to a sepafit,
or make the shell’'s job control stopping processes thaingiteo
write to the terminal. However, both options are disadvgetas.
A job control policy with exclusive write access may stop the
computation of a background job completely just becauseethe
is output available. This not appropriate in all cases, f@neple
when running a daemon from the command line. On the other
hand, redirecting the output requires extra effort forisgttip the

redirections for standard output and standard error, vigwhe file,
and deleting the temporary files afterwards.

Commander S adds a third method, not provided by traditional
shells, to the picture; so-callednsole jobsThe standard input and
output of a console job are connected via a separate psaudioa
to Commander S. A thread continuously reads the pseudortatmi
to ensure that writing to the terminal does not blockcénsole
record stores the pseudo terminals and the buffered outpLibb.
The viewer plug-in for this record type displays the outplithe
job in the result buffer and updates it continuously as netpuau
arrives. Thus, the user may review the output of a commandyat a
time. Section 6.3 discusses console jobs in detail and pieee
implementation at a glance.

Beside console jobs, Commander S offers job control as known
from traditional shells. The implementation, however, etdges
from traditional implementations. We present a elegantuoent
implementation in the CML framework in the following seci®

Section 6.1 presents the POSIX job control facilities atengé.

A reader familiar with these facilities and their mode of @i®n
may choose to skip this section. Section 6.2 describes haw-Co
mander S runs jobs without a separate console. Section plaiex
the execution of console jobs. Section 6.4 describes thieimgn-
tation of the job list, a data structure that maintains tifierimations
on jobs centrally.

6.1 Traditional job control

The POSIX API contains functions for implementing job cohtr
which are widely-used by traditional shells. Scsh alreadyigdes
bindings to these functions. Thus, it was not necessarynexesh
to implement Commander S’s job control. This section ex@gai
the basics of POSIX job control using scsh’s names for thelROS
functions.

Process groups are the basis for job control — a process group
is a set of processes, which share a common process grougia. E
process is member of exactly one process group. When a groces
forks, the child process inherits the process group id ofpie
ent — the process is said jimn the parent’s process group. A pro-
cess may alsopena new process group by callirgt-process-
group. Each terminal device is associated with one process group,
named thdoreground process groygll other process groups are
called background process groupé process group makes itself
to the foreground process by callisgt-tty-process-group.
In contrast to processes of background process groupsegses
of the foreground process group are granted read and write ac
cess to the terminal. If a background process tries to ream fr
the terminal, the kernel terminal driver suspends the jobguhe
SIGTTIN signal. Depending on the configuration of the terminal a
background job writing to the terminal may also be suspenged
ing theSIGTTOU signal. Usingwait, a parent process may watch
if a child gets suspended.

6.2 Jobs without console

Jobs without a separate console are either foreground d¢- bac
ground jobs and work akin to jobs in a traditional shell. Teaxe

a foreground job, Commander S temporarily escapes the curse
mode and hands the control on the screen over to the foregroun
job. Once the foreground jobs terminates (or gets suspeiygled
signal), Commander S reobtains control. Commander S expect
background job neither to read from nor write to the termiifal
the job tries to read or write, however, the job gets suspeadel
Commander S notifies the user (see Section 6.4). In this base t
user may choose to continue the job in foreground. Vice versa
user may also explicitly stop a foreground job and contitnegob

in background.

64

(define-syntax run/fg
(syntax-rules ()
((_ epf)
(run/fg* ’ (exec—epf epf)))))

(define (run/fg* s-expr)
(debug-message "run/fg* " s-expr)
(save-tty-excursion
(current-input-port)
(lambda ()
(def-prog-mode)
(clear)
(endwin)
(restore-initial-tty-info! (current-input-port))
(drain-tty (current-output-port))
(obtain-lock paint-lock)
(let ((foreground-pgrp
(tty-process-group (current-output-port)))
(proc
(fork
(lambda ()
(set-process-group (pid) (pid))
(set-tty-process-group
(current-output-port) (pid))
(eval-shell-env s-expr)))))
(let*x ((job (make-job-sans-console s-expr proc))
(status (job-status job)))
(set-tty-process-group
(current-output-port) foreground-pgrp)
(newline)
(display "Press any key to return...")
(wait-for-key)
(release-lock paint-lock)

job)))))

Figure 5. Running a job in foreground.

The machinery for running jobs is built on top of scshim
form. The form (run/fg epf) executes the extended process
form epf as a foreground job. To specify a program to run and
the corresponding redirections of the input and output ohkn
scsh uses a special syntactic notation: process forms deadded
process forms. Thusun andrun/fg are implemented as macros
not as functions.

Figure 5 shows the implementationain/fg. Applications of
run/fg expand into a call tarun/fg*; a function that expects
a piece of Scheme code as a s-expression as its argument. The
Scheme code is supposed to actually run the process using scs
basicexec-epf facility. Unlike run, exec-epf does not fork the
process before running the progrekan/fg* callseval-shell-
env to evaluate the Scheme code in the shell environment. It is
important that the evaluation takes place in the shell envirent
since an extended process form is implicitly backquotedis thy
using unquote, a user may embed Scheme code in an extended
process form. Carrying out the evaluation in the shell emrinent
ensures, for example, that the user may refer to variablisede
interactively in the Scheme mode or use focus values.

Before running the process usiegal-shell-env, run/fg*
calls a sequence of ncurses functions to save the currezgrscr
clear it and finally escapes the curses mode temporarilygusin
endwin. This yields an empty screen called tlesult screenThis
avoids that the Commander S screen is garbled with the oafput
the process. To execute the proceasy/fg* forks the process,
opens a new process group, and makes this process group the
new foreground process group. The parent process gaks-
job-sans-console to create a new job record with the process
object returned byfork. The parent process usgsb-status;

a wrapper version ofait for jobs. Thus, the parent waits until

the child process exits and makes itself the foregroundga®c
group again. Afterwards, the parent process waits for a keggp

to give the user time to read the child’s output. It is essénti
to ensure that no output occurs during the time Commander S
is a background process — otherwise the terminal driver @oul
suspend Commander S. To enforce this conditian/bf obtains

the paint-lock which prevents other threads, such as the thread
that updates the job status indicator (see Section 6.4, fi@nting
onto the screen.

Running jobs in background works alike using a function
run/bg*. There, the code for escaping from the curses mode and
setting the foreground process drops out. On start-up, Gomm
der S configures the terminal to stop background procesaesyh
to write to terminal, thus, a background cannot garble theest
Commander S offers two functions for continuing suspendéd |
without a consoleContinue/fg puts a stopped job into the fore-
ground and continues the jotyntinue/bg, vice versa, continues
a job as a background job. The implementation of this fumstis
derived from the implementation @fin/fg* andrun/bg*. How-
ever, instead of forking and callingkec-ep£, the functions send
the process group of the jobSaGCONT signal, thus, the processes
continue to execute.

6.3 Console jobs

The implementation of console jobs is more complex thanrthe i
plementation of jobs without console. While there is no@xffort
needed to display the output of job without console — it isyonl
visible on the separate result screen — the output of corjebke
causes more effort. The output of a job must be read by Comman-
der S continuously to keep the job running. However, display
the output in the result buffer as it occurs is not reasonabline
job would behave like an ordinary foreground job.

Here, the concept of viewer plug-ins comes into play. The ou
put of a console job is represented byansolerecord. An ac-
companying viewer plug-in for this record type displays dlput
and updates the result buffer as new output arrives. To tireeke
console is conceptually just another value with a predefinaser
plug-in. Each console is accompanied by a thread that réwees t
pseudo terminal of the process and sends the charactermtead
a synchronous CML channel. Thus, this thread lifts I/O evéntb
the CML framework.

To actually paint the contents of the output buffer to theesor
the console viewer plug-in uses a so-caltedminal buffer The
heart of a terminal buffer is a thread spawned by the funatimwn
in Figure 6. The terminal buffer is connected via the synobrs
pty-channel to the thread that reads the console’s output. De-
pending on whether the console is currently visible in thaulte
buffer or not, the terminal buffer either buffers the newpuit(by
calling terminal-buffer-add-char) or buffers it and immedi-
ately repaints the result buffer. The decision whether watp the
result buffer or not is left up to the console viewer plugsich
usesresume-console-output Or pause-console-output tO
stop and continue the updates, respectively.

The terminal buffer performs a second task hidden in the-func
tion terminal-buffer-add-char. Basically, this function imple-
ments a terminal emulator for a small subset of VT100 control
codes. The terminal emulation is necessary to restrict fleete
of terminal escape codes generated by the running job tethatr
buffer only. Forwarding the escape codes rawly to termimah€
mander S is running on yields undesirable effects. If theninm
job outputs the escape code to clear the screen, for exathjde,
escape code would be interpreted by the terminal emulatdhéo
terminal Commander S is running on, and clean the entiresere
including the command buffer. Alas ncurses offers no sofutd
this problem.

t

65

(define (spawn-console-loop
pause-channel resume-channel
window termbuf pty-channel)
(spawn (lambda ()
(let 1p ((paint? #t))
(select
(wrap (receive-rv pause-channel)
(lambda (ignore)
(1p #£)))
(wrap (receive-rv resume-channel)
(lambda (ignore)
(1p #t)))
(wrap (receive-rv pty-channel)
(lambda (char)
(cond
((eof-object? char) (lp paint?))
(else
(terminal-buffer-add-char
termbuf char)
(if paint?

(begin
(curses-paint-terminal-buffer
termbuf window)
(wrefresh window)))

(1p paint?))))))))))

(define (pause-console-output console)

(send (console-pause-channel console) ’ignore))
(define (resume-console-output console)

(send (console-resume-channel console) ’ignore))

Figure 6. Updating aterminal-buffer and painting it.

6.4 Job status and job list

A job is in one of the following run states: running, finished,
stopped, waiting for input, or waiting with output (the Etapplies

to background jobs without a console only). Traditionalllsheo-
tify the user either immediately or before drawing the nexinppt

if the status of a job changes. Both methods have drawbacks:
prompt notification means that the shell prints the notifacatli-
rectly to the terminal at point of time the status change oxdbus
garbling the terminal output. Waiting for the next prompbials a
garbled screen, but the user has to issue (empty) commaoas fr
time to time to see if a status change occurred. A graphical us
interface produces relief for this problem.

Commander S’s command buffer displays a small gauggothe
status indicatorin the lower right corner of the command window
(see figure 1). The job status indicator displays the cumaniber
of processes in each of the possible state. Whenever tis sisa
jobs changes, a thread updates the job counts immediatiiguwti
disrupting the user.

Commander S uses a centjab list to maintain a list of all
jobs. The job list serves two purposes. First of all, it is degb
to implement thejobs command, which prints a list of all jobs
and their current state. As a second task, the job list regisll
status changes of a job and informs the job status indiciouta
the change.

The implementation of the job list was tricky — there are
several sources of events that modify the state of the jabAis
user may submit a new job at the prompt, stop or continue a job,
or a background job may interrupt or finish its execution. §hu
the job list needs to observe several diverse sources forteet
once. First of all, user commands such as submitting, coimti
or stopping a job need to inform the job list about the jobustat
changes. The termination or suspension of a backgroundigobs
the second source for events that trigger changes in the stat

the job list. To notice these changes the job list needs tb cal XEmacs and GNU Emacs ship withired, a special mode for
wait for each background job and update the job list. Using the editing directory trees [10]. The GNU screen [4] terminalvager
CML framework these diverse sources for events may easily be allows users to detach from a terminal and reattach to it,latel

represented uniformly as rendezvous. Thus, one ceséfbdct
synchronously waits for the occurrence of any of the namedtsv

Figure 7 shows an excerpt from the implementation of the job
list. The functionspawn-joblist-surveillant starts the thread
that maintains the job list and returns theatistics-channel.
This channel connects the job list with the job status indica—
whenever the state of the job list changes in a relevant \wayjob
list posts the updated job counts to this channel and thadhae-
companying the job status indicator updates the gage. Teadh
spawned byspawn-joblist-surveillant executes an infinite
loop that useselect to choose a rendezvous from the possible
sources of events affecting the job list. The job list coissis lists
for each run state that are bound locally in the thread. The lo
variablenotify? indicates whether an update of the job status in-
dicator is due. If this is the case, the thread sends the raujob
counts tostatistics-channel. The constructor for jobsake-
job-sans-console and make-job-with-console submit the
jobs just created to job list using tl@d-job-channel. If a ren-
dezvous on thadd-job-channel is enabled, the function associ-
ated to this event by therap combinator adds the new job to the
list of running jobs and continues the loop. In this case atatgof
the job status indicator is due, thus the loop function itedalvith
#t as the value fonotify?. Receive rendezvous on thetify-
continue/foreground-channel indicate that the user issued a
continue/fg Or continue/bg command. Thus, a job that is ei-
ther stopped, waiting with output, or waiting for input clgas to
the running state. The accordant action for this eventdeteltbe
job from the lists for stopped jobs, adds it to the list of ringnjob,
and setsiotify? to true. Theget-job-list-channel is used by
the jobs command to get the list of all jobs.

The job list also monitors the status changes of the prosesse
usingwait. The constructor for jobs spawns a thread that calls
wait on a job’s process object, and fills a CML placeholder with
the status value returned kpit. The functionjob-status-rv
returns the corresponding rendezvous. This way, the sthtusge
of a process translates to a CML rendezvous suitable fagiatien
with the job list's select call. Thus, the job list surveillance
thread includes thgob-status-rv for all running jobs into the
selection of rendezvous by mappiggb-status-rv on the list
of all running jobs. The function associated with each remdas
adds and removes the affected job to the correspondingdfsts
jobs in a specific state. The scsh functigttsatus:exit-val,
status:stop-sig, andstatus:term-sig decode thestatus
value returned byjob-status-rv. Depending on whether the
process exited, was suspended or terminated abnormadige th
functions return#f or an integer providing further information
on the reason of state change. If the operating system siispen
the process, for exampletatus:stop-sig returns the signal
number that yielded to suspension.

7. Related Work

There is multiplicity of file managers available that follthe tradi-
tion of the abandoned Norton Commander, such as the GNU Mid-
nightCommander [6] or LFM [8]. These applications use mdst o
the screen to display one or two file lists which the user may na
igate, use to select files, and perform operations on them |83t
line of the screen shows the shell prompt of a traditional shleus,
these applications are clearly committed to work with filekely.

To Commander S, working with files is just one facet of a more
holistic approach for easing the work with a shell. The GNWMi
nightCommander comes with job control for background jolis b
these “jobs” are merely running copying and moving operetio

66

offers some text based copy and paste mechanism. This psoaid
functionality akin to Commander S’s console jobs.

8. Conclusion and Future Work

This paper presented Commander S as a browser for UNIX. With
the aid of command plug-ins, Commander S parses the output of
commands and acquires the contained information. Viewsy-pis

use the ncurses library to present the output informatiantesac-

tive content. Commander S contains plug-ins for the mosthcom
entities in shell interaction, processes, and filesystemberis. The
paper shows that it is possible with little effort to extenoh@nan-

der S to other domains. Through the use of the CML library, the
implementation of the job control is very short, even thoitghk
more powerful than in common UNIX shells and even contains a
small terminal emulator for running processes in the bamlgd
while saving their output.

The technique presented in this paper could be used to presen
other information such as DNS result records, or the costeht
NIS or LDAP databases. As Commander S closely integrates an
evaluator for Scheme expressions, the user can alwaysafzdl to
writing small programs if the power of the command language o
the viewers does not suffice to accomplish a task.

One conceivable extension of Commander S is the integration
with the Orion window manager which is also based on Scsh.
In this combination, Orion would start several Commanden-S i
stances concurrently, and assign every instance its owrdpder-
minal and Xterm window.

Acknowledgments Christoph de Mattia wrote th&csh-ncurses
bindings and an early prototype of Commander S callesh-
nuit

References

[1] Sunterlib — the Scheme Untergrund library, 2005. Avaléaat
http://www.scsh.net/resources/sunterlib.html.

[2] Norman Adams and Jonathan Rees. Object-oriented progiag in
Scheme. IPACM Conference on Lisp and Functional Programming
pages 277-288, Snowbird, Utah, 1988. ACM Press.

[3] Eric Raymond, Zeyd Ben-Halim, and Thomas DickeWriting
programs with ncurse2004.

[4] Oliver Laumann et al. GNU Screen 4.0.2 user manu&005.
https://savannah.gnu.org/projects/screen/.

[5] Donald. A Lewine. POSIX Programmer's Guide O'Reilly &
Associates, Inc., 1994.

[6] Pavel Roskin and Miguel de Icaza. The GNU MidnightComutem
2005.http://www.ibiblio.org/mc/.

[7] John H. Reppy. Concurrent Programming in ML Cambridge
University Press, 1999.

[8] Ifigo Serna. Ifm —last file manager, 2004ttp://www.terra.
es/personal7/inigoserna/lfm/.

[9] Olin Shivers, Brian D. Carlstrom, Martin Gasbichler,daMike
Sperber. Scsh Reference Many&003. Available fromhttp:
//www.scsh.net/.

[10] Michael Sperber. Dired. http://www-pu.informatik.
uni-tuebingen.de/users/sperber/software/dired/Y%.

(define (spawn-joblist-surveillant)
(let ((statistics-channel (make-channel)))
(spawn (lambda ()
(let 1p ((running ’()) (ready ’()) (stopped ’()) (new-output ’())
(waiting-for-input ’>()) (notify? #f))
(cond
(notify?
(send statistics-channel ...)
(1p running ready stopped new-output waiting-for-input #f))
(else
(apply select
(append
(list
(wrap (receive-rv add-job-channel)
(lambda (new-job)
(1p (cons new-job running)
ready stopped new-output waiting-for-input #t)))
(wrap (receive-rv notify-continue/foreground-channel)
(lambda (job)
(1p (cons job running) ready
(delete job stopped) (delete job new-output)
(delete job waiting-for-input) #t)))
(wrap (receive-rv get-job-list-channel)
(lambda (answer-channel)
(send answer-channel ...)
(1p running ready stopped new-output waiting-for-input #f£))))
(map
(lambda (job)
(wrap (job-status-rv job)
(lambda (status)
(cond
((status:exit-val status)
=> (lambda (ignore)
(1p (delete job running) (cons job ready) stopped
new-output waiting-for-input #t)))
((status:stop-sig status)
=> (lambda (signal)
(cond
((= signal signal/ttin)
(1p (delete job running) ready stopped new-output
(cons job waiting-for-input) #t))
((= signal signal/ttou)
(1p (delete job running) ready stopped
(cons job new-output) waiting-for-input #t))
((= signal signal/tstp)
(stop-job job)
(1p (delete job running) ready (cons job stopped)
new-output waiting-for-input #t))
(else (error "Unhandled signal" signal)))))
((status:term-sig status)
=> (lambda (signal)
(1p (delete job running) ready (cons job stopped)
new-output waiting-for-input #t)))))))
running))))))))

statistics-channel))

Figure 7. Excerpt from the implementation of a job list with asynchwoas status indication.

67

68

