
Object-Oriented Style

Daniel P. Friedman
Indiana University

dfried@cs.indiana.edu

ABSTRACT
Writing programs in continuation-passing style is a good
tool for understanding reified continuations and call/cc.
Similarly, writing programs in an object-oriented style is a
good tool for understanding object-oriented language fea-
tures, such as super (or object) method invocation. We
present an object-oriented style and a simple example of its
use. From this example, we present protocols that make this
style more natural. We then enforce the style and protocols
by introducing a macro per class. These macros are macro-
generating macros that package the syntactic redundancy
of the style, approximating a compiler for a conventional
object-oriented language. Exercises are scattered through-
out to help the energetic reader develop a deeper under-
standing of the paper’s concepts.

1. INTRODUCTION
We use style to mean an encoding of a language idiom gen-
erally in some other language. Furthermore, we expect that
the style makes explicit everything that matters. One of the
advantages of well-defined programming languages is that
built-in idioms are abstracted away. But, this is also one
of the disadvantages, especially for those who want to com-
pletely understand the language. Also a style has the advan-
tage that since everything is explicit, it is clear exactly how
it might be embedded in the encoding language. For exam-
ple, with Scheme as the encoding language, we claim that
any value can be a method, and if that value happens to be
a procedure of at least one argument, it can be invoked in
object-oriented style.

Our object-oriented style for single inheritance uses a small
subset of Scheme [1], with its ability to associate variables
to values as our mechanism to define classes and objects.
Virtually any system with first-class procedures, lists, and
vectors is powerful enough to allow one to write in this style.
For updateable fields and methods, we also need updateable
vectors.

There are three motivations behind the ideas in this paper.
First, we want to remove the confusion by some beginners
about what object method invocation is and how it differs
from super method invocation. We believe that knowing
exactly how, when, and in what lexical scope method tables
are built lessens this confusion. Second, we want to clarify
the extent to which both kinds of method invocation are
just procedure invocations and therefore can lead to long
chains of recursive calls (Section 8.4). This seems to have
been ignored by most implementors of object-oriented lan-
guages, even though two decades ago Cardelli [2], Cook and
Palsberg [3], Kamin [6], and Reddy [8] observed how object-
oriented programming is related to recursion. Third, we
want to demonstrate a style that does not rely on recursion
to model classes and objects. This clarifies why the recur-
sion that does arise must be through a dynamically-scoped
variable: this (or self).

1.1 What makes CPS a style?
The restrictions of CPS can be described by a grammar:
calls to non-primitives must be tail calls, which implies that
arguments must be simple. The simple terms are lambda

expressions, variables, constants, and combinations of sim-
ple terms using primitive calls. The CPS conversion of
lambda terms requires adding an extra argument, k, the con-
tinuation, to each lambda parameter list, and each lambda

body must be CPS’d with respect to k. This, in turn,
requires that all calls to non-primitives have an extra argu-
ment, an expression whose value is a procedure of one argu-
ment. That procedure is a continuation. Instead of return-
ing a value from a procedure, a value is “returned” by invok-
ing a continuation.

But a style is more than a grammar. These grammatical
rules do not take into consideration that the continuation-
passing definition is advisory. For example, it is possible to
decide in one context that member is primitive (i.e., obviously
terminates) and in another context that it must, itself, be
rewritten in CPS. One must ask oneself, “Will the expression
obviously terminate?” If so, then it is okay to treat the
expression as if it were a primitive call. But, what if member
is passed a circular list and we are relying on it being in
CPS for trampolining? Then, it should be treated as a non-
primitive call and its definition should be CPS’d. So, CPS
is a style with the need for protocols just like the object-
oriented style that we discuss here. Hence, the grammar is
basically a set of guidelines, where the person who does the
manual CPSing of a program gets to use judgment.

1.2 Recursion throughit
Before we get started, let’s look at a familiar way of writing
and testing an old chestnut: even? and odd? for mutual
recursion. We implement them without using letrec or
referring to a free variable within a lambda expression.

(define e/o-procs

(vector

(lambda (it n)

(if (zero? n) #t

((vector-ref it 1) it (- n 1))))

(lambda (it n)

(if (zero? n) #f

((vector-ref it 0) it (- n 1))))))

> e/o-procs

#(#<iseven> #<isodd>)

> ((vector-ref e/o-procs 0) e/o-procs 5)

#f

In the definition of e/o-procs, there are neither free vari-
ables (only primitives and constants) in the lambda expres-
sions nor any explicit recursion. (When meaningful, we dis-
play anonymous procedures with names.) We have two pro-
cedures in the vector. The procedure in the zeroth position
of the vector pulls out a procedure from the first position of
the vector, and the procedure in the first position of the vec-
tor pulls out a procedure from the zeroth position. In each
such call, it passes the procedure vector as an additional
first argument.

A procedure that takes such an additional first argument
corresponds to a method, and a vector of such procedures
corresponds to an object. What makes object-oriented style
more interesting than this simple example is that as each
vector is built from another such vector, it is constructed in
a reasoned way, but we must wait to see how.

The remainder of the paper is structured as follows. In the
next section, we present a variant of the classic point/color
point example. In section three, we introduce position envi-
ronments. In the fourth section, we pick a representation of
objects and classes and define nine interface operators. In
the fifth section, we present the style informally along with
the test program written in our style. In section six, we
demonstrate some protocols for giving more intuition about
object-oriented style. These include introducing the lexical
variable super, and removing direct reliance on positions
to access methods and fields. Then in the seventh section,
we present an innocent-looking transformation that again
aids reading but has significant implications for characteriz-
ing the next two transformations. Having set the stage, we
demonstrate how macros can allow the user to ignore the
interface operators and can impose the protocols of object-
oriented style to create a version where the positions are
determined at macro-expansion time. In the ninth section,
we present new, which not only creates an object but also
invokes the appropriate init method. Then, we introduce
two macros that remove reliance on quoted symbols. In
the final section, we revisit our motivations and make some
observations about our approach.

2. THE EXAMPLE
The example assumes some familiarity with object-oriented
programming concepts. If this example is not simple to
follow, skip this section. Our primary purpose is to char-
acterize the example before we get into the details of our
object-oriented style. We use the example of points <p>,
and color points <cp>, but we include a method diag, which
does a diagonal move, and a method diag&set, which does
a diagonal move of n followed by setting the color represent-
ed by n. We also have stationary color points <scp>. One
of our goals, inspired by the example from Goldberg and
Robson [5] (pages 62–65), is to show a simple example that
allows us to clarify the distinction between object method
calls and super method calls.

Our example is sugared with macros, however, they do not
appear until Section 8. A shadow, which is a macro, is what
we build before we create its associated class, which is a
value as in Smalltalk. A shadow contains the necessary
compile-time information to model a class as in C++ or
Java. We assume the root shadow <<o>> and its associated
class <o> exist. We use extend-shadow to extend a shadow
just as we might extend a class. The list of variables men-
tioned after the super shadow contains the field variables of
the class (shadow). They are followed by a list of method
definitions. After each shadow is built, we use create-class
to create its associated class. “Shadows” are unusual, how-
ever, the method definitions should seem familiar.

(define-syntax <<p>>

(extend-shadow <<o>> (x y)

([init

(method (x^ y^)

(set! x x^)

(set! y y^)

(init super))]

[move

(method (dx dy)

(set! x (+ x dx))

(set! y (+ y dy)))]

[get-loc

(method ()

(list x y))]

[diag

(method (a)

(move it a a))])))

(define <p> (create-class <<p>> <o>))

(define-syntax <<cp>>

(extend-shadow <<p>> (hue)

([init

(method (x^ y^ hue^)

(set! hue hue^)

(init super x^ y^))]

[get-hue

(method () hue)]

[diag&set

(method (a)

(diag it a)

(set! hue a))])))

(define <cp> (create-class <<cp>> <p>))

(define-syntax <<scp>>

(extend-shadow <<cp>> (y)

([init

(method (x^ y^ hue^)

(set! y ": Stuck: ")

(init super x^ y^ hue^))]

[move

(method (x^ y^)

(show-y it))]

[diag

(method (a)

(write hue)

(diag super a))]

[show-y

(method () (display y))])))

(define <scp> (create-class <<scp>> <cp>))

The test program below is simple. We build objects of <p>

and <scp> (and <cp>). Next we make method calls using
mbv and invoke. We determine that cp is an object of class
<p>, but that p is not an object of <scp> (or <cp>). Section 8
and Section 9 explain these features.

(define test

(lambda (c)

(let ([p (new <p> 1 2)]

[cp (new c 18 19 9)])

(mbv diag&set cp 10)

(list

(list

(invoke <<cp>> get-loc cp)

(invoke <<cp>> get-hue cp))

(isa? cp <p>)

(isa? p c)))))

> (begin (write (test <scp>)) (write (test <cp>)))

9: Stuck: (((18 19) 10) #f #t)(((28 29) 10) #t #f)

3. POSITION ENVIRONMENTS
In this section, we introduce position environments; a sim-
ple operator enumerate-env to make them; an operator
append-env to combine them; and an operator trim-env to
remove shadowed variables from them. We also introduce
“installing” an environment, an unusual way to determine
the value of variables.

We use vectors to represent the data structures of object-
oriented style. We eventually want to use variables rather
than indices, so we need a representation that associates
variables with indices. To do this, we introduce position
environments.

A position environment is a function whose domain is vari-
ables, represented by symbols, and whose range is posi-
tions, represented by nonnegative integers, where no posi-
tion appears more than once. A position environment is gap-
free if it is empty or it associates some variable to position 0
and contains no gaps. We represent a position environment
by a list of variable/position pairs, where the positions are
in increasing order. We define the value of a variable with
such a representation to be the greatest position associated

with the variable. A gap-free environment using these pairs
is pure if no variable appears more than once. Here is a
simple way to make a gap-free environment.

(define enumerate-env

(lambda (vars)

(let loop ([vars vars] [i 0])

(cond

[(null? vars) ’()]

[else

(cons ‘(,(car vars) ,i)

(loop (cdr vars) (+ i 1)))]))))

> (define p ’(a b c))

> (define q ’(a d c))

> (define penv (enumerate-env p))

> (define qenv (enumerate-env q))

> (define renv ’([a 3] [d 5] [c 6]))

> penv

([a 0] [b 1] [c 2])

> qenv

([a 0] [d 1] [c 2])

We define append-env of a position and a pure environment.
It tacks the pure environment onto the position environ-
ment, but starts the pure environment at one more than the
greatest position of the first argument.

(define append-env

(lambda (e p)

(cond

[(null? e) p]

[else

(append e

(let ([m (+ (cadar (last-pair e)) 1)])

(map (lambda (pr)

‘(,(car pr) ,(+ (cadr pr) m)))

p)))])))

> (append-env penv qenv)

([a 0] [b 1] [c 2] [a 3] [d 4] [c 5])

> (append-env renv penv)

([a 3] [d 5] [c 6] [a 7] [b 8] [c 9])

We revise append-env below, so we do not worry about this
definition’s efficiency.

We can trim the shadowed variables from an environment
represented by a list of pairs, since we only care about the
greatest positions of the variables.

(define trim-env

(lambda (e)

(cond

[(null? e) ’()]

[(assv (caar e) (cdr e)) (trim-env (cdr e))]

[else (cons (car e) (trim-env (cdr e)))])))

> (trim-env (append-env penv qenv))

([b 1] [a 3] [d 4] [c 5])

We install environments to get the value of variables. For
example, both expressions below yield the value (0 1 2).

> (let ([a 0] [b 1] [c 2])

(list a b c))

> (eval ‘(let ,penv (list a b c)))

Clearly, installation on some level crosses syntax and seman-
tics. It is best, however, to think of this operation as part
of a transformation process.

Similarly, we can install a gap-free environment using let*.
We use let*, since we are only interested in the greatest
position of each variable. Thus, a’s value is 3 (not 0), and
c’s value is 5 (not 2). If we wish to use let, we must trim
the environment before we install it.

> (let* ([a 0] [b 1] [c 2] [a 3] [d 4] [c 5])

(list a b c d))

(3 1 5 4)

> (let ([b 1] [a 3] [d 4] [c 5])

(list a b c d))

(3 1 5 4)

When an environment is gap-free, we may represent it with
a simple list of variables. We can redefine append-env over
gap-free environments and thus represent an environment as
a list of variables. The result of append-env is also gap-free.
Its definition is just append.

(define append-env append)

> (enumerate-env (append-env p q))

([a 0] [b 1] [c 2] [a 3] [d 4] [c 5])

Exercise 1: Let e1 be gap-free and e2 be pure with both
represented by a simple list of variables. Rewrite (trim-env

(enumerate-env (append-env e1 e2))) so that, except for
some anticipated calls to memv, we get a one-pass algorithm 3

4. CLASSES AND OBJECTS
A class is represented as a list1 of three items: a field envi-
ronment, a method environment, and a method vector. An
object is like a class but differs in its first item, a field vector
the size of the field environment of its associated class. A
method or field is any value, but if it is a procedure of at
least one argument, then it can be invoked in object-oriented
style. The cdr of a class or object is its method table. A field
table is the field environment of a class along with a field
vector of its associated object. Since the field environment
is gap-free and the method environment is pure, we repre-
sent each with a simple list of variables. Each environment
and its associated vector is the same length, allowing us to
associate a variable with each vector element. Our interface
operators, described below, treat table content independent-
ly of its use, therefore the style, itself, dictates how the two
kinds of tables may be different.

1We have opted for lists instead of records. We want to
build our object-oriented style out of primitive pieces like
lists, vectors, and lambda.

Next we define the nine interface operators fx, mx, mp,
mp!, fp, fp!, mteq?, n, and mv.

4.1 Environment extension operators
We introduce interface operators fx, which extends the field
environment of a class, and mx, which extends the method
environment of a class.

(define (_fx c e) (append-env (car c) e))

(define (_mx c e) (append-env (cadr c) e))

4.2 Position-based operators
Each position-based interface operator takes a position as
its second argument. To access (or update) a method by
position, use mp (or mp!). To access (or update) a field by
position, use fp (or fp!). (oc is an object or a class.)

(define (_mp oc p) (vector-ref (caddr oc) p))

(define (_mp! oc p v) (vector-set! (caddr oc) p v))

(define (_fp o p) (vector-ref (car o) p))

(define (_fp! o p v) (vector-set! (car o) p v))

4.3 Method table operator
We define mteq?, which takes an object or class oc1 and
an object or a class oc2. If they share the same method
table, it returns true. Since the cdr of a class or object is
its method table, it checks to see if the two arguments have
the same method table.

(define (_mteq? oc1 oc2) (eq? (cdr oc1) (cdr oc2)))

We have to be sure that each class has a unique method
table. We get that property, because each method vector
gets a new isa? method, thus requiring a new method vec-
tor.

4.4 Making objects and accessing methods
We define n, which given a class, creates a new object, and
mv, which given an object and a variable (symbol), accesses

a method.

(define (_n c)

(cons (make-vector (length (car c))) (cdr c)))

(define (_mv oc m)

(_mp oc

(let loop ([m* (cadr oc)] [pos 0])

(if (eqv? (car m*) m)

pos

(loop (cdr m*) (+ pos 1))))))

We observe that accessing a method by its associated vari-
able (a symbol) requires computing its position. When we
use mv, we say that we are accessing the method externally.
These last three operators are different from the other six,
since these three can be used anywhere, whereas the first
six are restricted to class definitions. As such, we refer to
the first six as internal and the remaining three as external
interface operators.

We have now presented the nine interface operators. Next
we present our object-oriented style and the example in this
style. We then enforce some protocols on the style. Once
we have the protocols in place, we then observe redundancy
in the transformed program. Finally, we remove this redun-
dancy with macro-generating macros.

Exercise 2: Using the definition of e/o-procs from Sec-
tion 1.2, implement the procedures even? and odd?. Then
implement factorial using this style. Each of the three
procedures should take a single integer. 3

5. OBJECT-ORIENTED STYLE
In this section we present the essence of an object-oriented
style along with the test program and four classes written in
this style. Upon conclusion of this section, the style should
be clear and what remains has to do with improving the
style’s readability through protocols, method lifting strate-
gies, and some macros, which allow the user to express the
style more succinctly.

5.1 The style
Our object-oriented style is written in Scheme and uses
the environment operator append-env (enumerate-env and
trim-env are used in Section 8, only.), and our choice of
representation for objects and classes. We liberally borrow
terminology from Smalltalk, C++, and Java.

There are several facets of the style that we postpone until
the classes and test programs are presented. Here, how-
ever, we give just a few fundamental aspects of the style.
Some methods are not expressed as procedures built from
lambda expressions, but those that are have it, which must
be bound to an object or a class, as their first formal param-
eter. When it is bound to an object, we can access or set
its fields. Every object of a given class uses the same posi-
tion in its field vector for each field defined by the class.
Thus, referencing and updating fields of objects of a given
class is through constant positions within the field vector of
it. To invoke a method in object-oriented style (It may also
be just a procedure call.), first obtain the method through
a constant position of a method vector, and then invoke it
on some object or class and perhaps some additional argu-
ments. Following the style means that if the method is from
an object, then its first argument must be the object. If the
method is from a class, then its first argument is either the
class (rarely, but see the code of isa? below) or it. There
are no restrictions on method bodies.

5.2 The example in our style
Below are four classes written in our object-oriented style.
We refer to the class that we are currently defining as the
host class. Each method of a host class is determined in
one of two ways. Either it is the result of evaluating an
expression (e.g., a lambda expression) or it is a method con-
tributed (or inherited) from a single existing class, called its
super class. Because we know that there is a one-to-one
correspondence between the variables in the method envi-
ronment of a class and the positions in the method vector
of the class, we can think of the methods in the vector as if
they had a name. For example, in the root class <o> below,
we can associate isa? and init with the first two positions
of its method vector.

(define <o>

(list

’()

’(isa? init)

(vector

(lambda (it c)

(_mteq? it c))

(lambda (it . args)

(void)))))

> <o>

(()

(isa? init)

#(#<isa?> #<init>))

(define <p>

(list

(_fx <o> ’(x y))

(_mx <o> ’(move get-loc diag))

(vector

(lambda (it c)

(or (_mteq? it c)

((_mp <o> 0) <o> c)))

(lambda (it x^ y^)

(_fp! it 0 x^)

(_fp! it 1 y^)

((_mp <o> 1) it))

(lambda (it dx dy)

(_fp! it 0 (+ (_fp it 0) dx))

(_fp! it 1 (+ (_fp it 1) dy)))

(lambda (it)

(list (_fp it 0) (_fp it 1)))

(lambda (it a)

((_mp it 2) it a a)))))

> <p>

((x y)

(isa? init move get-loc diag)

#(#<isa?> #<init> #<move> #<get-loc> #<diag>))

In describing class <p> above, we say that the methods isa?
and init are replaced (or overridden), since they replace
already existing methods in (its super) class <o> associated
with the same variable. We say that the methods move,
get-loc, and diag are fresh.

The explicit list of variables in a call to fx are the fresh
field variables. They cannot contain duplicates and their
order matters. The explicit list of variables in a call to
mx are the fresh method variables. They cannot contain

duplicates, their order matters, and they are different from
those in the super class. As the method vector is filled in,
each method must fit into the right position. The replaced
and contributed methods must be in the same positions as
in their super class. The fresh methods must be placed
after the replaced and contributed methods, and they must
follow the order used in the call to mx. There are no other
constraints on how the method vector is built.

Consider this interactive session.

> (define p (_n <p>))

> ((_mp p 1) p 12 13)

> p

(#(12 13)

(isa? init move get-loc diag)

#(#<isa?> #<init> #<move> #<get-loc> #<diag>))

> ((_mv p ’move) p 14 15)

> (define map-nullary-method

(lambda (o m*)

(map (lambda (m) ((_mv o m) o)) m*)))

> (map-nullary-method p ’(get-loc))

((26 28))

> ((_mp p 0) p <p>)

#t

The object p differs from the class <p> where the field vector
and environment are stored. The field environment is (x y),
whereas the field vector is #(12 13). We move p, which adds
14 to its x coordinate and 15 to its y coordinate, yielding its
new location: (26 28). We finish with a test of isa?. Next,
we have the definition of the color point class.

(define <cp>

(list

(_fx <p> ’(hue))

(_mx <p> ’(get-hue diag&set))

(vector

(lambda (it c)

(or (_mteq? it c)

((_mp <p> 0) <p> c)))

(lambda (it x^ y^ hue^)

(_fp! it 2 hue^)

((_mp <p> 1) it x^ y^))

(_mp <p> 2)

(_mp <p> 3)

(_mp <p> 4)

(lambda (it) (_fp it 2))

(lambda (it a)

((_mp it 4) it a)

(_fp! it 2 a)))))

> <cp>

((x y hue)

(isa? init move get-loc diag get-hue diag&set)

#(#<isa?> #<init> ...))

We continue the interactive session.

> (define cp (_n <cp>))

> ((_mp cp 1) cp 16 17 7)

> cp

(#(16 17 7)

(isa? init move get-loc diag get-hue diag&set)

#(#<isa?> #<init> ...))

> ((_mv cp ’diag&set) cp 8)

> (map-nullary-method cp ’(get-loc get-hue))

((24 25) 8)

> ((_mp cp 0) cp <p>)

#t

> ((_mp p 0) p <cp>)

#f

First, the color point cp has been painted 7. Then, its color
has been changed to 8, which has been added to both its x

and y coordinates. Then we have two isa? tests.

In <o>, we have no methods contributed from any super
class, since <o> is the first one defined. In class <p> no
method of its super class, <o>, has been contributed. In
class <cp> the second, third, and fourth positions of <p> con-
tribute a method. Thus we see that the same (eq?) method
can be stored in more than one class. Finally, we define the
stationary color point class <scp>.

(define <scp>

(list

(_fx <cp> ’(y))

(_mx <cp> ’(show-y))

(vector

(lambda (it c)

(or (_mteq? it c)

((_mp <cp> 0) <cp> c)))

(lambda (it x^ y^ hue^)

(_fp! it 3 ": Stuck: ")

((_mp <cp> 1) it x^ y^ hue^))

(lambda (it x^ y^)

((_mp it 7) it))

(_mp <cp> 3)

(lambda (it a)

(write (_fp it 2))

((_mp <cp> 4) it a))

(_mp <cp> 5)

(_mp <cp> 6)

(lambda (it)

(display (_fp it 3))))))

> <scp>

((x y hue y)

(isa? init ... get-hue diag&set show-y)

#(#<isa?> #<init> ...))

Exercise 3: Consider the results of this test.

(define test

(lambda (c)

(let ([p (_n <p>)]

[cp (_n c)])

((_mp cp 1) cp 18 19 9)

((_mv cp ’diag&set) cp 10)

(list

(map-nullary-method cp ’(get-loc get-hue))

((_mp cp 0) cp <p>)

((_mp p 0) p c)))))

> (test <scp>)

9: Stuck: (((18 19) 10) #t #f)

Why is a 9 displayed first and why is location (18 19) dis-
played instead of (28 29)? 3

The internal interface operators are used primarily in extend-
ing environments and accessing (or updating) by position.
When a class is passed to such an operator, it should be the

host’s super class. We have no way of enforcing this restric-
tion in this style, and furthermore, there are object-oriented
languages where it is also not enforced.

A chain is a nonempty sequence of classes, linked by super
classes, whose first element is a host class and whose last
element is <o>. These classes form four chains. The shortest
chain is of length one and starts at <o>, whereas the longest
chain is of length four and starts at <scp>.

Although n and mv occur in the test only, it is still okay
to use them within a method to create an object of any
class or to externally access a method. One of the rea-
sons for the confusion of the costs incurred by writing in
object-oriented programming languages is that they do not
syntactically distinguish between the two different ways of
accessing a method: internally and externally. What is bet-
ter, however, is to know that there is a search, possibly with
a method-call cache or a hash table, whenever a method is
accessed externally, as in map-nullary-method. For exam-
ple, a different chain might have the method move associated
with a position other than the second position. Clearly we
cannot always rely on positions, but we can rely on isa?’s
position being 0 and init’s position being 1.

We shouldn’t rely on positions (except for init’s and isa?’s)
in the test program above, because its code is not inside
the class chain. Outside the class chain, we use a variable
(symbol) to find its associated method.

We discover another bit of object-oriented style with the
definitions of <p>, <cp>, and <scp>. Except in class <o>,
the isa? method is replaced in each class definition; the first
disjunct, (mteq? it c), is identical in each isa? method;
and the second disjunct in isa? differs only in the reference
to its host’s super class. The isa? algorithm is a little tricky.
The first call to isa? is different from all the others. In the
first call to isa?, the value bound to it is an object. In the
remaining calls, it is a class. So, the first call compares the
method tables of an object and a class, but the other calls
compare the method tables of two classes. In a sense, the
remaining calls are just doing a kind of member search in a
chain that starts at its host’s super class.

What remains is to make the programs more eye-pleasing by
introducing a small number of protocols, utilizing a lifting
strategey, and presenting some macro-generating macros to
manage redundancy. When we are done, we will have lost
none of the power of Scheme and everything will be properly
lexically scoped, so that although our tests rely on define

(or define-syntax) for globals, they could as easily have
relied on let (or let-syntax) for locals.

6. IMPOSING PROTOCOLS
There are three protocols that our object-oriented style uses.
By enforcing these protocols, we approximate a conventional
object-oriented language. First, we make the method bod-
ies more readable by consistently using super to refer to the
super class; second, we make the method bodies less con-
scious about method positions; and third, we do the same
for field positions.

Henceforth, we focus exclusively on the code of the class
definitions. Because of the confusion that is likely to arise
by seeing lots of versions of all the classes, we confine our
remaining transformations to class <scp>. We suggest revis-
ing <o>, <p>, and <cp> to verify your understanding.

Exercise 4: Each of the operators in the interface (such as
fp and mp) takes an object or class as its first argument.

Some methods have the property that they take an object
or class as their first argument. Therefore, we can treat
these operators as methods. Then it should also be possible
to replace these methods. Think about these observations
and implement a system where the interface operators are
themselves methods. Also, consider representing the field
environment as a vector of variables. (This exercise has
been inspired by meta-object protocols [7].) 3

Exercise 5: Use a single vector to represent classes by plac-
ing the method vector at index 0, the method environment
at index 1, and each component of the field environment
starting at index 2. Replace the use of list by build-class

using its definition below,

(define build-class

(lambda (f-env m-env m-vec)

(list->vector

(cons m-vec (cons m-env f-env)))))

and re-implement the nine interface operators to take advan-
tage of this representation, which shrinks the cost of classes
and objects with zero fields. 3

6.1 Introducing super
Since <scp>’s super class <cp> appears many times in the
preceding definition of <scp>, we can lift it out.

(define <scp>

(let ([super <cp>])

(list

(_fx super ’(y))

(_mx super ’(show-y))

(vector

(lambda (it c)

(or (_mteq? it c)

((_mp super 0) super c)))

(lambda (it x^ y^ hue^)

(_fp! it 3 ": Stuck: ")

((_mp super 1) it x^ y^ hue^))

(lambda (it x^ y^)

((_mp it 7) it))

(_mp super 3)

(lambda (it a)

(write (_fp it 2))

((_mp super 4) it a))

(_mp super 5)

(_mp super 6)

(lambda (it)

(display (_fp it 3)))))))

This makes the definition of isa? more consistent: if it

and the class are mteq?, then isa? is true, otherwise try
the isa? method of its host’s super class, passing super

along instead of it.

The decision to bind the lexical super to its host’s super
class makes it clear that super is always static. One of the
confusing aspects of object-oriented programming, especial-
ly for neophytes, is whether one searches the chain of the
class of it to find its super. This protocol clarifies that there
is not even a search for super. The variable super however,
must not be used in other ways. For example, binding it
to another variable undermines some of the improvements
in Section 8.2, and doing so leads inevitably to unexpected
errors.

6.2 Position variables for methods
Next, we install the enumerated newly-created method envi-
ronment and substitute the positions by their variables.

(define <scp>

(let ([isa? 0]

[init 1]

[move 2]

[get-loc 3]

[diag 4]

[get-hue 5]

[diag&set 6]

[show-y 7])

(let ([super <cp>])

(list

(_fx super ’(y))

(_mx super ’(show-y))

(vector

(lambda (it c)

(or (_mteq? it c)

((_mp super isa?) super c)))

(lambda (it x^ y^ hue^)

(_fp! it 3 ": Stuck: ")

((_mp super init) it x^ y^ hue^))

(lambda (it x^ y^)

((_mp it show-y) it))

(_mp super get-loc)

(lambda (it a)

(write (_fp it 2))

((_mp super diag) it a))

(_mp super get-hue)

(_mp super diag&set)

(lambda (it)

(display (_fp it 3))))))))

6.3 Position variables for fields
We treat the field environment in a similar fashion. The
field environment supports the protected variables. Since y

in <scp> is the y at position 3 (not the y at position 1),
we install the enumerated newly-created field environment
with let*. This also says that any occurrences of x and hue

are lexically visible here. The only way that one should be
permitted to access (fp it 1), however, is by invoking a
method defined in class <p>, which is rational behavior, or
literally using the 1, which is irrational behavior. Here is
the revised <scp>,

(define <scp>

(let* ([x 0] [y 1] [hue 2] [y 3])

(let ([isa? 0] --- [show-y 7])

(let ([super <cp>])

(list

(_fx super ’(y))

(_mx super ’(show-y))

(vector

(lambda (it c)

(or (_mteq? it c)

((_mp super isa?) super c)))

(lambda (it x^ y^ hue^)

(_fp! it y ": Stuck: ")

((_mp super init) it x^ y^ hue^))

(lambda (it x^ y^)

((_mp it show-y) it))

(_mp super get-loc)

(lambda (it a)

(write (_fp it hue))

((_mp super diag) it a))

(_mp super get-hue)

(_mp super diag&set)

(lambda (it)

(display (_fp it y)))))))))

where “---” indicates that there is some code that needs to
be filled in. It should be obvious, but often just looking at
the previous definition suffices.

One let* expression, which installs the field and method
environments, would suffice. Even super could be included
in the one let* expression. This explains why within a
lexical scope no method variable (as a symbol) should be
the same as a field variable (as a symbol) and furthermore,
the symbol super should not be used as a method or field
variable.

Exercise 6: Consider this definition of <scp>.

(define <scp>

(let* ([x 0] [y 1] [hue 2] [y 3])

(let ([isa? 0] --- [show-y 7])

(let ([super <cp>])

(list

(_fx super ’(y))

(_mx super ’(show-y))

(_mxcct super

‘([isa? ,(lambda (it c) ---)]

[init ,(lambda (it x^ y^ hue^) ---)]

[move ,(lambda (it x^ y^) ---)]

[diag ,(lambda (it a) ---)]

[show-y ,(lambda (it) ---)])))))))

Implement mxcct, which takes a class and a list of and
method pairs and returns the appropriate method vector at
class-construction time. 3

We have reached the end of the discussion of object-oriented
style. The style, especially with mxcct, is good enough for
most purposes, but we can improve its readability signifi-
cantly.

7. LIFTING METHODS
We present three ways to lift methods. First, we lift the
methods in a rather naive way; second, we use a scoping
trick to obviate the need for worrying about contributed
methods; and third, we bind each super method lexically.

7.1 Naive lifting
We can lift the methods out with a let expression, since the
methods to be placed in the method vector are still lexically
closed in the same environment. Furthermore, we can use
the variable associated with the method as the binding vari-
able within the let. The order of the bindings in the let

expression does not matter, but the order of the methods in
the vector does.

(define <scp>

(let* ([x 0] [y 1] [hue 2] [y 3])

(let ([isa? 0] --- [show-y 7])

(let ([super <cp>])

(let ([isa? (lambda (it c) ---)]

[init (lambda (it x^ y^ hue^) ---)]

[move (lambda (it x^ y^) ---)]

[get-loc (_mp super get-loc)]

[diag (lambda (it a) ---)]

[get-hue (_mp super get-hue)]

[diag&set (_mp super diag&set)]

[show-y (lambda (it) ---)])

(list

(_fx super ’(y))

(_mx super ’(show-y))

(vector isa? --- show-y)))))))

7.2 Triply-nestedlet
Next, we present a scoping trick to create a method vector.
It allows us to use scoping alone to determine the replaced
and contributed methods.

(define <scp>

(let* ([x 0] [y 1] [hue 2] [y 3])

(let ([isa? 0] --- [show-y 7])

(let ([super <cp>])

(let ([g0 (lambda (it c) ---)]

[g1 (lambda (it x^ y^ hue^) ---)]

[g2 (lambda (it x^ y^) ---)]

[g3 (lambda (it a) ---)]

[g4 (lambda (it) ---)])

(let ([isa? (_mp super isa?)]

[init (_mp super init)]

[move (_mp super move)]

[get-loc (_mp super get-loc)]

[diag (_mp super diag)]

[get-hue (_mp super get-hue)]

[diag&set (_mp super diag&set)])

(let ([isa? g0]

[init g1]

[move g2]

[diag g3]

[show-y g4])

(list

(_fx super ’(y))

(_mx super ’(show-y))

(vector isa? --- show-y)))))))))

We know that we can scramble the order of the bindings
in the let expression without affecting its semantics. This
version uses as many temporaries g0–g4 as there are new
host (i.e., replaced and fresh) methods. The code still closes
the method expressions in the position environments. Then
it binds all the super methods, however, any that are being
replaced get rebound in the last let of the triply-nested let.
If a compiler could determine that mp is effect free, no code
should be generated for the binding of the super isa?, init,
move, and diag methods, since they are being lexically shad-
owed. Thus, the same variable, for example isa?, changes
from being bound to a position, to being bound to a super
method, then to being bound to a replaced method.

7.3 Quadruply-nestedlet
We can include an additional outer let layer using the fol-
lowing strategy. Since we know the super class, we bind each
super method to a super temporary, h0–h6. Then we substi-
tute each super method access (mp super ---) within the
body of this new let by its super temporary.

(define <scp>

(let ([super <cp>])

(let* ([x 0] [y 1] [hue 2] [y 3])

(let ([isa? 0] --- [show-y 7])

(let ([h0 (_mp super isa?)]

[h6 (_mp super diag&set)])

(let ([g0 (lambda (it c)

(or (_mteq? it c)

(h0 super c)))]

[g1 (lambda (it x^ y^ hue^)

(_fp! it y ": Stuck: ")

(h1 it x^ y^ hue^))]

[g2 (lambda (it x^ y^)

((_mp it show-y) it))]

[g3 (lambda (it a)

(write (_fp it hue))

(h3 it a))]

[g4 (lambda (it)

(display (_fp it y)))])

(let ([isa? h0]

[diag&set h6])

(let ([isa? g0]

[init g1]

[move g2]

[diag g3]

[show-y g4])

(list

(_fx super ’(y))

(_mx super ’(show-y))

(vector isa? --- show-y))))))))))

We have chosen this unorthodox approach because we want
to point out the extent to which scope can be used to solve
problems. We could have used the naively lifted version of
<scp> instead in build-shadow below, but then we would
have needed an additional position environment operator.
Also, with the binding of the super methods, it becomes
even more obvious that super method calls are static.

Exercise 7: Our characterization of field variables yields
protected variables. We can make some of them private
instead of protected. Assume that unique is a variable that
will never be used as a field or method variable. When
we build, but not install, the host’s field environment, we
replace each private variable by unique. Thus, the only
way that the field can be accessed is through a method in
its host. Using unique, determine the field environment of
classes <cp> and <scp> so that hue of <cp> is private. Since
get-hue gets contributed to any class that has <cp> in its
super class chain, we can revise diag of <scp> to use it
instead of hue. 3

Exercise 8: Our characterization of method variables yields
protected variables. We can make some of them private
instead of protected. We associate with each method vari-
able a boolean indicating whether (#f) or not (#t) a vari-
able is private. Then accessing using mv is permissible if the
associated boolean is #t. But, mp is where the problem gets
interesting. If we limit the use of super to methods that are
being replaced with the same variable, then even if we make
the variable private in the super class, we should still be able
to access it. But, we should not be able to access a private
method variable in the super class with an object. When we
install the method environment in the host, we use different
unique variables for each method that has been designated
private in the super class. If we installed with let*, we could
use one unique variable as in the preceding exercise. Make
move private in class <p> by revising the class chain. 3

8. SIMPLIFYING THE SYNTAX
We now recognize four improvements that we can make to
the readability of the code. First, we observe that the isa?

method in each class other than <o> looks the same. Second,
we do not need to worry about which methods are being con-
tributed. If they come from the super class and are not being
replaced, then they are being contributed. Third, we limit
internal method access to calls that appear syntactically like
procedure calls. Fourth, we make field reference appear like
variable reference and field update appear like set!. The
second version of extender combined with build-shadow,
presented below, is our eventual goal. To reach this goal, we
need the notion of a shadow, which we now describe.

8.1 Defining a shadow per class
A shadow is a macro that manages the static information of
a class. That includes the field and method environments.
The behavior of a class is the method vector, which we can
mostly ignore. We present a simple way with one complex
macro to capture the protocols of object-oriented style.

Each shadow can be used in three ways. First, it might be
used as a super shadow in the definition of another shad-
ow, just as a class might be used as a super class. This
leads to the higher-order macro extend-shadow that takes
the super shadow as a parameter. Second, it might be
used for accessing a method externally at macro-expansion
time. This leads to the higher-order macro invoke, which
we describe in Section 9. Third, it might be used to build
a class with a super class. The super class is needed, of
course, for accessing the contributed methods. This leads
to the higher-order macro create-class that also takes the
host shadow as a parameter. So the shadow macro contains

a dispatch to select one of these three tasks. Before we ana-
lyze them, let’s look at how they would be used to define
<scp>, assuming that shadow <<o>> and its associated class
<o> exist.

(define-syntax <<p>> (extend-shadow <<o>> ---))

(define <p> (create-class <<p>> <o>))

(define-syntax <<cp>> (extend-shadow <<p>> ---))

(define <cp> (create-class <<cp>> <p>))

(define-syntax <<scp>>

(extend-shadow <<cp>> (y)

([init

(lambda (it x^ y^ hue^)

(_fp! it y ": Stuck: ")

((_mp super init) it x^ y^ hue^))]

[move

(lambda (it x^ y^)

((_mp it show-y) it))]

[diag

(lambda (it a)

(write (_fp it hue))

((_mp super diag) it a))]

[show-y

(lambda (it)

(display (_fp it y)))])))

(define <scp> (create-class <<scp>> <cp>))

Exercise 9: Complete <<p>> and <<cp>>. 3

The macro extend-shadow below expands into an invoca-
tion of the macro sup-shadow. The extend-shadow’s first
operand is a (super) shadow. Its second operand is a list
of fresh (host) field variables that we are making available.
This means, for example, that the shadow <<scp>> has one
more item in its field environment than those of its super
shadow, <<cp>>. Its last operand is a list of “let” pairs
that define the new host methods. Here is where we take
advantage of the fixed structure of the isa? method by
automatically including it in every shadow, except <<o>>.
The expansion of sup-shadow generated by the expansion
of extend-shadow takes three operands. The first of these
items “ ” is the syntactic context that dictates which macro
expansion a variable comes from. By passing it along, we can
use it to control variable hygiene. The remaining operands
are the fresh field variables and the new host method “let”
pairs of the host class, with the addition of the isa? method
“let” pair.

(define-syntax extend-shadow

(lambda (x)

(syntax-case x ()

[(_ sup-shadow (f-var ...) ([m-var e] ...))

(with-implicit (_ super isa?)

#’(sup-shadow _ (f-var ...)

([isa? (lambda (it c)

(or (_mteq? it c)

((_mp super 0) super c)))]

[m-var e] ...)))])))

The definition of extender in Figure 1 requires that all
occurrences of super refer to the same lexical variable. We
do this using with-implicit (Figure 1) by turning the sym-
bol ’super into the variable super. Any macro system
that supports syntax-case should support with-implicit.
Without with-implicit, variable hygiene would cause the
variable super, which is a formal parameter of the lambda

expression, to be renamed to some fresh variable, causing
occurrences of super in the body to be treated as free. (See
Dybvig [4].)

The macro create-class takes a host shadow of some class
c (to be defined) and a super class of c.

(define-syntax create-class

(syntax-rules ()

[(_ host-shadow super-class)

((host-shadow) super-class)]))

With these two items, it builds c. The macro call generated
by a call to create-class takes zero operands. This zero-
operand macro call expands into an expression that eval-
uates to a procedure of one argument. In build-shadow

(Figure 1), the clause can be recognized by the simple pat-
tern (). The procedure’s argument is either #f or some
super class. If it is #f, it means we are defining <o> and it
is ignored.

The build-<<o>> macro defers to build-shadow, but it pass-
es the empty field and method environments as its “super”
environments. The third empty list is passed because our
class <o> has no fields. The fourth list is a list of (fresh)
methods for <o>, including a temporary for each. Recall in
Section 7.2 where we needed the temporaries, g0–g4. Each
second item in the “let” triple is its associated temporary.

(define-syntax build-<<o>>

(lambda (x)

(syntax-case x ()

[(_ ([m e] ...))

(with-syntax

([(g ...)

(generate-temporaries #’(m ...))])

#’(build-shadow _ () () ()

([m g e] ...)))])))

Then, we can use the definition of the shadow <<o>> to
define the class <o>.

(define-syntax <<o>>

(build-<<o>>

([isa?

(lambda (it c)

(_mteq? it c))]

[init

(lambda (it . args)

(void))])))

(define <o> (create-class <<o>> #f))

Now we come to the heart of the matter, build-shadow

(Figure 1), which creates the shadow macro for a class.
The input is a list of field and method variables for the
super shadow followed by the field variables and method
“let” triples for the host shadow. The macro first combines
the field and method variables of the super and the host
shadows, translating from syntax to datum and back again.
The build-shadow macro then returns the shadow macro,
#’(lambda (xx) ...). As described above, this macro dis-
patches either to create a class (the clause with () pat-
tern), to access a method (the clause with (an-m-var

oc) pattern), or to create a new shadow with this shadow
as its super. (The (... ...) is a nested ellipsis. As the
syntactic levels get more deeply nested, so do the ellipses.)

In the case of creating a class (See extender in Figure 1.),
the macro returns an expression that evaluates to a pro-
cedure expecting the super class (or #f), which is bound
to the variable super in the lexical scope surrounding the
method bodies. The body of the procedure returns code
that includes the invocation of list to build the class with
the quadruply-nested let expression.

In the case of accessing a method (See the second clause
of the shadow returned from build-shadow.), the shadow
uses the method variable and all the method variables and
their positions of its shadow to find the associated position
of the method variable. This is used for external method
accessing, which is described in Section 9.

In the case of creating a new shadow, temporaries are gen-
erated for the methods, and then build-shadow is invoked
for the new host, with this shadow as its super. For exam-
ple, when we invoke extend-shadow with <<cp>> and the
body of the future <<scp>>, this invokes the third clause
in the <<cp>> shadow, thus calling build-shadow with the
super field and method variables from <<cp>> and host infor-
mation from the body of the future <<scp>>. The result
is the new shadow macro <<scp>>. Further, when we call
(create-class <<scp>> <cp>), the first clause in the shad-
ow macro <<scp>> is called. Its expansion returns an expres-
sion that evaluates to a procedure expecting a super class.
The procedure is immediately applied to <cp>. The result
is the list representation for the new version of class <scp>.

Although we have implied that each class is created as soon
as we have defined its shadow, that ordering is not required.
Instead, we only need the shadow to be defined before cre-
ating its associated class. Thus, we could create a bunch of
shadows and then create a bunch of classes that were built
from these shadows.

8.2 Simplifying method calls and fields
Now we redefine extender (Figure 2) so that internal method
calls look like regular procedure calls, and field variables look
like regular lexical variables. Thus, occurrences of ((mp o

m) o arg ...) can be rewritten as (m o arg ...). Also
occurrences of (hk it arg ...), where hk is a lexically
scoped super method variable for the super method m, can be
rewritten as (m super arg ...). Similarly, occurrences of
(fp it f) can be rewritten as the variable f, and occur-
rences of (fp! it f v) can be rewritten as (set! f v).
(See Section 2 for examples.)

(define-syntax with-implicit

(syntax-rules ()

[(_ (ctx id ...) body0 body1 ...)

(with-syntax ([id (datum->syntax-object #’ctx ’id)] ...) body0 body1 ...)]))

(define-syntax extender

(lambda (x)

(syntax-case x ()

[(_ ctx ([s k] ...) (all-f ...) ([f j] ...) ([m i] ...) ([m-var g e] ...))

(with-syntax ([(h ...) (generate-temporaries #’(s ...))])

(with-implicit (ctx super)

#’(let ([f j] ...)

(let ([m i] ...)

(lambda (super)

(let ([h (_mp super k)] ...)

(let ([g e] ...)

(let ([s h] ...)

(let ([m-var g] ...)

(list ’(all-f ...) ’(m ...) (vector m ...)))))))))))])))

(define-syntax assv-macro

(lambda (x)

(syntax-case x ()

[(_ i ([k0 h0] [k1 h1] ...))

(if (eqv? (syntax-object->datum #’k0) (syntax-object->datum #’i)) #’h0

#’(assv-macro i ([k1 h1] ...)))])))

(define-syntax build-shadow

(lambda (x)

(syntax-case x ()

[(_ ctx sup-f sup-m (f-var ...) ([m-var g e] ...))

(let ([sup-f (syntax-object->datum #’sup-f)]

[sup-m (syntax-object->datum #’sup-m)]

[f-vars (syntax-object->datum #’(f-var ...))]

[m-vars (syntax-object->datum #’(m-var ...))])

(let ([f (append-env sup-f f-vars)]

[m (append-env sup-m (fresh-m-vars m-vars sup-m))])

(with-syntax

([([s k] ...) (datum->syntax-object #’ctx (enumerate-env sup-m))]

[([m i] ...) (datum->syntax-object #’ctx (enumerate-env m))]

[([f j] ...) (datum->syntax-object #’ctx (trim-env (enumerate-env f)))]

[(all-f ...) (datum->syntax-object #’ctx f)])

#’(lambda (xx)

(syntax-case xx ()

[(__)

#’(extender ctx ([s k] ...) (all-f ...) ([f j] ...) ([m i] ...) ([m-var g e] ...))]

[(__ an-m-var oc) #’(_mp oc (assv-macro an-m-var ([m i] ...)))]

[(__ ctx (f-var^ (... ...)) ([m-var^ e^] (... ...)))

(with-syntax ([(g^ (... ...)) (generate-temporaries #’(m-var^ (... ...)))])

#’(build-shadow ctx (all-f ...) (m ...)

(f-var^ (... ...))

([m-var^ g^ e^] (... ...))))])))))])))

(define fresh-m-vars

(lambda (m-vars sup-m-vars)

(cond

[(null? m-vars) ’()]

[(memv (car m-vars) sup-m-vars) (fresh-m-vars (cdr m-vars) sup-m-vars)]

[else (cons (car m-vars) (fresh-m-vars (cdr m-vars) sup-m-vars))])))

Figure 1: The build-shadow macro using extender

(define-syntax if-shadowed

(lambda (x)

(syntax-case x ()

[(_ id ctx conseq altern)

(if (not (free-identifier=? #’id

(datum->syntax-object #’ctx

(syntax-object->datum #’id))))

#’conseq

#’altern)])))

(define-syntax field-var

(lambda (x)

(syntax-case x ()

[(_ ctx id it j)

#’(identifier-syntax

[var (if-shadowed id ctx id (_fp it j))]

[(set! var val) (if-shadowed id ctx (set! id val) (_fp! it j val))])])))

(define-syntax method-var

(lambda (x)

(syntax-case x ()

[(_ ctx mapping m super it i)

#’(lambda (x)

(syntax-case x (super)

[(m_ super arg (... ...))

#’(if-shadowed m ctx (m super arg (... ...)) ((assv-macro i mapping) it arg (... ...)))]

[(m_ oc arg (... ...))

#’(if-shadowed m ctx (m o arg (... ...)) (let ([o^ o]) ((_mp o^ i) o^ arg (... ...))))]

[(m_)

#’(if-shadowed m ctx (m) (error ’method "Cannot take zero arguments:" m))]

[m_ (identifier? #’m_)

#’(if-shadowed m ctx m (error ’method "Cannot be a symbol:" m))]))])))

(define-syntax extender

(lambda (syn)

(syntax-case syn ()

[(_ ctx ([s k] ...) (all-f ...) ([f j] ...) ([m i] ...) ([m-var g e] ...))

(with-syntax ([(h ...) (generate-temporaries #’(s ...))])

(with-implicit (ctx super method)

#’(lambda (super)

(let ([h (_mp super k)] ...)

(let-syntax

([transf-body

(lambda (xx)

(syntax-case xx ()

[(_ __ ctx body0 body1 (... ...))

(with-implicit (__ it super set! f ... m ...)

#’(let-syntax ([f (field-var ctx f it j)] ...)

(let-syntax ([m (method-var ctx ([k h] ...) m super it i)] ...)

body0 body1 (... ...))))]))])

(let-syntax

([method

(lambda (xx)

(syntax-case xx ()

[(__ params body0 body1 (... ...))

(with-implicit (__ it)

#’(lambda (it . params)

(transf-body __ ctx body0 body1 (... ...))))]))])

(let ([g e] ...)

(let ([s h] ...)

(let ([m-var g] ...)

(list ’(all-f ...) ’(m ...) (vector m ...)))))))))))])))

Figure 2: The extender macro for method calls and fields

This extender includes the definition of the local macro,
method, which makes anonymous methods within an extend-

shadow just as lambda makes anonymous procedures. The
difference is that with method it assumes implicitly that the
first argument is bound to the variable it. Thus, the num-
ber of formal parameters in a method expression is one fewer
than those of the equivalent lambda expression.

The local macro method looks more complicated than it is.
Basically, it is the same as lambda but includes it as its
first formal parameter. Because of variable hygiene, how-
ever, we have to make the macro system believe that it

had been one of the operands of method. The “ ” syntactic
context indicates exactly which macro call to associate with
the new variable. Thus, it is now ready to be treated as a
piece of syntax. We place it as the first formal parameter of
the resulting lambda expression. This use of with-implicit
forces all free occurrences of it in body0 body1 ... to be
treated as bound in the lambda expression.

Next, we focus on (let-syntax ([m ...]). Each m call
generates one of two calls. If it is a super call, we generate
a procedure call using one of the procedures bound to, for
example, the h0–h6 temporaries. Otherwise we generate the
object method call. In the second variant, we use a let

expression just in case the argument is other than a variable.

Also, we improve the syntax of field access and update.
Consider the line that starts out (let-syntax ([f ...]).
Where j is f’s position, then each f is to be expanded to (fp

it j), and each (set! f v) is to be expanded to (fp! it

j v). In the first extender we constructed the subset of the
field environment with trim-env. We need this particular
subset of the field environment, since we care only about
protected positions.

By including the super and the f ... m ... in the exact
match list, we know that we only concern ourselves with
the specific field and method variables we care about. All
the other cases treat f ... and m ... as lexical variables.
The variable super is now treated as both a regular lexical
variable and as a target of comparison (See Section 6.1.).
Furthermore, we cannot forget to capture (f ... m ...)

using the “ ” passed in through transf-body.

These abbreviations have a real benefit. Not only do we get
to use the familiar syntax, but we also get to remove the two
lets that had been used to install the method and trimmed
field environments of the first extender. Why? We can
do this because we are inserting the actual positions in the
expanded code.

Exercise 10: Now that we no longer need the run-time
field environment, we observe that the only place it is used
is in the definition of n, which we redefine.

(define (_n c)

(cons (make-vector (car c)) (cdr c)))

This definition clarifies that we need only store the field
environment’s length, which can be determined at macro-
expansion time. Change extender appropriately. 3

8.3 Expandingcreate-class
Below is the expansion of (create-class <<scp>> <cp>),
where we manually put back the lets and or, and, where
we use “---” as above. It differs from the definition that
appears in Section 7.3 in four ways. First, the field and
method environments have been built at macro-expansion
time, thus obviating the need for fx and mx; second, the
installed let* and installed let have vanished; third, there
is a let binding that refers to it, which vanishes at compile
time; and fourth, (mp super isa?) has not been expanded
to h0, since it takes super, not it, as its implied argument.

(let ([super <cp>])

(let ([h0 (_mp super 0)]

[h6 (_mp super 6)])

(let ([g0 (lambda (it c)

(or (_mteq? it c)

((_mp super 0) super c)))]

[g1 (lambda (it x^ y^ hue^)

(_fp! it 3 ": Stuck: ")

(h1 it x^ y^ hue^))]

[g2 (lambda (it x^ y^)

(let ([o^ it])

((_mp o^ 7) o^)))]

[g3 (lambda (it a)

(write (_fp it 2))

(h4 it a))]

[g4 (lambda (it)

(display (_fp it 3)))])

(let ([isa? h0]

[diag&set h6])

(let ([isa? g0]

[init g1]

[move g2]

[diag g3]

[show-y g4])

(list

’(x y hue y)

’(isa? --- show-y)

(vector isa? --- show-y)))))))

Exercise 11: We can extend Exercise 2 to include adding
new host methods. We can get recursion by using zero fields
and forcing all but the first method access to be internal.
Implement factorial, even?, and odd? as follows. Build
<factorial> with fact as its only fresh method. Next,
implement the two mutually-recursive methods iseven and
isodd by defining a three element chain: <o>, <even?>, and
<odd?>. The class <even?> contains the method iseven and
the class <odd?> contains the method isodd. First solve it
for a chain of <o> and <even?/odd?>. 3

Exercise 12: Design a syntax for a call like we use in the
super call of isa?, so that it expands to h0 instead of (mp

super 0). 3

Exercise 13: Implememnt the macro-expansion-time ana-
log of isa?, which expands to a boolean constant. 3

8.4 Lexical scope versus protected scope
In this section we analyze how the new extender inter-
acts with lexical scope. This semantics differs from that
of Section 8.1. There, we interposed the protected scope by
installing artificial position environments, which should not
necessarily shadow lexical variables. (This use of “shadow”
should not be confused with the use in Section 8.1.)

We have to make decisions about what variables lexically
shadow what other variables. In <<escp>> below, what val-
ues of hue would we expect to be displayed if we passed
(create-class <<escp>> <scp>) to test? We would hope
that any introduced lexical scope in the method such as the
(let ([hue "inside "]) or the formal parameter of init

would shadow the field variable, and indeed it does. Even
the one hue bound outside the method expression of show-y
displays the value of the lexical variable hue instead of the
value of the protected field variable.

(define-syntax <<escp>>

(extend-shadow <<scp>> ()

([init

(method (x^ y^ hue)

(display hue)

(init super x^ y^ hue))]

[show-y

(let ([hue "outside "]

[diag* (lambda (x y)

(display "moving "))])

(method ()

(display hue)

(diag* 5 5)

(let ([hue "inside "]

[diag (lambda (n self)

(diag self n))])

(display hue)

(diag 5 it))))])))

The expression (diag 5 it) is lexically scoped within (let

([diag ...]), but the variable diag in the expression (diag

self n) does indeed refer to the method. If we were to run
our test program using <<escp>>, it would loop indefinitely,
because of the mutually recursive tail calls from diag (con-
tributed from <scp>) to move (contributed from <scp>), then
to the host method show-y, and then back to diag. This
loop would happen even if we were to rewrite self with
another randomly chosen variable super, since the expan-
sion of the diag procedure would then have been

(lambda (n super_1)

(let ([o^ super_1])

((_mp o^ 3) o^ n)))

But, if we were to α-substitute diag* by diag, then (test)

would terminate, after displaying moving.

Any free variables outside a method expression are lexically
scoped. This decision is quite arbitrary, but any reason-
able characterization of which variables shadow which other
variables can be implemented using syntax-case (See Dyb-
vig [4].). We believe that our structuring of the scopes is

reasonable, since otherwise the programmer would have to
know all the protected variables in the host’s chain. This
is what we need if-shadowed for (Figure 2). It chooses the
third operand if a variable inside a method expression is
shadowed by a lexical variable bound in the scope outside of
the method expression but within an extend-shadow expres-
sion. Our characterization is a two-edged sword, however.
This example loops and then fails to loop when a lexical
variable bound outside a method expression but within an
extend-shadow expression is inadvertently α-substituted by
a protected variable. A general solution that circumvents
this problem is to require that when in doubt, field and
method variables should be private (See Exercises 7 and 8.).

The example below shows that we have lost no lexical scope.

(define <escp>-maker

(lambda (x)

(let-syntax

([<<escp>>

(extend-shadow <<scp>> ()

([e (begin

(write x)

(let ([y 1])

(method (q r . args)

(+ x y q r (car args)))))]))])

(lambda (s)

(create-class <<escp>> s)))))

> (let ([escp (_n ((<escp>-maker 1) <scp>))])

((_mp escp 1) escp 10 20 7)

((_mv escp ’e) escp 1 1 1))

114

First the digit 1 appears, since x is a free variable. Even
though x is a protected variable within the method expres-
sion, the occurrence of x in (write x) is free within the
extend-shadow expression. That would be true even if we
introduced a fresh field or method variable, x. The protect-
ed variable x has the value 10 and it shadows the x outside
the extend-shadow expression. The 14 is not greater than
20, since y is scoped between a method expression and an
extend-shadow expression. But, if we were to α-substitute
x by z, the value would be 5. If we then rewrite [y 1] as [t
1], the result would be 24, since now y would be protected
instead of lexical and would have the value 20.

Exercise 14: Hand-build <<o>> and <o> without using
build-<<o>>, build-shadow, or create-class. We know
that when we create class <o>, we do it by passing in #f.
Therefore, we can do some of the expansion ourselves. The
#f gets bound to super, but we know that <<o>> has no
super methods, so only the second and fourth parts of the
quadruply-nested let are used. Then it becomes obvious
that we can go from this doubly-nested to a single let. 3

Exercise 15: Implement the following variant on the scope
rules. Instead of allowing protected variables to shadow
some lexical variables, just have the host’s protected vari-
ables as possibly shadowing some lexical variables. Next,
implement scope rules to make lexical variables shadow pro-
tected variables. 3

Exercise 16: Add a method table that uses let* when
installing its method environment, and add an environment
and associated vector for fields that uses let when installing
its field environment. Thus each class has an additional
field environment and method table, and each object has an
additional field vector. 3

9. MORE EXTERNAL OPERATORS
We have three more external operators to define. The first
new is a more general variant of n. Each of the other two,
mbv and invoke, avoid computing a method variable (sym-
bol) when they are used to externally access a method.

With new below, we invoke the method init, which takes
any number of operands.

(define-syntax new

(syntax-rules ()

[(_ c arg ...)

(let ([o (_n c)])

((_mp o 1) o arg ...)

o)]))

There are two aspects of new that deserve mention. First,
new takes at least one argument. That one argument should
be a class. Second, we know that we are going to invoke the
method init, whose position is 1.

We might want operators that allow us to avoid computing a
method variable (symbol) when we are externally accessing
it. We can do this in two ways. One way is by accessing the
method using a quoted variable with mbv (invoke method
by variable) below. This, however, still requires a run-time
search to access the method.

(define-syntax mbv

(syntax-rules ()

[(_ m oc arg ...)

(let ([oc^ oc])

((_mv oc^ ’m) oc^ arg ...))]))

Alternatively, we can invoke a method whose position has
been determined at macro-expansion time with invoke below.
This is where we use the clause in build-shadow whose pat-
tern is (an-m-var oc). But, we need to refer to some
shadow that contains the appropriate method variable m.

(define-syntax invoke

(syntax-rules ()

[(_ shadow m oc arg ...)

(let ([oc^ oc])

((shadow m oc^) oc^ arg ...))]))

We use let here to avoid evaluating oc twice. We cannot
always use invoke. Only rarely is it necessary to use mbv,
and it is even less likely that one would need the full unbri-
dled power of mv. Of course, this last claim is subject to
closer scrutiny, since the message-passing model of object-
oriented programming relies heavily on messages being sym-
bols

Consider test-<scp> below.

(define test-<scp>

(lambda ()

(let ([p (new <p> 1 2)]

[scp (new <scp> 18 19 9)])

(invoke <<scp>> diag&set scp 10)

(list

(list

(invoke <<scp>> get-loc scp)

(invoke <<cp>> get-hue scp))

(isa? scp <p>)

(isa? p <scp>)))))

(define isa?

(lambda (it c)

((_mp it 0) it c)))

We define a useful predicate, isa?, and we restrict exter-
nal method access to be through the use of invoke or mbv.
Hence, map-nullary-method can no longer be used. Why?

Exercise 17: Why is it okay to use <<cp>> in (invoke

<<cp>> get-hue scp) instead of <<scp>> even though scp

is of class <scp>? What would happen if we revised it with
<<p>>? 3

10. CONCLUSIONS
Our goal has been to demonstrate that by thinking about the
actual structure of the method and field environments and
their associated vectors, we can better appreciate the sub-
tlety of the semantics of object-oriented programming. We
have done this by first developing an object-oriented style,
then protocols, a lifting strategy, and finally extend-shadow

and create-class with some supporting macros. Because
enough of the system has been built with macros, all the
shadows can be built at macro-expansion time.

Let us revisit our goals. Most conventional languages use
implementation technology that makes writing recursive pro-
grams a risky enterprise. Now, object-oriented programming
has inadvertently made recursion the natural way to write
programs. But still the implementation technology does not
yet allow the recursion to be exploited, since most (object-
oriented) languages do not support tail-call optimization.2

Also, a goal has been to clarify just how different super
method invocation is from object method invocation. Know-
ing that super is static should make the distinction obvious.
Furthermore, the quadruply-nested let of Section 7.3 treats
super calls as regular procedure calls, where the super pro-
cedure is bound to a lexical variable.

The extend-shadow macro is merely a compiler for the lan-
guage supported in the definition of <<scp>> and <scp> of
Section 2. The compiler, among other activities, substitutes
all the position variables by their corresponding positions.
And, as we demonstrate in Section 8.3, this compiler pro-
duces code virtually the same as our examples of object-
oriented style in Section 5.2.

2The designers of C# claim, however, to support tail-call
optimization, at least in spirit.

We have been able to preserve the property that when the
scope of a variable is in question within an extend-shadow

expression, lexical scope shadows the protected scope of
field and method variables. We show in Section 8.4 that
extend-shadow and any method within extend-shadow can
be wrapped in lexical scope, so no scope whatsoever has been
lost. Also, the body of a method, itself, can evaluate to a
procedure, which in turn can be invoked in object-oriented
style. A new host method passed to extend-shadow needn’t
be introduced with a method expression (or lambda expres-
sion). It can be any legal expression. Furthermore, if the
expression’s value happens to be a procedure of at least one
argument, even if it is not wrapped within the method key-
word, it can be invoked in object-oriented style. This is a
feature, however, that should be used with extreme caution,
since then it could be a variable bound to a reified continu-
ation or it could be a procedure that reveals the underlying
representation of objects and classes.

This development says something about macros, in gener-
al. Macros have come a long way from the early days of
Lisp. Now, with hygiene, with-syntax, syntax-case, etc.,
we see that macros are powerful enough to write sophis-
ticated compilers. More importantly, the compiler can be
written so that the expressions are not explicitly traversed
by the macro writer’s code, improving its portability.

Our analogy with continuation-pssing style is not fully devel-
oped. Object-oriented and continuation-passing styles get
their extra power with an extra argument. That power
comes from a careful harnessing of different dynamic aspects
of computation. Our future plans include formally charac-
terizing our object-oriented style. There is clearly a style
here, but we have so far just been able to describe it infor-
mally. A concern with formalizing our style is that the subtle
issues of wiring the lexical scope and making the encoding
robust enough to be an embedding might be overlooked.
Also, we hope to have transformers to object-oriented style
just as there are transformers to continuation-passing style.

From the beginning, our plan has been the transmutation
of symbols into variables. This effort has taken longer than
one would have expected, given the relative simplicity of its
solution. Nevertheless, this is just our first result of this kind
where symbols are not accepted as the natural currency of
computation. A symbol, of course, is a run-time value. Now
that our macro systems have become so sophisticated, we
have an opportunity to think much harder about processing
programs well before they run and turning other classes of
symbols into variables.

11. ACKNOWLEDGEMENTS
I want to thank Mitch Wand for his thorough reading and
numerous suggestions. I appreciate the careful reading of
drafts by Erik Hilsdale, Oleg Kiselyov, Ron Garcia, Jere-
my Siek, Steve Ganz, Jonathan Sobel, James Pendry, Kevin
Millikin, Ken Anderson, Abdulaziz Ghuloum, and Thomas
Reichherzer. I am grateful for conversations that I have had
with Jon Rossie about his views on object-oriented program-
ming. A recent observation by Michael Greenberg resulted
in many improvements. Mark Meiss pointed out how let*

was the correct binding operator for field positions. I want
to thank the students in my Fall 2003 graduate-level pro-

graming languages course for offering valuable criticism and
working the exercises. Kent Dybvig made some very insight-
ful observations that led to a clearer presentation and a sim-
pler system. I am, as always, most grateful for his efforts
on Chez Scheme. Amr Sabry’s amusement at my way of
explaining object-oriented programming as a natural exten-
sion of letrec spurred this effort to its natural conclusion.

I am surrounded by “magnificent macrologists.” Oscar Wad-
dell showed me how to permit wrapping of scope around a
method expression. I want to acknowledge Erik Hilsdale for
his part in implementing JOB (Java Objects for Scheme)
and Anurag Mendhekar and Chris Haynes for their part in
implementing Scheme++ (C++ Objects for Scheme), both
logical predecessors of this effort. Erik also helped craft
build-shadow and the two extender macros, which were
based on ideas we developed in JOB. I want to thank Oleg
Kiselyov who proposed the current isa?, removing the last
vestige of an explicit use of recursion. He also contribut-
ed some useful improvements to the second extender. I
am grateful to Abdulaziz Ghuloum for putting the finish-
ing touches on the second extender by allowing lexical vari-
ables bound within an extend-shadow expression to lexically
shadow protected variables and for improving it by imple-
menting the super lexical variables.

12. REFERENCES
[1] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas,

N. I. A. IV, D. P. Friedman, E. Kohlbecker, G. L.
Steele Jr., D. H. Bartley, R. Halstead, D. Oxley, G. J.
Sussman, G. Brooks, C. Hanson, K. M. Pitman, and
M. Wand. Revised5 report on the algorithmic language
Scheme. Higher-Order and Symbolic Computation,
11(1):7–105, Aug. 1998.

[2] L. Cardelli. A semantics of multiple inheritance.
Information and Computation, 76(2/3):138–164,
Feb./Mar. 1988.

[3] W. Cook and J. Palsberg. A denotational semantics of
inheritance and its correctness. In N. Meyrowitz,
editor, Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), volume 24, pages 433–444,
New York, NY, 1989. ACM Press.

[4] R. K. Dybvig. Chez Scheme User’s Guide: Version 7.
Cadence Research Systems, 2003.

[5] A. Goldberg and D. Robson. Smaltalk-80: The
Language and Its Implementation. Addison-Wesley,
Reading, MA, 1983.

[6] S. Kamin. Inheritance in Smalltalk 80: A denotational
definition. In Proceedings of the ACM SIGPLAN
Principles of Programming Languages (POPL ’88),
pages 80–87, 1988.

[7] G. Kiczales, J. des Rivières, and D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, Cambridge,
MA, USA, 1991.

[8] U. S. Reddy. Objects as closures: Abstract semantics of
object-oriented languages. In Proceedings of the ACM
Conference on Lisp and Functional Programming,
pages 289–297, 1988.

