Ea MErsy-io:

Patr'ick,

1 was wondering how someone can build a list from left to right efficiently in Lisp
without using a loop macro.

Good question! Let’s take a simple function to illustrate the problem. This function has to
build the list of the n first integers, starting from 0.

Here is a typical right to left (backward) consing algorithm

(defun right-to-left (mn)
(let ((18 ()))
(dotimes (i n 1s)
(setf 1s (comns 1 1s))))

Its speed order is O(n).

Now let's convert it to left to right (forward) consing. One way is to replace CONS by
NCONC:

(defun left-to-right-nconc (n)
(1let ((1s ()))
(dotimes (i n 1s8)
(setf 18 (mnconc 1s (cons 1 nil))))))

The problem is that the speed order is n square. NCONC has to go to the last cons of
the growing list to add the next element. Another way is to keep the original algorithm
and reverse the list at the end:

LP I-3.41



(defun left-to-right-nreverse (n)
(let ((1s (J))
(dotimes (1 n)
(setf 1s (coms 1 1s))
(nreverse 1s)))

Note that we can use NREVERSE since all the cons cells of Is are freshly consed. The
speed order is O(n). Yet if this function is used often for small values of n, it can be
significantly slower than the previous ones because of the overhead of NREVERSE.
Each cons cell has to be accessed twice. The next algorithm is a variant of the NCONC
one. The idea is to keep a reference to the last cons cell of the list being built and
add the next element to it:

(defun left-to-right-tail (mn)
(let* ((1s ())

(tail 18))

(dotimes (1 n)

(1f 1s

(setf tail (setf (rest tail) (coms 1 nil)))
(setf tail (setf 1s (coms 1 1nil)))))

1s))

This code is probably the least readable of all but its speed order is O(n) and each list
cons is accessed only once. On most implementations, its speed is close to the right to left
consing one.

The above algorithms apply to the very general case of building lists from left to right.

In special situations, other types of algorithms can be better. An important special case is
filtering. Starting from an input list, some elements are selected to construct the

output list. Using a map function is just the right thing to do here:

(defun filter (1)
(mapcan # (lambda (n) (if (evenp n) (coms mn nil) nil)) 1))

LP I-3.42





