
Lisp Implementations 

Walter van Roggen 
Digital Equipment Corporation 

77 Reed Rd, Hudson, MA, 01749, HLO2-3/E9 
vanroggen%bach.dec@decwrl.dec.com 

There's a lot more to describing Lisp implementations than providing a list of features. One such 
aspect I'd like to gather information on is performance. 

A long, long time ago in a place far, far away, someone named Richard P. Gabriel spent many, many 
years studying the performance of lisp systems. He gathered together some benchmarks and many results 
on different systems in "Performance and Evaluation of Lisp Systems" (MIT Press, 1985). Although the 
primary conclusion may well have been that analyzing lisp systems is at least as complex as the lisp system 
itself, and that trying to compare lisps by one or a few benchmark results is useful only if you understand 
what specific features are really being compared, the study was greatly useful in making the lisp community 
aware of the limitations of benchmarks and in giving us a common background of programs to consider 
during a performance evaluation. 

But since the early 1980's, when that study was done, there have been many changes in the lisp 
community. There are many new implementations, and there are even new implementation technologies. 
Comparing the implementations and the results available then with those available now produces quite a 
contrast-and the impression that the lisp community is still in quite a flux. 

So I'd like to ask all implementations to send me their most recent CPU and GC times for the Gabriel 
benchmarks. Please include the size of the heap used, which lisp and version of the lisp, which operating 
system and version of the operating system, and what hardware were used. Feel free to add correct 
declarations where appropriate, but please don't make any algorithmic changes to the code. I will publish 
the results in a future issue. 

I cannot publish all the benchmarks here. If you need the sources, I can try to send them via netmail 
if you send me netmail I can reply to. 

But I do include the source for one Gabriel benchmark, and a new benchmark which uses more of 
Common Lisp in what may be a slightly more realistic program. 

The first one has been timed on many different lisp and non-lisp systems. It is probably the third most 
frequently tried function when trying out a new lisp system, after factorial of 100 and fibonacci of 20. It 
is highly recursive and primarily tests function calling. 

;;; TAK 
(defun tak 

(declare 
(if (not 

Z 

(tak 

(x y z) 
(type (integer 0 lg) x y z)) 
(< y x)) 

(tak (1- x) y z) 
(tak (1- y) z x) 
(tak (I- z) x y)))) 

; ; ;  Time ( t a k  18 12 6) 

LP I-3.50 



The second one takes an input file, counts the number of times each word occurs, and writes out a file 
with those counts. The good thing about this benchmark is that  it tests many normally untested aspects 
of Common Lisp, including characters, strings, sequences, hash-tables, closures, and I /O (particularly 
FORMAT).  The bad thing about this benchmark is that  it tests so many things, which makes it hard to 
determine where the time is really going. But it makes for another kind of "representative" benchmark. 

;;; 
;;; 
;;; 

WORDS 
Count t he  f r e q u e n c y  of words in  a f i l e .  
Wal te r  van Roggen, 22 J u l y  1983. 

; ; ;  (WORD-COUNT " f i l e . t x t "  " f r e q . r e s " )  where " f i l e . t x t "  i s  J u s t  t e x t  
; ; ;  f i l e  and " f r e q . r e s "  i s  t he  name of t he  r e s u l t  f i l e  t o  be w r i t t e n .  
;;; The output is in "<word> - <# of occurrences>" pairs. 
;;; A ''word'' is assumed to be any consecutive sequence of alphabetic 
;;; characters or a single-quote character (to allow words like 
;;; "don't"). or a hyphen. 

(de fun  a l p h a - o r - q u o t e - p  (ch) 
( d e c l a r e  ( s t r i n g - c h a r  ch) )  
(o r  ( a l p h a - c h a r - p  ch) ( cha r -  ch # \ ' )  (char- ch #\-))) 

(defun word-count (infile outfile) 
(let ((hashtab (make-hash-table :test #'equal :size 1000)) 

(total 0)) 
(declare (hash-table hashtab) (fixnum total)) 
;;  t h i s  hash t a b l e s  ho ld s  the  "words" we've found so f a r .  
( w i t h - o p e n - f i l e  ( i n f  i n f i l e  : d i r e c t i o n  : i n p u t )  

;;  r e ad  in  each l i n e ,  pa r s e  each "word", and inc remen t  count  
(do ( (bur  ( r e a d - l i n e  i n f  n i l  n i l )  ( r e a d - l i n e  i n f  n i l  n i l ) ) )  

( ( n u l l  bu r ) )  
(declare (simple-string bur)) 
(setq bur (nstring-upcase bur)) 
(do ((start (position-lf #'alpha-or-quote-p bur :start O) 

(position-if #'alpha-or-quote-p bur :start end)) 
end) 

( ( n u l l  s t a r t ) )  
( d e c l a r e  ( type  (or  f ixnum n u l l )  s t a r t  end))  
( s e t q  end (or  ( p o s i t i o n - i f - n o t  # ' a l p h a - o r - q u o t e - p  bur 

:start (the fixnum (I+ start))) 
(length bur))) 

(incf total) 
(Incf (the fixnum (gethash (subseq bur start end) hashtab 0)))))) 

(let ((words (let ((list ())) 
(maphash #'(lambda (key val) 

(push (cons key val) list)) 
hash tab )  

list))) 

LP 1-3.51 



(princ "Sorting ... ") 
(setq words (sort words #'> :key #'cdr)) 

(princ "Writing word list . . .  ") 
(w i th -open - f i l e  (outf o u t f i l e  : d i r e c t i o n  :output : i f - e x i s t s  

(format outf  "Word frequency count for  "A'~" 
(namestring (p robe - f i l e  i n f i l e ) ) )  

(format outf  "'D d i f f e r e n t  words in "D t o t a l ' ~ ' ~ "  
(hash- table-count  hashtab) t o t a l )  

(mapc #'( lambda (pair )  
(format outf "-A = "D'~" (car pa i r )  (cdr p a i r ) ) )  

w o r d s ) ) ) )  

(namestring ( p r o b e - f i l e  o u t f i l e ) ) )  

: n e w - v e r s i o n )  

;;; Time (word-count "boyer . lsp"  "boyer.wc") 

Of course to run this benchmark everyone has to have the same data file to read. The longest rea- 
sonable file I could think of that everyone running benchmarks would have is the source for the BOYER 

benchmark. Note that the source provided in "Performance and Evaluation of Lisp Systems" includes only 
one comment, at the end of the file. It also has some constructs which are not part of Common Lisp, so if 
you already have a running copy of the BOYER benchmark, there may be some minor differences in the 
number of words. 

The resulting file should say the three most common words are: 

X = 206  

EOUAL = 151 
Y- 117 

LP 1-3.52 




