
Windows to the Future
Kerry K i m b r o u g h 1

Abstract
This article traces the development of the next generation of window system
standards, such u the X Window System. A short program using CLX, the
Common Lkp interface to X, is shown with extensive annotations.

T h e F i r s t T e n Y e a r s

It used to be that window systems epitomized athe future s . That was about ten years ago, beginning
with the Xerox Alto and SmaUtaik. That vision of a personal computer appeared as tangible and
yet as far removed from present reality as magazine illustrations of the sleek rocket-Fords of the 21st
century. Then, suddenly, there was the Macintosh and a window system on every desk. Window
systems are now the stuff of everyday computing.

In between the Alto and today's Macintosh were years of experimentation and discovery in graphical
human interfaces. Many window systems were implemented, in s variety of hardware/software
environments, and usually with fundamentally different concepts and features. The result of this
decade of groundbreaking is that window systems are now proven technology. Today, virtually
every interactive application wants access to the graphical/pointing interface style popularized by
window systems. Window systems are also the foundation for menu packages and sophisticated user
interface management systems (UIMS). So, when no two windows systems work alike, diversity hM
become adversity. The situation is similar to the state of computer graphics in the late 1970's[I].
The lack of graphics programming standards made it difficult for graphics applications to move to
different operating systems or to support the latest display devices. This led to the development of
device-independent graphics standards such as Core and GKS. Likewise, the demand has intensified
for a devios-independent, OS-independent application interface to windows.

The trend toward network computing represents yet another challenge for today's window systems.
What happens when an interactive application is executing on a remote host computer, while its
]~uman user is way down at the other end of a wire, huddled around the screen and mouse of a
personal computer? Usually, such an application is limited to the old-fashioned user interface of an
alphanumeric terminal. The ability for an interactive application to manipulate a multi-window,
graphical user interface on a remote display would be a tremendous improvement.

T h e N e x t G e n e r a t i o n : T h e X W i n d o w S y s t e m

Window systems teclmology, like the L i p programming language, has recently reached the stage
where the needs for standarization, portability, and interoperability have produced important new
developments. Among the new generation of window systems is the X Window System, developed

ZAuthor'e addrees: Texas Iutrumante Incorporated, Data Systems Group, P.O. Box 2909, MS 2201, Austin, TX
78769 (khnbrough~dsg~ti-csLcsnet @omet-relay)

LP I-4.13

at MIT and publicly released in 1985. a Designed to be portable and device-independent, the X
Window System has so far been implemented for 6 different computer architectures, 16 different
types of display hardware, and several different operating systems. MIT has encouraged widespread
use of X by placing the C source code for a Unix-based implementation in the public domain.
Recently, the broad support for the X Window System among computer manufacturers has led to a
proposal for American National Standards Committee X3H3.6 to develop X as an ANSI standard
for display management.

MIT had several goals for the X Window System design[3].

P o r t a b l e Support virtually any bitmap display and any interactive input device (including key-
boards, mice, tablets, joysticks, and touch screens). Make it easy to implement the system
on different operating systems.

D e v i c e - I n d e p e n d e n t A p p l i c a t i o n s Avoid rewriting, recompiling, or even relinking in order to
use different display/input hardware. Make it easy for an application to work on both
monochrome and color hardware.

N e t w o r k T r a n s p a r e n t Let an application run on one computer while using another computer's
display, even if the other computer has a diferent operating system or hardware architecture.

~vfu l t l t a sk lng Support multiple applications displaying simultaneously.

N o U I P o l i c y Since no one agrees on what constitutes the Ubest" user interface, make it possible
for a broad range of user interface styles or policies to be implemented, external to the window
system and even to application programs.

Le t a T h o u s a n d W l n d o w a B l o o m l Windows should be cheap, abundant, and ubiquitous. Pro-
vide overlapping windows and a simple hierarchical mechanism for manipulating swarms of
windows.

H . I g h - P e r f o r m a n c e G r a p h i c s Provide powerfid interfaces for synthesizing 2-D images m geo-
metric primitives, high-quality text with multiple typefaces, and scanned images.

E x t e n s i b l e Include a mechanism for adding new capabilities. Allow separate sites to develop
independent extensions without becoming incompatible with remote applications.

Some of these goals lead directly to the basic X architecture m the c l i en t - se rve r m o d e l (see
Figure 1). The window system kernel is implemented by the X se rve r program. An application
program (the c l ient) sends window system r e q u e s t s to the X server over a reliable two-way byte-
stream. In general, the server and the client may be executing on separate host computers, in
which case the byte-stream is implemented via some network protocol (TCP, DECnet, Chaos, etc.)
The X server, which is connected to several client programs running concurrently, executes client
requests in round-robin fashion. The server is responsible for drawing client graphics on the display
screen and for making sure that graphics output to a window stays inside its boundary, The other
primary job of the X server is to channel input from the keyboard, pointer, and other input devices
back to the appropriate client programs. Input arrives at the client asynchronously in the form of

2X Version 10. Thk article refers to X Version 11, which contains major enhancements and will be publicly
available in the fall of 1987. See [3] for an excellent overview of the development of X.

LP I-4.14

~ C l i e n t Host

Client Program

CLX

events.
r~ quests replies

/ Host

Figure I: X Client-Server Model

i n p u t even ts representing up/down transitions of keys or pointer buttons, changes in the pointer
position, and so on. In some cases, a request wiU generate a return value (or reply) from the
server, which is another kind of client input. Replies and input events are received via the same
byte-stream connecting the client with the server.

The X input mechanism is conceptually simple but quite powerful. Since most events are ~attached"
to a particular window (i.e. contain an identifier for the window receiving the event), a client
program can receive multiple window input streams, all multiplexed over the single byte-stream
connection to the merver. Clients can tailor their input by expressing interest in only certain event
types. The server umm special event types to send important messages to the client. For example,
the client can elect to receive an ~enter window j event when the pointer cursor moves into a certain
window. Another vital message from the server is a '~window exposure = event. This is a signal to
the client that at least some portion of the window has suddenly become visible (perhaps the user
moved another window which had been Qverlapping it). The client is then responsible for doing
what has to be done to refresh the window's image, s Input is also subject to apolicy ~ decisions
about which client window receives keyboard and pointer events. Since the pointer is free to roam
between windows, just ~clickin~ on a window is often enough to say ~send a pointer event to that
window. = Keyboard events, however, must go to a k e y b o a r d focum w i n d o w which has to be
designated in some other way. Usually, the arbiter of such input management policy is a program
called the w i n d o w m a n a g e r . The window manager gives the human user a way to say amake this
window the keyboard focus = , to manage the layout of windows on the screen, to represent windows
with icons, etc. In fact, the window manager determines most of the ~style = - - the look and feel
of the window system. Interestingly, in the X Window System, a window manager is just another
client program. You're free to implement and swap back and forth between any number of them.

SThk phUooophy of =cllent-manzqted rafr~h" k one upect of X which differz from 0ome existing Lkp window
Jystemz, but it k much simpler and more emclent, elpecially when dealing with color frame bufferz.

LP 1-4.15

F r o m L i s p t o X . . . a n d B a c k

The essence of the X Window System is its specification of the encoding and the meaning of requests
and events sent between a client and a server. But how a client program packages and sends a
request or receives an input event depends on several things: the operating system's communication
interfaces, the programming language interface, and so on. For Lisp programmers, there is CLX.
CLX is a set of da ta types, functions, and macros which allow a Common Lisp client program
to interact with an X server 4 (see Figure 1). CLX is the work of Robert Scheifler of MIT and
others within the Lisp community and defines a s tandard Common Lisp client interface to XI2 I.
A portable implementat ion of CLX, wri t ten in Common Lisp, is expected to be available in the
public domain before the end of 1987. s

For the most part , CLX functions line up one-for-one with X requests, s Thus, most of the features
of CLX are really features of the X Window System protocol. But some things that CLX must do
lie outside the scope of the protocol m for example, reading events and managing a client-side event
queue. CLX is also responsible for a lot of hatching and cacheing work tha t minimizes network
communicat ion.

P r o g r a m m i n g w i t h C L X

In order to see X in action, let 's look at a Lisp program which uses CLX. In the example that
follows, all CLX functions and macros are shown in upper case. Our sample client program will
create and display a simple pop-up menu consisting of a column of strings: a title string followed
by eelectable menu i tem strings. The implementation will use one window to represent the entire
menu, plus a set of suhwindows, one for each menu item. Here's the definition of a s tructure which
represents such m menu.

(d e f s t r u c t (menu)
"A s imple menu o f t e x t 8 t r i n g s . "
(t i t l e "Choose an i t e m . ")
i t e m - a l i a t
v i n d o v
g c o n t e x t
(g e o m e t r y - c h a n g e d - p t))

; ((i t em-window i t e m - s t r t n ~) . . .)

; n i l S f f unchanged s i n c e d i s p l a y e d

The v indov slot will contAi- the window object tha t represents the menu. The i t e m - a l i s t rep-
resents the relationship between the menu items and their associated subwindows. Each entry in
i t e m = a l l s t is a list whose first element is a (sub)window object and whose second element is the

'CLX is a ~native = Lisp interface and should not be confu~l with XCL, a "foreign function n interface to a library
of non-Lisp X functions.

SPorting CLX to your environment will mainly be • matter of hnplementint the required communications
primitives.

eCLX also closely parallels Xllb, the standard C langnage binding of the client interface, which k part of the
public domain X dktribution.

LP 1-4.16

corresponding item string. A w i n d o w object is a CLX-defined data type which serves as a ~han-
dle" to an X window; a window object actually carries two pieces of information: an X window
id integer and a d isp lay object. A display is another CLX-defined data type which represents
a connection to a specific X server. The gcontexr slot 'contains a CLX data type known as a
g raph ic s con tex t . A graphics context is a set of display attribute values B foreground color, ~11
style, line style, text font, etc. Each X graphics request (and hence each CLX graphics function
call) must supply a graphics context to use in displaying the request. The menu's gcontex-t~ will
thus hold all of the attribute values used during menu display.

The first thing to do is to make an instance of a menu object:

(defun c rea te -menu (parent-window t e x t - c o l o r background-co lor t e x t - f o n t)
(make-menu

;; Create menu g raph ics con tex t
:gcon tex t (CRFATE-GCONTEXT : foreground t e x t - c o l o r

;; Create menu window
:window (CRFATZ-WINDOW

:paren t
: c l a s s
:x
:y
:width
:he igh t
: bo rde r -wid th
:border
: background
: save-under
:event-mask

:background background-color
: fon t t e x t - f o n t)

parent-window
: i n p u t - o u t p u t
0 ; temporary value
0 ; temporary value
16 ; temporary value
16 ; temporary value
2
t e x t - c o l o r
background-co lor
: o n

(I~KE-EVENT-I~LSK :leave-window : b u t t o n - p r e s s))))

CREATE-WINDOW may be the single meet interesting CLX function, since it creates and returns a
window object. Several of its options are shown here. The default window clams is : i npu t -ou tpu t ,
but X provides for : : input-only windows, too. Every window must have a parent window, except
for a system.defined r o o t window, which represents an entire display screen. The :event-mask
keyword value, a CLX event-mask data type, says that an input event win be received for the menu
window only when the pointer cursor leaves the window or when a pointer button is ~clicked" on
the window. The window border is a pattern-fiUed or (as in this case) a solid-colored boundary
which is maintained automatically by the X server; a client cannot draw in a window's border,
since all graphics requests are relative to the origin (upper-left corner) of the window's interior and
are clipped by the server to this inside region. Turning on the : save-under option is a hint to
the X server that, when this window is made visible, it may be more e~cient to save the pixels
it obscures, rather than require several client programs to refresh their" windows when the pop-up
menu disappears. This is a way to bend around the Uclient-managed refresh" policy when only a
small amount of screen space is needed temporarily.

LP 1-4.17

What about the item subwindows? The function below creates them whenever the menu's item
list is changed. The upper-left x and y coordinates and the width and height aren't important
yet, because they'll be computed on the fly just before the menu is displayed. This function also
calls CREATE-WINDOW~ demonstrating the equal treatment of parent and children windows in the X
window hierarchy.

(de fun m e n u - s e t - I t e m - l i s t (menu k r e s t I t e m - s t r i n g s)
;; Assume t h e new i t ems w i l l change the menu 's wid th and h e i g h t
(s e t s (menu-geometry-changed-p menu) t)
;; Add (i tem-window i t e m - s t r i n g) e l emen t s to t he i t e m - a l i s t
(se£ f (m e n u - i t e e - a l i s t menu) n i l)
(d o l i s t (i t em i t e m - s t r i n g s)

(push (l i s t (CRFATE-WINDOW
: p a r e n t
:x
:y
:wid th
: h e i g h t

(menu-window menu)
0 ; t emporary va lue
0 ; t emporary va lue
16 ; t emporary va lue
16 ; t emporary va lue

:background (GCONTEXT-BACKGROUND (menu-gcontexC menu))
: even t -mask (MAKE-EVENT-MASK

:en te r -window : leave-window : b u t t o n - p r e s s))
i t em)

(m e n u - i t e n - a l i s t menu)))
(8 e t f (a e n u - i t e a - a l i s t menu) (r e v e r s e (m e n u - i t e m - a l i s t menu))))

The m e n u - r e c o m p u t e - s e o n e t r y function below handles the job of calculating the size of the menu,
based on its current i tem list and its current text font. CLX provides a way to inqufre the ge-
ometrical properties of a font object (for example, its ascent and descent from the baseline) and
also a TEXT-EXTENTS function which returns the geometry of a given string as displayed in a given
font. Notice the use of the WITH-STATE macro when setting a window's geometry attributes. CLX
strives to preserve the familiar s e t f style of accessing individual window attributes, even though
an at t r ibute access actually involves sending a request to a (possibly remote) server and/or waiting
for a reply. WITH-STATE tells CLX to batch together all read and write accesses to a given window,
using a local cache to minimlze the number of server requests. This CLX feature can result in a
dramatic improvement in client performance without burdening the programmer interface.

A word about some of the X termlnology shown below: since X supports graphics operations on
2-D arrays of pixel da ta (called pLxmaps) and windows alike, the term d r a w a b l e refers to the
da ta type (o r pixmap window). And "mapping J' a window mean. making it visible on the screen.
However, a subwindow will not be vmible until it and all of its ancestors are mapped (and even
then, another window might be covering it up!).

LP 1-4.18

(defun menu-recompute-geometry (menu)
(when (menu-geometrT-changed-p menu)

(l e t* ((menu-font (GCONTFEXT-FONT (menu-gcontext menu)))
(menu-width (TEXT-EXTENTS menu-font (menu- t i t le menu)))
(i tem-height (+ (FONT-ASCENT menu-font) (FONT-DESCENT menu-font)))
(i tem-width O)
(items (menu-i tem-al is t menu)))

;; Find max item s t r i n g width
(d o l i s t (next- i tem items)

(se r f i tem-width (max item-width
(TEXT-F.TTENTS menu-font (second nex t - i t em)))))

;; Compute f i n a l menu width, tak in K margins into account
(se r f menu-width (+ i tem-width *menu-item-margin* *menu-item-margin*))
(l e t (window (de l t a -y (+ i tem-height *menu-item-margin*)))

;; Update width and height of menu window
(se r f window (menu-window menu))
(WITH-STATE (window)

(se r f (DR£WABLE-WlDTH window) menu-width
(DItAWABLE-HEIGHT window) (+ *menu-item-margin*

(* (1+ (length i tems))
de l t a -y))))

;; Update width, he igh t , pos i t ion of item windows
(l e t (window (next- i tem-y (+ de l t a -y *menu-item-margin*)))

(d o l i s t (next- i tem items)
(se r f window (f i r s t n e x t - l i e n))
(¥ITH-STATE (window)

(se r f (DRAWABLE-HEIGIYI' window) I tem-helght
(DRAWkBLE-WIDTH window) Item-wldth
(DIt.AWABLE-X window) *menu-item-margin*
(D~WABLE-Y window) next - i tem-y))

(incf n e x t - l t e a - y d e l t a - y))))
;; Nap a l l item windows
(NAP-SUB¥INDO¥S (menu-window menu)))

(se r f (nenu-geomel;ry-changed-p menu) n i l)))

Of course, our example client must know how to (re)draw the menu and its items, so a function to
handle that task is defined next. Note that the location of window output is given relative to the
window orion. Windows and subwindows have ~ e r e n t coordinate systems; the location of the
origin (upper-leA corner) of a subwindow's coordinate system is given with respect to its parent
window's coordinate system. Negative coordinates are valid, although on]y output to the +x/+y
quadrant of a window's coordinate system will ever be visible.

LP I-4.19

(de:Sun m e n u - r e f r e s h (menu)
(l e t * ((gcon tex~ (menu-gcontex' t menu))

(baseline-y (FONT-ASCENT (GCONTEXT-FONT gcontex~))))
;; Show title in "reverse-video"
(WITH-GCONTEXT (gcontex~ :foreground (GCONTF~T-BACKGROUND gcontext)

:background (GCONTEXT-FOREGROUND gcontext))
(DRAW- IMAGE- GLYPHS (menu-window menu) gcontex~c

menu-i tem-margin b a s e l i n e - y ; s t a r t x , y
(m e n u - t i t l e menu)))

; ; Show each menu i t em (p o s i t i o n i s r e l a t i v e to i tem window)
(d o l l a r (i t em (m e n u - i t e m - a l i a t menu))

(DILAW-IMAGE-GLYPHS (FIRST i tem) g c o n t e x t
0 b a s e l i n e - y ; s t a r t x , y
(SECOND i t e m))))) ; t he i tem s t r i n g

WITH-GCONTKIT is a CLX macro that allows you temporarily to modify a graphics context within
the dynamic scope of the macro body. DRAW-IMAGE-GLYPIIS is a CLX text drawing function which
produces a terminal-like rendering: foreground character on a background block (more sophisticated
text rendering functions are also available). The strange use of ~glyphs ~ instead of ~string" here
actually highlights an important fact - - X/CLX and Common Lisp have totally different concepts
of what a acharacter" is. A Common Lisp character is a first-class object whose implementation
can comprehend a vast universe of text complexities (typefaces, type styles, international character
sets, symbols, ad inf.). But to X, a %tring ~ is just a sequence of integer indexes into the array of
bi tmaps represented by a CLX font object. In general, DRAW-IMAGE°GLYPHS, TEXT-EXTENTS, and
other CLX text functions accept a : t r a n s l a t e keyword argument; its value is a function which
will tra-Alate the characters of a string argument into the appropriate font-and-index pairs needed
by CLX. Above, we've relied upon the default trA-Alation function, which simply uses char -code
to compute an index into the current font.

Now that we can display the menu, we need to look at how the menu will process user input. The
menu-choose function below has the classic structure of an X client program:

• Do some initialization (i.e. present the menu at a given location)

• Enter an input |oop. Read an input event, process it, and repeat until a termination event is
received.

Below, CLX's EvEFr-cAsE macro keeps reading an event from the menu window's display object
until one of its clauses returns non-n/l. Its clauses specify the action to be taken for each event type
and also bind values from the event report (e.g. the window receiving the event) to local variables.
But look out for the following quirk: the event sent by the server contains X's integer id for the
event window, n o t the CLX window object itself; use the DILAWABLE-ID acceesor to get the id of
a window object. Notice also that the : l o r e e - o u t p u t - p option is enabled, causing EVENT-CASE
to begin by sending any client requests which CLX has not yet output to the server. To improve
performance, CLX quietly queues up requests and periodically sends them off in a batch. But in
an interactive feedback loop such as this, it 's important to keep the display crisply up-to-date.

LP I-4.20

(defunmenu-choose (menu x y)

;; Display the menu so that first item is at x.y.
(menu-present menu x y)
(let ((items (menu-item-alist menu)) (me (menu-wlndow menu)) complete-p)

(do () ;Event processing loop
(complete-p)

(EVENT-CASE ((DRAWABLE-DISPLAY mw) : force-output -p t)
(:BUTTON-PRESS ((:window e lndoe- id)) ;Select an item

(ser f complete-p (second (asset window-id items :key #'DKAWABLE-ID))))
(:ENTER-NOTIFY ((:window windov-id)) ;Highlight an item

(l e t ((i t em-en te red (asset windoe-id items :key #'DKAWABLE-ID)))
(i f i tem-entered (menu-highlight- i tem menu i t em-en te red)))

t)
(:LEAVE-NOTIFY ((:window e indoe- id)) ;Quit or unhighl ight an item

;; Quit 1t po in te r moved out of main menu window
(unless (s e t l complete-p (eql (DKAWABLE-ID me) e indoe- id))

;; Otherwise. unhighl ight the item window l e f t
(l e t ((i t e m - l e f t (asset v indoe- id items :key #'DKAWABLE-ID)))

(i f i t e m - l e f t (menu-unh±ghlight-item menu i t e m - l e f t))))
t)

(OTHERWISE () ;Ignore any other event
t)))

;; Krase the menu
(U~AP-WI~I)OW aw)
;; Return s e l ec t ed item strSng, t I any
(i i (s t r ingp complete-p) complete-p)))

Now, after all the precedins build-up, the code for the main client program is fairly pithy:

(l e t* ((d i sp l ay (OPEN-DISPLAY WMy-Favorito-Hoet'))
(screen (f i r s t (DISPLAY-BOOTS d i sp l ay)))
(fg -co lo r (SCR~-BLACK-PIXEL screen))
(bg-color (SCa~-WHITZ-PIZEL screen))
(n i ce - fon t (OP~g-FONT disp lay WHelvstlca-12ptw))
(m-menu (create-menu (BCP~-BOOT screen) ;the menu's parent

fg -co lo r bK-color n i c e - f o n t)))
(se r f (menu- t i t l e m-menu) "Please pick your f avo r i t e languaKe: ')
(menu- se t - i t em- l i s t a-menu WFortranW WAPL~ mForth ~ mLispW)
;; Bedevil the uner u n t i l he picks a programming language
(do (choice)

((and (set1 choice (menu-choose a-menu 100 100))
(s t r i ng -equa l WLiapW cho ice)))))

LP 1-4.21

O n w a r d I n t o t h e F u t u r e

With wide use of window system standards, such as the X Window System and CLX, we will
have reached the era of portable, OS-independent windowing applications. But is this enough?
Say ~window system ~ to a Lisp programmer and most likely he'll be thinking of pop-up menus,
pull-down menus, scroll bars, title bars, dials, gauges, cut'n'paste buffers, and a menagerie of
other interactive doodads, all of which he's come to expect in the user interface programming
environment, and none of which are in the X Window System. True portability of full-fledged Lisp
user interfaces will require a new level of standard interfaces. For the Lisp world, ~the next level"
must integrate stream-based interactive I/O with the window system, since many Lisp applications
need a terminal-like style of interaction. ~The next level" will not only have to provide standard
interfaces to basic components like streams, menus, and forms; it will also have to include an
extension mechanism for creating new or special-purpose interface components. The new vision is
of ~libraries" of interface components which implement the standard protocols with a rich variety
of techniques and styles. And beyond that beckon the possibilities of user interface management
systems, which allow s human (or artificially intelligent) interface designer to sift through the
component libraries, to pick out and to plug in interface styles appropriate to a specific application.
21st century, here we cornel

References

[1] Foley, James. Editor's Introduction. A C M 2 ~ a ~ a e t i o ~ on Graphiee, Vol. 5, No. 2 (April 1986),
pg. 76.

[2] Scheifler, Robert W. et ill. CLX Interface Specification, Draft Version 3 (May 1987).

[3] Scheifler, Robert W. and Gettys, Jim. The X Window System. A C M ~ansactione on Graphics,
Vol. 5, No. 2 (April 1986), pp. 79-109.

LP 1-4.22

