[1-28 ()
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Quasiquotation in Lisp

ALAN BAWDEN * bawden@cs.brandeis.edu
Brandeis University

Abstract. Quasiquotation is the technology commonly used in Lisp to write program-generating
programs. This paper explains how quasiquotation works, why it works well, and what its limita-
tions are. A brief history of quasiquotation is included.

Keywords: Quasiquote, Backquote, Unquote, Comma, Lisp, Scheme

1. Introduction

Quasiquotation is a parameterized version of ordinary quotation, where instead of
specifying a value ezactly, some holes are left to be filled in later. A quasiquotation
is a “template.” Quasiquotation appears in various Lisp dialects, including Scheme
[9] and Common Lisp [18], where it is used to write syntactic extensions (“macros”)
and other program-generating programs.

A typical use of quasiquotation in a macro definition looks like:

(define-macro (push expr var)
‘(set! ,var (cons ,expr ,var)))

The body of this define-macro uses quasiquote to construct a set!-expression.
The backquote character (¢) introduces a quasiquotation, just as the ordinary quote
character () introduces an ordinary quotation. Inside the quasiquotation, the
comma character (,) marks expressions whose values are to be substituted into the
result. This is almost everything a Lisp programmer needs to know in order to use
quasiquotation—the basic idea is very simple.

But a simple idea can be the start of a complicated story. This paper introduces
quasiquote in its simplicity, and then explores the following aspects of its story:

e It is powerful. The combination of quasiquotation with Lisp’s S-expression data
structures yields a remarkably effective technology for program construction and
manipulation.

e It has complicated ramifications. In particular, when a quasiquotation builds
another quasiquotation (i.e., when quasiquotes are “nested”) the notation be-
comes rather inscrutable.

e It has an interesting history. Despite the power to be gained by combining quasi-
quotation with S-expressions, it took almost twenty years for quasiquotation to
become an accepted and well-understood part of most Lisp dialects.

* This work was supported by NSF grant EIA-9806718.

e It has some limitations. Program construction usually involves building expres-
sions that are subject to variable scoping rules. Lisp’s quasiquote is blind to
these rules.

Section 2 motivates and introduces basic quasiquotation as it is used in Lisp.
Section 3 explains the more advanced features of quasiquote and how they interact
with each other. Section 4 demonstrates how quasiquotation can be used to help
turn an interpreter into a compiler. Section 5 discusses quasiquote’s blindness to
variable scoping and surveys the techniques used to cope with this limitation. Sec-
tion 6 gives a brief history of quasiquotation. Section 7 shows how quasiquote can
be used to solve a famous puzzle. And finally, section 8 summarizes our conclusions.

In this paper, the word “Lisp” means primarily the Lisp dialects Common Lisp
and Scheme. Examples of Lisp code will be written in Scheme, although a few
examples will not work in most Scheme implementations (for reasons revealed in
appendix B).

2. Why Quasiquotation?

Before looking at how quasiquotation is used to write program-generating programs
in Lisp, let us consider what happens when a program-generating program must
be written in C. Seeing what can and cannot be easily accomplished in C will help
clarify what a truly useful and well-integrated quasiquotation technology should
look like.

2.1. Quasiquotation in C

The most straightforward way to write a C program that generates another C
program is to textually construct the output program via string manipulation. The
program will probably contain many statements that look like:

fprintf (out, "for (i = 0; i < %s; i++)
%s[i]l = %s;\n",
array_size,
array_name,
init_val);

C’s fprintf procedure is a convenient way to generate the desired C code. Without
fprintf, the programmer would have to write:

fputs("for (i = 0; 1 < ", out);
fputs(array_size, out);
fputs("; i++) ", out);
fputs(array_name, out);
fputs("[i] = ", out);
fputs(init_val, out);
fputs(";\n", out);

It is clear that the fprintf statement generates a syntactically legal C statement.
Determining that the sequence of calls to fputs generates legal C requires that it
be read carefully.

Using fprintf achieves the central goal of quasiquotation: It allows the program-
mer to write expressions that look as much like the desired output as possible. He
can write down what he wants the output to look like, and then modify it only
slightly in order to parameterize it with escape sequences such as “)s”.

Although fprintf makes it easier for a programmer to write a C program that
generates a C program, two problems with this technology will soon become clear
to anyone who has to use it for very long;:

e The parameters are associated with their values positionally. One must count
arguments and occurrences of “%s” to figure out which matches up with which.
If there are a large number of parameters, errors can easily occur.

e The string substitution that underlies this technology has no understanding of
the syntactic structure of the programming language being generated. As a
result, unusual values for any of the parameters can change the meaning of the
resulting code fragment in unexpected ways. (Consider what would happen if
array_name were “*x”: C’s operator precedence rules cause the resulting code
to be parsed as “*(x[i])” rather than the presumably intended “(*x)[1]”.)

The first problem could be addressed by somehow moving the parameter expres-
sions into the template—something like:

subst("for (i = 0; i < $array_size; i++)
$array_name[i] = $init_val;");

But even if this could be made to work in C, the second problem would remain:
flat character strings are not a good way to represent recursive structures such as
expressions. Indeed, programmers typically adopt some convention for inserting
extra parentheses into such strings to ensure that they parse as intended. (This
technique is often employed by users of the C preprocessor for the very same reason.)

This analysis suggests the following three goals for a successful implementation
of quasiquotation:

e Quasiquotation should enable programmers to write down what they want the
output to look like, modified only slightly in order to parameterize it.

e The parameter expressions should appear inside the template, in the positions
where their values will be inserted.

e The underlying data structures manipulated by quasiquotation should be rich
enough to represent recursively-defined structures such as expressions.

The achievement of this last goal is where Lisp really shines.

2.2. Quasiquotation in Lisp

Now consider the case of writing a Lisp program that generates another Lisp pro-
gram. It would be highly unnatural for a Lisp program to accomplish such a task by
working with character strings, as the C code in the previous section did, or even to
work with tokens, as the C preprocessor does. The natural way for a Lisp program
to generate Lisp code is to work with Lisp’s “S-expression” data structures: lists,
symbols, numbers, etc. So suppose the goal is to generate a Lisp expression such
as:

(do (10 (+1 1))
((>= i array-size))
(vector-set! array-name i init-value))

The primitive Lisp code to construct such an S-expression is:

(list ’do ((1 0 (+ 1 1)))
(1ist (list ’>= ’i array-size))
(list ’vector-set! array-name ’i init-val))

It is an open question whether this code is more or less readable than the C code in
the previous section that used repeated calls to fputs instead of calling fprintf.
But Lisp’s quasiquotation facility lets one write instead:

“(do ((i 0 (+1 1))
((>= i ,array-size))
(vector-set! ,array-name i ,init-val))

A backquote character (¢) precedes the entire template, and a comma character (,)
precedes each parameter expression inside the template. (The comma is sometimes
described as meaning “unquote” because it turns off the quotation that backquote
turns on.)

It is clear what this backquote notation is trying to express, but how does a
Lisp implementation actually make this work? The underlying technology for C’s
fprintf is an interpreter for a simple output formatting language. What is the
underlying technology for this backquote notation?

The answer is that the two expressions above are actually identical S-expressions!
That is, they are identical in the same sense that

(AB. (CDE. O)
and
(ABCDE)

are identical. Lisp’s S-expression parser (traditionally called “read”) expands a
backquote followed by a template into Lisp code that constructs the desired S-
expression. So we can write:

‘(let ((,x ?,v)) ,body)

and it will be exactly as if we had written:

(list ’let
(1ist (list x (list ’quote v)))
body)

Backquote expressions are just a handy notation for writing complicated combina-
tions of calls to list constructors. The exact expansion of a backquote expression is
not specified—read is allowed to build any code that constructs the desired result.!
(One possible expansion algorithm is described in appendix A.) So the backquote
notation does not change the fact that a program-generating Lisp program works
by manipulating Lisp’s list structures.

Clearly this backquote notation achieves at least the first two of the three goals for
quasiquotation: the code closely resembles the desired output and the parameter
expressions appear directly where their values will be inserted. The third goal for a
quasiquotation technology was that the underlying data structures it manipulates
should be appropriate for working with programming-language expressions. It is
not immediately clear that we have achieved that goal.

List structure is not quite as stark a representation as character strings, but it
is still pretty low-level. Perhaps we would be happier if, instead of manipulating
lists, our quasiquotation technology manipulated objects from a set of abstract
data types that were designed specifically for each of the various different syntactic
constructs in our language (variables, expressions, definitions, cond-clauses, etc.).
After abandoning character strings as too low-level, it seems very natural to keep
moving towards even higher-level representations that capture even more of the
features of the given domain.

We might, for example, design a set of abstract data types for various programming-
language constructs—something like the “abstract syntax” often employed when
analyzing programming languages. Such a representation might prevent us from
accidentally using quasiquotation to construct programs with illegal syntax. Or per-
haps it would protect us from unintended variable captures (a problem discussed
below in section 5). This additional safety might make the additional complexity
worthwhile. Or perhaps a higher-level representation would enable us to do more
powerful operations on programming-language fragments beyond simply plugging
them into quasiquotation templates. This additional functionality might also offset
the increased complexity.

Despite these possibilities, no superior representation has appeared during the
last twenty years. Although recently, some clouds have started to gather on the
horizon: The variable capture problems discussed below in section 5 have received
a lot of attention. An improved quasiquotation may someday emerge from the
research in this area.

But for now, there do not seem to be any compelling reasons to complicate
matters by moving up to an even higher-level representation. S-expression-based
quasiquotation achieves our third goal of using an appropriate representation for
programming-language expressions.

2.3. Synergy

In fact, there is a wonderful synergy between quasiquotation and S-expressions.
They work together to yield a technology that is more powerful than the sum of
the two ideas taken separately.

As we saw in the last section, Lisp code that constructs non-trivial S-expressions
by directly calling Lisp’s list constructing procedures tends to be extremely un-
readable. The most experienced Lisp programmers will have trouble decoding the
following expression:

(cons ’cond
(cons (list (list ’eq? var (list ’quote val))
expr)
more-clauses))

But even a novice can see what the equivalent quasiquotation does:

‘(cond ((eq? ,var ’,val) ,expr)
,more—clauses)

(The appearance of “dot notation” in this example points towards an inadequacy
in quasiquote as presented thus far. We will return to this example in section 3.1.)

S-expressions were at the core of McCarthy’s original version of Lisp [13]. The
ability to manipulate programs as data has always been an important part of what
Lisp is all about. But without quasiquotation, actually working with S-expressions
can be painful. Quasiquotation corrects an important inadequacy in Lisp’s original
S-expression toolkit.

The benefits flow the other way as well. As we have seen, character string based
quasiquotation is an untidy way to represent recursive data structures such as
expressions. But if our data is represented using S-expressions, substitution in
quasiquotation templates works cleanly. So S-expressions correct an inadequacy in
string-based quasiquotation.

Quasiquotation and S-expressions compensate for each other’s weaknesses. To-
gether they form a remarkably effective and flexible technology for manipulating
and generating programs. So it is not surprising that although quasiquotation did
not become an official feature of any Lisp dialect until twenty years after the in-
vention of Lisp, it was in common use by Lisp programmers for many years before.

This close relationship between quasiquotation and S-expressions has led some
programmers to adopt a style where quasiquote is only used for generating pro-
grams. In this style, lists that are used as data are always constructed by explicitly
calling list structure primitives such as 1list and cons, while lists that are used to
represent programs (i.e., S-expressions) are always constructed using quasiquote.
Because data lists tend to be uncomplicated, very little is lost by refraining from
using quasiquote to construct them. In return for this small sacrifice, a large gain
in readability results from clearly separating the construction of data lists from the
construction of S-expressions. In this paper, we will adopt this style.

3. Embellishments

Having presented the case that quasiquotation in Lisp is a powerful and useful
technology, we proceed to fill in the rest of the picture. Two important points
about quasiquotation and how it is used will be presented. First, we introduce an
additional feature, called “splicing.” Second, we take a look at what happens when
quasiquotations are nested.

3.1. Splicing

We brushed very close to needing splicing in section 2.3. Recall:

‘(cond ((eq? ,var ’,val) ,expr)
,more—clauses)

The value of the variable more-clauses is presumably a list of additional cond-
clauses to be built into the cond-expression we are constructing. Suppose we know
(for some reason) that that list does not include an else-clause, and we want to
supply one. We can always write:

‘(cond ((eq? ,var ’,val) ,expr)
, (append more-clauses
> ((else #T))))

But calls to things like append are exactly what quasiquotation is supposed to help
us avoid.
The backquote notation seems to suggest that we should be able to write instead:

‘(cond ((eq? ,var ’,val) ,expr)
,more-clauses
(else #T))

Unfortunately, this abuse of Lisp’s “dot notation” will be rejected by the Lisp
parser, read. Fortunately, this is a common enough thing to want to do that the
backquote notation allows us to achieve our goal by writing:

‘(cond ((eq? ,var ’,val) ,expr)
,@more-clauses
(else #T))

This new two-character prefix, comma-atsign (,@), is similar to the plain comma

prefix, except the following expression should return a list of values to be “spliced”

into the containing list. (Given the example, the reader may well wonder why the

prefix comma-period (, .) was not chosen instead. Section 6 answers this question.)
The expanded code might read:

(cons ’cond
(cons (list (list ’eq? var (list ’quote val))

expr)
(append more-clauses

> ((else #T)))))

This is certainly not very readable, but a simple example should make everything
clear: If the value of X is (1 2 3), then the value of

‘(normal= ,X splicing= ,@X see?)
is
(normal= (1 2 3) splicing= 1 2 3 see?)

Splicing comes in handy in many situations. A look at the BNF for any Lisp
dialect will reveal many kinds of expressions where a sequence of sub-parts occur:
the arguments in a function call, the variables in a lambda-expression, the clauses
in a cond-expression, the variable binding pairs in a let-expression, etc. When
generating code that uses any of these kinds of expressions, splicing may prove
useful.

The distinction between ordinary substitution (,) and splicing substitution (,@)
exists because S-expressions are trees and not flat sequences. Character string
based quasiquotation has no way to make this distinction—the user is forced to
make the distinction in other ways, perhaps by explicitly inserting parentheses into
the string.

3.2. Nesting

Sometimes a program-generating program actually generates another program-
generating program. In this situation, it will often be the case that a quasiquotation
will be used to construct another quasiquotation. Quasiquotations will be nested.

Nested quasiquotation sounds like the kind of highly esoteric construction that
would only be needed by the most wizardly compiler-writers, but in point of fact,
even fairly ordinary Lisp programmers can easily find themselves in situations where
they need to nest quasiquotations. This happens because Lisp’s “macro” facility
works by writing Lisp macros in Lisp itself. (Most other programming languages
with a macro facility use a different language to write the macros—e.g., the C
preprocessor.) Once a programmer starts writing any macros at all, it is only a
matter of time before he notices a situation where he has written a bunch of similar
macro definitions. Clearly his next step is to design a macro-defining macro that
he can use to generate all those similar looking definitions for him. In order to do
this he needs nested quasiquotations.

To illustrate this, imagine that the programmer wrote the following macro defi-
nition: (This is not how macros are defined in any actual Lisp dialect.)

(define-macro (catch var expr)
‘(call-with-current-continuation
(lambda (,var) ,expr)))

This defines catch as a macro so that the call

(catch escape
(loop (car x) escape))

is expanded by binding var to the symbol escape and expr to the list (loop (car
x) escape) and executing the body of the macro definition. In this example, the
definition’s body is a quasiquotation that returns:

(call-with-current-continuation
(lambda (escape)
(loop (car x) escape)))

which is then used in place of the original catch-expression.

Procedures that accept a single-argument auxiliary procedure, and invoke it in
some special way, are a fairly common occurrence. Calls to such procedures are
often written using a lambda-expression to create the auxiliary procedure. So later,
the programmer may find himself writing another macro similar to catch:

(define-macro (collect var expr)
‘(call-with-new-collector
(lambda (,var) ,expr)))

If the programmer suspects he will be writing many more instances of this kind
of macro definition, he may decide to automate the process by writing the macro-
defining macro:

(define-macro (def-caller abbrev proc)
‘(define-macro (,abbrev var expr)
‘(,’,proc
(lambda (,var) ,expr))))

The previous two macro definitions can then be written as

(def-caller catch
call-with-current-continuation)

and

(def-caller collect
call-with-new-collector)

The definition of def-caller would be completely straightforward if it were not
for the mystical incantation comma-quote-comma, (,’,)—where the heck did that
come from? It is not some new primitive notation, as comma-atsign (,@) was. It
is the quasiquote notation and the traditional Lisp quote notation (’) being used
together in a way that can easily be derived from their basic definitions.

Here is how we can derive the definition of def-caller: First, we manually
expand the quasiquotation notation used in the definition of catch:

10

(define-macro (catch var expr)
(1ist ’call-with-current-continuation
(l1ist ’lambda (list var) expr)))

Now we do not have to worry about being confused by nested quasiquotations, and
we can write def-caller as follows:

(define-macro (def-caller abbrev proc)
‘(define-macro (,abbrev var expr)
(1ist ’,proc
(list ’lambda (list var) expr))))

Now turning the calls to 1ist back into quasiquotations, taking care to treat ’ ,proc
as an expression, not a constant, yields the original definition.

Of course no Lisp programmer actually rederives comma-quote-comma every time
he needs it. In practice this is a well-known nested quasiquotation cliché. Every Lisp
programmer who uses nested quasiquotation knows the following three clichés:

, X Xitself will appear as an expression in the intermediate quasiquotation and
its value will thus be substituted into the final result.

,,X The value of X will appear as an expression in the intermediate quasiquota-
tion and the value of that expression will thus be substituted into the final
result.

,”,X The value of X will appear as a constant in the intermediate quasiquotation
and will thus appear unchanged in the final result.

In trying to remember or reconstruct these clichés, it can be helpful to realize
that the innermost comma, is associated with the outermost backquote.

3.8. Nested Splicing

The interaction of nesting with splicing yields additional interesting fruit. Since
this material is not necessary to understanding the rest of this paper, the reader
can skim, or even skip, the rest of this section.

The semantics of nested splicing require some explanation. Consider the case of
“¢(,,0X). In the absence of any nesting at all, ¢ (, anything) is equivalent to (1ist
anything). So this suggests that ‘¢ (, ,@X) should be equivalent to:

“(list ,@X)

And so the elements of the value of X will be expressions that will appear as separate
arguments in a call to list.

Of course in the absence of nesting, ‘(,anything) is also equivalent to (cons
anything ’()), so one might also argue that ¢ ¢ (,,@X) should be equivalent to:

‘(cons ,@X ’())

11

X »X ,0X
,”x ”x ’@,X
,@,X ,,eX ,0,eX

Figure 1. Two-stage markup, as used in practice.

This would clearly be less useful, as cons will be called with the wrong number of
arguments unless the value of X is a single element list! The expansion in terms of
list is the most useful of all the various possibilities, and so this is what is used
to give nested splicing a semantics.

By similar reasoning, the most useful expansion of ‘(,@anything) is (append
anything). So in order to give nested splicing a useful semantics, the code con-
structed by read for a quasiquotation makes anything that follows a comma (,)
into an argument to list, and anything that follows a comma-atsign (,@) into an
argument to append. The expansion algorithm in appendix A follows these rules.

Without splicing, there are two events that can happen at each stage of evaluating
a nested quasiquotation: the item might be treated as a constant and passed on
to the next stage untouched, or the item might be treated as an expression, whose
value will appear in the next stage. Splicing adds a third possibility: the item might
might be treated as an expression whose value will be a list, which will be spliced
into the next stage.

With two stages, and three possible actions at each stage, there are nine cases.
Each row of the table in figure 1 corresponds to a different choice at the first stage,
and each column corresponds to a different choice at the second stage. In the first
row and column, no action is taken at that stage. In the second row and column
the value of the item is substituted at that stage. In the last row and column the
value of the item is spliced in at that stage. So for example, , ,@X means that the
first stage value of X should be a list of expressions, and the individual second stage
values of those expressions should be substituted into the final result. While ,@,@X
means that the value of X should be a list of expressions each of which returns a
list of values.

Why does the table in figure 1 not simply consist of three different prefixes ar-
ranged in all possible compositions of length two? The answer is that it could if
programmers did not naturally apply certain optimizations. As a first step towards
understanding this phenomenon, consider what would happen if we rewrote the
table naively using comma-quote (,’) when we wanted no evaluation at a given
stage, plain comma (,) when we wanted evaluation, and comma-atsign (,@) when
we wanted evaluation followed by splicing. Such a table appears in figure 2. This
table looks almost like the original—only the top row, and the lower left entry are
different.

The difference in the top row is easy to explain: the comma-quote prefix, followed
by an S-expression that contains no quasiquotation markup, can always be replaced
by the unadorned S-expression. I.e., one can always eliminate the “innermost”

12

,,,,X ,,,X ,Q’,X
,,’x ”x ’@,X
,7,0X ,,0X ,e,ex

Figure 2. An attempt at regular two-stage markup.

X , X , @X

» 75X »5X ,0,X
,@7,X s, 0X ,0,0X
,,’,,X ’,”X ,Q’,,X
,,’,X ,”X ’@”X
’Q,”X I’Q’X ’©,©’X

,Q,’,,X ”@”X ,Q,@,,X
,@,(’,@X) ’,,QX ,Q”QX
,@’(,0,0X) ,,0,0X ,0,0,0X

Figure 3. Three-stage markup, as used in practice.

occurrence of a comma-quote. Applying this simplification to the top row of figure 2
(twice in the case of the upper left element) yields the first row of figure 1.

The lower left corner is harder to explain. We naively generated ,’,@X, but this
only works in the particular case where the value of X happens to be a list of length
one! The problem is easy to see if we write the entry as , (quote ,@X); only if the
value of X is a singleton list will this generate a legal quote-expression. The entry
in the original table was ,@’,X, which works by passing the first stage value of X,
as o list, on to the second stage, and performing the splice then.

These differences suggest that there might be some “algebra” of quasiquotation
markup that can explain how the table in figure 1 (containing the prefixes that
programmers actually use) can be mechanically derived by simplifying the entries
in some more regular table. Such a system does in fact exist, and we can discover
it by examining the twenty-seven possible cases where quasiquotations are nested
three levels deep. The three-stage prefixes programmers would use in practice are
shown in figure 3. The first three-by-three block contains the prefixes used when no
evaluation takes place at the first stage. The second block contains the prefixes used
when a simple evaluation takes place at the first stage. The third block contains
the prefixes used when an evaluation followed by a splice takes place at the first
stage. Within each block the second and third stage actions are arranged as before.

The most striking aspect of figure 3 is the appearance of pairs of parentheses in
two of the entries. Both of those entries also contain one more atsign than we would
expect, given the number of stages that involve splicing. Let us analyze the case
of ,@’(,,0X) to see what is going on. ,@’ (,,0X) expects the first stage value of X

13

@ (e (X)) ,, @& ,0,0(X)
’©,(’X) ”X ’©’X
@ (,eX) »,@X ,@,0X

Figure 4. Correct regular two-stage markup.

to be a list of expressions. Those expressions will each be evaluated in the second
stage. The values returned will be untouched in the third stage and will appear in
the final result. The key to how this works is the prefix ,@’ (- --), which bundles
up the values returned by the second stage in a list, and then splices the elements
of that list into the final result.

So we conclude that the prefix we should have been using for a stage that per-
forms no evaluation is ,@’(---) and not ,’ as we assumed in out first attempt.
This gives us the table in figure 4. Unlike our first naive attempt, all the entries in
this table work in all cases. A programmer could safely rely on composing the “op-
erators” comma (,), comma-atsign (,@), and comma-atsign-quote-open (,@’ (---))
to achieve the desired effect inside arbitrarily nested quasiquotations.

In practice, though, programmers prefer to use the simplified prefixes from fig-
ure 1. So what are the simplification rules that result in the prefixes programmers
actually use? There are three rules, and the reason for each one is straightforward:

1. ,@’ Cexpr) simplifies to expr if erpr contains no quasiquotation markup. We
already encountered this rule (in a simpler form) above.

2. ,@’ (expr) simplifies to ,’ expr if expr contains quasiquotation markup but it
does not do any splicing. If expr is going to be just a single value, there is no
point in wrapping it up in a list and unwrapping it later—we can just return it
as is.

3. ’(,Q@expr) simplifies to ’ , expr if expr does not do any splicing. If expr is going
to return a list of values that we are going to splice into a constant list, we
might as well just use the list directly.

So for example, two applications of rule 1 reduce ,@ (,@° (X)) to X. Rule 2 reduces
,@°(,X) to ,’,X. And rule 3 reduces ,@’ (,@X) to ,@’,X.

The table in figure 3 can be generated in the same manner. The two entries where
pairs of parentheses appear are cases where none of the simplification rules apply.
(The first of those two entries, ,@’ (,,@X), is of historical interest—it will appear
again in section 6.)

4. Example: Turning an interpreter into a compiler

This section presents an extended example that combines quasiquotation with man-
ual partial evaluation to straightforwardly create a simple compiler. This example
serves two purposes: First, it shows quasiquotation being used for something more

14

impressive than simply writing macros. Second, it illustrates the “environment
problem” that will be the subject of section 5.

4.1. Simple Interpreter

We begin with a completely straightforward Scheme interpreter. Its main entry
point is the procedure evaluate, which is nothing more than a big dispatch on the
kind of the expression:

(define (evaluate exp vars vals)
((cond ((symbol? exp) eval-variable)
((pair? exp)
(case (car exp)
((quote) eval-quote)
((if) eval-if)
. ; other special forms
((lambda)
(case (length (cadr exp))
((0) eval-lambda-0)
((1) eval-lambda-1)
((2) eval-lambda-2)
(else eval-lambda)))
(else
(case (length (cdr exp))
((0) eval-application-0)
((1) eval-application-1)
((2) eval-application-2)
(else eval-application)))))
(else eval-constant))
exp vars vals))

The cases of zero, one and two argument procedures and calls are handled sepa-
rately so that we can avoid the uninteresting complexity of the general cases. The
environment, which is traditionally represented as an association-list, has been split
into two congruent trees: vars is a tree of symbols representing variables, and vals
is a tree of associated values. E.g., the traditional environment a-list

(. 1) (b.2) (c.3))
might be represented using the vars:
((a . b) ©
and the vals:

(1. 2) 3

15

The evaluate procedure dispatches to a number of different sub-procedures de-
pending on what kind of expression it was called upon to evaluate. Three of them
are presented here. The rest of them are easy to reconstruct.

The value of a two argument lambda-expression is a procedure that, when called,
extends vars and vals appropriately and then calls eval-sequence to evaluate
the expressions in its body:

(define (eval-lambda-2 exp vars vals)
(lambda (arg0 argl)
(eval-sequence (cddr exp)
(list (caadr exp) (cadadr exp) vars)
(list arg0 argl vals))))

A conditional expression is evaluated by first evaluating the test expression. If
the test returns a true value, the second expression is evaluated, otherwise the third
expression is evaluated:

(define (eval-if exp vars vals)
(if (evaluate (cadr exp) vars vals)
(evaluate (caddr exp) vars vals)
(evaluate (cadddr exp) vars vals)))

To evaluate a two argument procedure application, the procedure expression and
the argument expressions are evaluated, then the resulting procedure is applied to
the resulting arguments:

(define (eval-application-2 exp vars vals)
((evaluate (car exp) vars vals)
(evaluate (cadr exp) vars vals)
(evaluate (caddr exp) vars vals)))

4.2. Threaded Code Compiler

Now we convert this interpreter into a compiler that emits threaded code built out
of closures. This can be accomplished by currying the evaluator:

(define (evaluate exp vars vals)
((compile exp vars) vals))

The compile procedure is applied to a source code expression and a tree of variable
names. It compiles the expression into a procedure (a closure) that will later be
applied to a tree of variable values. This generated procedure will execute the given
expression much faster than our original interpreter, because much of the overhead
of interpretation will be done ahead of time by compile. (Feeley and Lapalme have
described this technique in some depth [7].)

The dispatch performed by the original evaluate is now done by compile:

16

(define (compile exp vars)
((cond ((symbol? exp) compile-variable)
((pair? exp)
(case (car exp)
((quote) compile-quote)
((if) compile-if)
... ; other special forms
((lambda)
(case (length (cadr exp))
((0) compile-lambda-0)
((1) compile-lambda-1)
((2) compile-lambda-2)
(else compile-lambda)))
(else
(case (length (cdr exp))
((0) compile-application-0)
((1) compile-application-1)
((2) compile-application-2)
(else compile-application)))))
(else compile-constant))
exp vars))

Notice that vals does not appear anywhere in the definition of compile; each indi-

vidual code generator (compile-if, etc.) is responsible for generating a procedure
that will be applied to the tree of values.

Two argument lambda-expressions are compiled as follows:

(define (compile-lambda-2 exp vars)
(let ((run (compile-sequence (cddr exp)
(1ist (caadr exp)
(cadadr exp)

vars))))
(lambda (vals)

(lambda (arg0 argl)
(run (list arg0 argl vals))))))

The body of the lambda-expression is compiled in advance by compile-sequence
and the generated procedure is simply a closure that holds the compiled body as
the value of the closed-over variable run.

Conditional expressions and two argument applications are compiled as follows:

(define (compile-if exp vars)
(let ((run-test (compile (cadr exp) vars))
(run-true (compile (caddr exp) vars))

(run-false (compile (cadddr exp) vars)))
(lambda (vals)

(if (run-test vals)

17

(run-true vals)
(run-false vals)))))

(define (compile-application-2 exp vars)
(let ((run-fun (compile (car exp) vars))
(run-arg0 (compile (cadr exp) vars))
(run-argl (compile (caddr exp) vars)))
(lambda (vals)
((run-fun vals) (run-arg0 vals) (run-argl vals)))))

In both cases three sub-expressions are compiled, and then an appropriate closure
is created.

Most of the rest of the cases are similar to the three just presented: First, recur-
sively compile the various sub-expressions of the given expression, and then create
an appropriate closure that holds those compiled sub-expressions as the values of
the closed-over variables.

An important source of efficiency in the generated code is the behavior of the
procedure compile-variable. When compiling a variable, the most efficient pro-
cedure it can return is one of the primitive list structure accessors. E.g., a call
like:

(compile-variable ’y ’(x (y 2z)))

should return the primitive caadr procedure.

4.8. Scheme-to-Scheme Compiler

With very little additional work, we can now transform our compiler into one that
generates Scheme source code. The currying operation we performed on our original
evaluator amounted to a manual act of partial evaluation: We separated the original
arguments to the interpreter into static arguments (exp and vars) and dynamic
arguments (vals), and then arranged for all the computation that only depends
on static information to take place during the call to compile. Now all we have
to do is to change the code generators so that instead of generating closures, they
generate Scheme source code.

Because it does not generate any code itself, the procedure compile is unchanged.

We can convert compile-lambda-2 from a closure generator into a Scheme source
code generator with the insertion of just two characters:

(define (compile-lambda-2 exp vars)

(let ((run (compile-sequence (cddr exp)
(1ist (caadr exp)
(cadadr exp)

vars))))
‘(lambda (vals)
(lambda (arg0 argl)
(,run (list arg0 argl vals))))))

18

A backquote has been placed in front of the lambda-expression that previously
created the returned procedure, and a comma has been placed in front of the
variable run.

The code generators for conditional expressions and two argument applications
can also be converted to generate Scheme source code by merely inserting a back-
quote and some commas:

(define (compile-if exp vars)

(let ((run-test (compile (cadr exp) vars))
(run-true (compile (caddr exp) vars))
(run-false (compile (cadddr exp) vars)))

¢ (lambda (vals)
(if (,run-test vals)
(,run-true vals)
(,run-false vals)))))

(define (compile-application-2 exp vars)
(let ((run-fun (compile (car exp) vars))
(run-arg0 (compile (cadr exp) vars))
(run-argl (compile (caddr exp) vars)))
¢ (lambda (vals)
((,run-fun vals) (,run-arg0 vals) (,run-argl vals)))))

In all three cases the expressions constructed by quasiquote have no free variables
other than primitive Scheme procedures. The variables that would have been free
(run, run-test, run-fun, etc.) now appear preceded by commas. Thus, at every
stage of the process, compile returns a closed expression (modulo primitives), and
each code generator preserves that property in the code that it constructs.

Compiling variables is changed so that instead of returning a list structure acces-
sor, it returns the name of the appropriate accessor. E.g.,

(compile-variable ’y ’(x (y 2)))

now returns the symbol caadr.
Using this new version of compile, the result of compiling this expression:

(lambda (n)
(if (< n 2)
1
(x (fact (- n 1))
n)))

is essentially (after a few trivial B-reductions):

(lambda (vals)
(lambda (arg0)
((lambda (vals)
(if (< (car vals) ’2)

19

’1
(* (fact (- (car vals) ’1))
(car vals))))
(cons arg0 vals))))

Passing the output of compile on to a native Scheme compiler will produce a
plausible machine code implementation of the original Scheme code.

Of course, we could have fed our original Scheme code directly to the native
Scheme compiler, and gotten even better machine code. But this exercise is far from
pointless, for we can go back to the beginning and start over with an interpreter
for some new language of our own devising. Then we can follow these same steps
to arrive at a version of compile that compiles our new language into ordinary
Scheme. And then we can compile that Scheme code into native machine code.

5. The Environment Problem

Quasiquote is most often used to construct programming-language expressions.
Since quasiquote has no understanding that the lists it constructs are actually
expressions with bound variables and scoping rules, the programmer must pay at-
tention to such environment issues himself—a task which can be error prone. In
this section, we examine the problems, and survey some of the possible solutions,
many of them from beyond the borders of Lisp.

5.1. The problem

The correctness of the compiler in the previous section depended on the property
that all the expressions it constructed using quasiquote were closed (modulo Scheme
primitives). If some of the expressions had free variables, it would have been nec-
essary to prove that each such variable eventually found itself built into a scope
where it was suitably bound. Such proofs can be tricky to construct.

To illustrate the hazards, imagine that we were writing a compiler that generated
simple Scheme expressions. We might write a code generating procedure such as:

(define (make-list-proc expr const)
‘(lambda (x) (list x ,expr const)))

Our intent is to produce the code for a procedure that makes a list of three things,
where the first thing will be the argument to the generated procedure, the second
thing will result from evaluating an expression that we supply, and the third thing
is a given constant.

If we evaluate (make-list-proc ’(+ x 1) ’foo), the answer is:

(lambda (x) (list x (+ x 1) comnst))

There are two problems here:

20

e The expression we passed to make-list-proc as its first argument had a free
variable, x, that has unintentionally become bound by the lambda-expression
that make-1list-proc constructed. We might call this the “downward capture”
problem.

e The variable const is free in the constructed expression—it does not refer in any
way to the constant foo we supplied, despite the fact that the second argument
to make-list-proc was named const. We might call this the “upward escape”
problem.

Since quasiquote is just a tool for constructing list structure, it cannot help us with
either of these problems. So we must solve such environment problems ourselves,
perhaps by writing:

(define (make-list-proc expr const)
(let ((x (gensym)))
‘(lambda (,x) (list ,x ,expr ’,const))))

This avoids the first problem by generating a fresh variable for use in the lambda-
expression, and by explicitly building the constant in to the result as a literal.

5.2. Possible solutions

In traditional Lisp dialects (including Common Lisp) programmers are given no
assistance in avoiding environment problems except a facility for generating new
symbols (usually via a gensym procedure). This is the technique employed in the
revised make-list-proc procedure given above. Using generated symbols, and
otherwise carefully chosen names, a programmer can write macros that are 100%
free of capture problems, but this can be difficult. Most macro writers only bother
to prevent the most likely name capture problems, but in practice this approach
really is good enough.

Since the mid-1980s, the Scheme community has been experimenting with various
technologies that allow (or force) programmers to easily write macros that are
free from environment problems. Some of these technologies are high-level macro
defining facilities that do not use quasiquotation at all [5, 10], and so they will
not concern us here. Others add new low-level tools that are used together with
quasiquotation [1, 3].

In one of these low-level systems, a macro definition such as:

(define-macro (push expr var)
‘(set! ,var (cons ,expr ,var)))

might be written:

(define-macro (push expr var)
(let ((*set! (rename ’set!))
(*cons (rename ’cons)))
‘(,*set! ,var (,*cons ,expr ,var))))

21

The calls to rename somehow arrange to look up the given identifiers in some well-
known environment. The details of how something like rename works are beyond
the scope of this paper, all that matters here is that quasiquotation itself is not
altered or extended in any of these systems—the environment problem is solved by
some orthogonal mechanism.

Weise and Crew’s “syntax macros” for C [22] addresses the environment problem
exactly as it is addressed in traditional Lisp: the programmer gets a quasiquote
mechanism for building C program syntax trees, plus a gensym facility. It is hardly
surprising that they emulated traditional Lisp so closely, since their goal was simply
to bring the benefits of Lisp’s macros to C.

Recently, there has been a growing interest in “staged computation” [4, 6, 8, 20].
Such systems usually employ a quasiquote-like mechanism for constructing code,
and thus must somehow address the environment problem.

Davies and Pfenning’s Mini-ML" language [4] takes the same minimalist approach
that the compiler in the previous section took: code constructed by its quasiquote
operation (named “box”) is always closed, so there can be no unintended variable
captures during substitution. Such strict separation of stages is perfectly reasonable
in a research language, but might be considered inconvenient in a tool used by front-
line programmers.

Any practical system for staged computation will probably have the property
Taha and Sheard call “cross-stage persistence” [20]. A system has cross-stage per-
sistence if variables bound in earlier stages can still be referenced in later stages.
Their MetaML language has this property, as does the ‘C language [6].

One of the reasons our first version of make-list-proc failed was because Lisp’s
quasiquote lacks cross-stage persistence: The symbol const appearing in the quasi-
quote template had no connection to the variable const bound in the environment
where the quasiquotation was written. With cross-stage persistence, variables in
constructed code can reference variables from the lexically enclosing environment.
In such a system the code objects returned by a quasiquotation must be more than a
simple S-expression-like data structure; in order to capture the lexical environment
where the quasiquote expression was written, code objects must be closures.?

Code objects with cross-stage persistence are similar to Lamping’s parameterized
objects [11]. Lamping was also motivated by a desire to manipulate expressions
in the way that quasiquotation would allow, but without disconnecting those ex-
pressions from the context that they came from. His data-expressions are another
example of something like a quasiquotation that manufactures something like a
closure.

6. History

The name “Quasi-Quotation” was coined by W. V. Quine [16] around 1940. Quine’s
version of quasiquotation was character-string based. He used “corner quotes”
("---7) to indicate a quasiquotation, and he had no explicit marker for “unquote,”
instead any Greek letter was implicitly marked for substitution. So for example, if
¢ denoted the string “bar”, then

22

Tfoo(g)™

would denote the string “foo(bar)”.

Quine used quasiquotation to construct expressions from mathematical logic, and
just as we would predict from our experience representing expressions from C, he
was forced to adopt various conventions and abbreviations involving parentheses.
(He could have avoided these difficulties if he had used S-expressions instead!)

McCarthy developed Lisp and S-expressions [13] around 1960, but did not propose
any form of S-expression based quasiquotation. Given that he was inspired by the
A-calculus, which has its own notion of substitution, one cannot help but wonder
what Lisp would have been like if he had also tried to work quasiquotation into the
mixture.

During the 1960s and 1970s the artificial intelligence programming community
expended a lot of effort learning how to program with S-expressions and list struc-
ture. Many of the AI programs from those years developed Lisp programming
techniques that involved S-expression pattern matching and template instantiation
in ways that are connected to today’s S-expression quasiquotation technology. In
particular, the notion of splicing, described in section 3.1, is clearly descended from
those techniques.

But nothing from those years resembles today’s Lisp quasiquotation notation as
closely as the notation in McDermott and Sussman’s Conniver language [14]. In
Conniver’s notation ‘X, ,X and ,@X were written ! "X, @X and !@X respectively, but
the idea was basically the same. (Conniver also had a ,X construct that could
be seen as similar to @X, so it is possible that this is how the comma character
eventually came to fill its current role.)

After Conniver, quasiquote entered the Lisp programmer’s toolkit. By the mid-
1970s many Lisp programmers were using their own personal versions of quasiquote.
Quasiquote was not yet built in to any Lisp dialect.

My personal knowledge of this history starts in 1977 when I started programming
for the Lisp Machine project at MIT. At that time quasiquotation was part of the
Lisp Machine system. The notation was almost the same as the modern notation,
except that ,,X was used instead of ,@X to indicate splicing. This would obviously
interfere with nested quasiquotation, but this did not bother anyone because it was
commonly believed that nested quasiquotation did not “work right.”

I set out to figure out why nested quasiquotation should fail to work. Employing
the same reasoning process I outlined above in section 3.2, I developed some test
cases and tried them out. To my surprise, they actually worked perfectly. The
problem was simply that no one had been able to make nested quasiquotation do
what they wanted, not that there was a fixable bug.?

Now that we knew that nested quasiquotation did in fact work, we wanted to
start using it, and so a new notation for splicing had to be found. I suggested ,.X
because .,X already does a kind of splicing (see section 3.1). I thought that this
would be a good pun. Other members of the group thought it might be confusing.
Probably inspired by Scheme, which in those days was using just @X to indicate
splicing [19], we finally decided on ,@X [21].4

23

Meanwhile McDermott altered the Conniver notation slightly by changing ! "X to
["X. In this form it appeared in the first edition of Artificial Intelligence Program-
ming[2] in 1980.

As far as I know, the problems of nested splicing did not get worked out until
1982. In January of that year Guy Steele circulated an example of quasiquotations
nested three levels deep. He remarked that ,’,’,X was “fairly obvious,” but that
it took him “a few tries” to get his use of ,,@X right [17]. I responded with an
analysis of nested splicing (very similar to the one given here in section 3.3) in
which I observed that in order to get nested splicing to behave in a consistent and
useful manner, an expansion algorithm like the one presented in appendix A was
required. A correct semantics and expansion algorithm for quasiquotation based on
this observation now appears in the second edition of Common LISP: The Language
[18].

Guy Steele has kindly forwarded to me all of the quasiquote-related messages from
his January 1982 electronic mail archives. Among those messages is another exam-
ple of triple quasiquotation. The example occurs in a message sent to Steele by Bill
Long [12] containing some code originally written by David McAllester. The code
contains the construct ,@’,(list ,@params). Since , (list expr) is equivalent
to (,expr), McAllester’s code could also have been written as: ,0° (, ,@params),
which the reader may recognize from section 3.3 as one of the two simplest ex-
amples of nested splicing that cannot be expressed without using parentheses. So
McAllester may well have been the first man to scale that particular quasiquotation
mountain.

Sometime during the 1980s we started to spell “quasi-quote” without the hyphen.
Perhaps this is the result of the adoption of a special form named “quasiquote”
into Scheme.

By the end of the 1980s, the standards for Common Lisp [18] and Scheme [9] had
adopted the modern quasiquote notation.

7. Self-generation

No paper on quasiquotation in Lisp would be complete without mentioning quasi-
quote’s contribution to the perennial problem of writing a Lisp expression whose
value is itself. The quasiquote notation enables many elegant solutions to this
problem. The following amusing solution is due to Mike McMahon:

(let ((let ’‘(let ((let ’,let))
,let)))
‘(let ((let ’,let))
,let))

8. Conclusion

Quasiquotation is a simple idea that combines synergistically with Lisp’s S-expressions
(also a simple idea!) to create a powerful tool for program construction. Like many

24

simple ideas, a lot of complexity emerges when all of the details are worked out.
In this case, the complete interaction of nesting with splicing yields an interesting
“algebra of unquotation”.

Quasiquotation does have a limitation as a program constructing tool: It has no
understanding of the variable scoping rules obeyed by the expressions it is con-
structing. A variety of different approaches have been proposed to cope with this
limitation. This is an active area of current research.

Despite the powerful synergy between quasiquotation and S-expressions, it took
almost twenty years from the invention of Lisp for quasiquote to achieve widespread
acceptance. The modern quasiquote era has now lasted roughly an additional
twenty years. If the next twenty years hold any change in store for quasiquote,
it will likely be the addition of some solution to the environment problem.

Acknowledgments

Parts of this paper can trace their lineage back to two electronic mail conversations
I had in 1982, one with Drew McDermott and one with Guy Steele. While col-
lecting additional information I had helpful discussions with Robert Muller, Brian
C. Smith, Gerald Jay Sussman, John Lamping, Glenn Burke, Jonathan Bachrach,
Daniel Weise, Mitch Wand, Kent Dybvig, Guy Steele, David McAllester, David
Moon, Bill Long and Marc Feeley. Pandora Berman assisted in the research. Olivier
Danvy, Julia Lawall and Charles Stewart provided helpful feedback on various drafts
of this paper—any remaining problems are entirely my own fault.

Appendix A

This appendix contains a correct S-expression quasiquotation expansion algorithm.

Assume that some more primitive Lisp parser has already read in the quasiquo-
tation to be expanded, and has somehow tagged all the quasiquotation markup.
This primitive parser has also supplied the following four functions:

tag-backquote? This predicate will be true of the result of reading a backquote
(¢) followed by an S-expression.

tag-comma? This predicate will be true of the result of reading a comma (,) fol-
lowed by an S-expression.

tag-comma-atsign? This predicate will be true of the result of reading a comma-
atsign (,@) followed by an S-expression.

tag-data This function should be applied to an object that satisfies one of the
previous three predicates. It will return the S-expression that followed the
quasiquotation markup.

The main entry point is the function gqq-expand, which should be applied to an
expression that immediately followed a backquote character. (L.e., the outermost
backquote tag should be stripped off before qq-expand is called.)

25

(define (qg-expand x)
(cond ((tag-comma? x)
(tag-data x))
((tag-comma-atsign? x)
(error "Illegal'))
((tag-backquote? x)
(qg-expand (qgq-expand (tag-data x))))
((pair? x)
‘ (append , (qg-expand-list (car x))
, (qq-expand (cdr x))))

(else ‘?,x)))

Note that any embedded quasiquotations encountered by qq-expand are recursively
expanded, and the expansion is then processed as if it had been encountered instead.

qq-expand-list is called to expand those parts of the quasiquotation that occur
inside a list, where it is legal to use splicing. It is very similar to qq-expand,
except that where qq-expand constructs code that returns a value, qq-expand-1list
constructs code that returns a list containing that value.

(define (qg-expand-list x)
(cond ((tag-comma? x)
‘(list ,(tag-data x)))
((tag-comma-atsign? x)
(tag-data x))
((tag-backquote? x)
(qq-expand-list (qq-expand (tag-data x))))
((pair? x)
‘(list (append ,(qq-expand-list (car x))
, (qq-expand (cdr x)))))
(else 7 (,x))))

Code created by qq-expand and qq-expand-list performs all list construction
by using either append or 1ist. It must never use cons. As explained in section 3.3,
this is important in order to make nested quasiquotations containing splicing work
properly.

The code generated here is correct but inefficient. In a real Lisp implementation,
some optimization would need to be done. A properly optimizing quasiquotation
expander for Common Lisp can be found in [18, Appendix C].

Appendix B

The Scheme standard [9] makes it hard to implement nested splicing as described
in this paper. The standard explicitly specifies that ‘X, ,X and ,@X must be read in
as (quasiquote X), (unquote X) and (unquote-splicing X) respectively. This
means that ‘¢ (,,@abc) must be equivalent to:

(quasiquote (quasiquote ((unquote (unquote-splicing abc)))))

26

and if the value of abc is (a b c), then the expression above must evaluate to:
(quasiquote ((unquote a b c)))

But the language standard does not say anything about what unquote means if it
is not used with a single sub-expression. Many Scheme implementations will ignore
the additional expressions and treat (unquote a b c) as if it were (unquote a).
Other implementations will signal an error.

At first this looks like a horrible situation: it appears that by overspecifying the
read-time behavior of the backquote notation, the Scheme standard has ruined the
possibility of having nested splicing behave in the useful way it does in Common
Lisp.

Fortunately we can still recover proper nested splicing behavior by making an
upward compatible extension to the Scheme standard that assigns a useful meaning
to unquote and unquote-splicing expressions that contain other than a single
sub-expression. This extension is the macro-expansion-time analog of the read-
time rules given in section 3.3: When a quasiquotation is expanded, each sequence
of sub-expressions found inside a unquote must be treated as if they were sequential
arguments in a call to 1ist. Similarly, each sequence of sub-expressions found inside
a unquote-splicing must be treated as if they were sequential arguments in a call
to append. So

(quasiquote (a (unquote x y) b))
should behave the same as

(list ’a x y ’b)
and

(quasiquote (a (unquote-splicing x y) b))
should behave the same as

(append ’(a) x y ’(b))

The qggq-expand procedure here differs from the one in appendix A in that it
is applied at macro expansion time, rather than at read-time. For this reason it
must keep a counter of nested quasiquotations so that it can match occurrences
of unquote and unquote-splicing with the correct enclosing quasiquote. This
counter is the depth argument below. It should initially be supplied as 0.

As before, the outermost quasiquote should be stripped off before qq-expand is
called.

(define (qg-expand x depth)
(if (pair? x)
(case (car x)
((quasiquote)
‘(cons ’quasiquote

27

, (qq-expand (cdr x) (+ depth 1))))
((unquote unquote-splicing)
(cond ((> depth 0)
‘(cons ’,(car x)
, (qq-expand (cdr x) (- depth 1))))
((and (eq? ’unquote (car x))
(not (null? (cdr x)))
(null? (cddr x)))
(cadr x))
(else
(error "Illegal'"))))
(else
‘ (append , (qq-expand-list (car x) depth)
, (qq-expand (cdr x) depth))))
©7,x%))

As before, qq-expand-1ist is called to expand those parts of the quasiquotation
that occur inside a list, where it is legal to use splicing.

(define (qg-expand-list x depth)
(if (pair? x)
(case (car x)
((quasiquote)
‘(list (cons ’quasiquote
, (qgq-expand (cdr x) (+ depth 1)))))
((unquote unquote-splicing)
(cond ((> depth 0)
‘(list (cons ’,(car x)
, (qq-expand (cdr x) (- depth 1)))))
((eq? ’unquote (car x))
‘(list . ,(cdr x)))
(else
‘(append . ,(cdr x)))))
(else
‘(list (append ,(qq-expand-list (car x) depth)
, (qq-expand (cdr x) depth)))))
2 (,x)))

Notes

1. Actually, in Scheme [9], the exact expansion is specified: it expands into a special quasiquote
expression. But this fact is useless in practice, and it will be ignored except in appendix B.

2. The quasiquotes in these staged computation systems differ in many other ways from Lisp’s
quasiquote. They only manipulate code objects that represent expressions, so there is no
danger of building a syntactically incorrect code object. Code objects have types like “code
returning int,” so there is no danger of building a code object in which types fail to check.
And because there are no code objects that represent sequences of anything, there is no need
for any notion of splicing.

28

3. The expander in use at that time did have bugs handling nested splicing—but I did not notice
them.

4. When quasiquotation was migrated to MacLisp [15] ,.X was chosen to mean a “destructive”
version of splicing. They also thought it was a good pun. This notation was also adopted in
Common Lisp [18].

References

1. Alan Bawden and Jonathan Rees. Syntactic closures. In Proc. Symposium on Lisp and
Functional Programming, pages 86—95. ACM, July 1988.

2. Eugene Charniak, Christopher K. Riesbeck, and Drew V. McDermott. Artificial Intelligence
Programming. Lawrence Erlbaum Assoc., Hillsdale, NJ, first edition, 1980.

3. William Clinger. Hygienic macros through explicit renaming. LISP Pointers, 4(4):25-28,
December 1991.

4. Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In Proc.
Symposium on Principles of Programming Languages, pages 258-283. ACM, January 1996.

5. R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in Scheme. Lisp
and Symbolic Computation, 5(4):295-326, December 1992.

6. Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: A language for fast, efficient,
high-level dynamic code generation. In Proc. Symposium on Principles of Programming
Languages, pages 131-144. ACM, January 1996.

7. Marc Feeley and Guy Lapalme. Using closures for code generation. Journal of Computer
Languages, 12(1):47-66, 1987.

8. Ulrik Jgrring and William L. Scherlis. Compilers and staging transformations. In Proc.
Symposium on Principles of Programming Languages, pages 86-96. ACM, January 1986.

9. Richard Kelsey, William Clinger, and Jonathan Rees. Revised® report on the algorithmic
language Scheme. Higher-Order and Symbolic Computation, 11(1):7-105, 1998. Also appears
in ACM SIGPLAN Notices 33(9), September 1998.

10. Eugene M. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic
macro expansion. In Proc. Symposium on Lisp and Functional Programming, pages 151-161.
ACM, August 1986.

11. John Lamping. A unified system of parameterization for programming languages. In Proc.
Symposium on Lisp and Functional Programming, pages 316-326. ACM, July 1988.

12. William J. Long, January 1982. Electronic mail message to Guy Steele. Available on-line
from ftp://ftp.bawden.org/archive/wjl-to-gls-11Jan1982.txt.

13. John McCarthy. LISP 1.5 Programmer’s Manual. MIT Press, 1962.

14. Drew V. McDermott and Gerald Jay Sussman. The Conniver reference manual. Memo 259a,
MIT AI Lab, May 1972.

15. Kent M. Pitman. The revised MacLisp manual. TR 295, MIT LCS, May 1983.

16. Willard Van Orman Quine. Mathematical Logic. Harvard University Press, revised edition,
1981.

17. Guy L. Steele Jr., January 1982. Electronic mail message. Available on-line from
ftp://ftp.bawden.org/archive/gls-156Jan1982.txt.

18. Guy L. Steele Jr. Common LISP: The Language. Digital Press, second edition, 1990.

19. Guy L. Steele Jr. and Gerald Jay Sussman. The revised report on SCHEME: A dialect of
Lisp. Memo 452, MIT AI Lab, January 1978.

20. Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In SIG-
PLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation, pages
203-217. ACM, June 1997.

21. Daniel Weinreb and David Moon. Lisp Machine Manual. Symbolics Inc., July 1981.

22. Daniel Weise and Roger Crew. Programmable syntax macros. In Proc. Conference on
Programming Language Design and Implementation, pages 156-165. ACM, June 1993.

