a Mersy-/oz

=i

- Fill pointers con fuse me, when are they used, when are they ignored?

A vector (One dimensional array) can be considered under two different
perspectives:

From a low level perspective, it is a block of storage, whose dimension is set by
make—-array or adjust-array. All the elements of the array are accessible.
From a more abstract perspective, a vector represents a sequence

of elements. When it is desirable for the sequence to have a varying length, the
fill-pointer comes into play. It allows for sequences with flexible length to be

represented as arrays, whose storage size is fixed. The fill-pointer determines the
length of the sequence.

Common Lisp reflects these two views: Primitives meant to work on arrays ignore
the fill-pointer, considering all the elements of the array, and primitives that are
sequence oriented, will consider the fill-pointer to be the end of the sequence.

Aref and (setf aref) will access elements regardless of the fill-pointer, while o1t
will not. ’

make-array and adjust-array, will initialise or fill the array beyond its fill-pointer,
while all the sequence functions like £111, replace, find will always stop at the
fill-pointer. o

String operations are considered to operate on specialized sequences,
they all look at the fill-pointer. ’

Equal will consider fill-pointers for string and bit-vectors, and equalp will always
consider fill-pointers.

Printing, when #*print-array# is true, considers vectors as sequences, and will not
print elements beyond the fill pointer.

II-1.35



Why do read-char, read-line and peek-char take recursive-p as an argument?

For read, read-preserving-vhitespace, and read-delimited-1ist, the recursive-p
argument being false indicates that a new top-level read context is established. It
allows for correct reading of #n= and #n# syntax. It also allows for deciding if the
whitespaces at the end of the expression read are to be preserved. None of that
applies to read-char, read-1ine and peek-char. However, some systems are using
the argument to report better the end of file error. If the end of file is
encountered while the recursive-p argument is true, it means that it occurred in
the middle of reading an object, and the error message can be more specific. Some
systems are also using the recursive-p argument to set up or initialize some
resource they need for interactive input, such as input editors. Calling read-1ine
with recursive-p being true when the input editor is not setup might result in the
absence of echo or incorrect key bindings.

Dear Patrick,

Iwas trying to de fine a siructure like the following one:

(defstruct pki::foo pki::a pki::b)

This didn’t work until I switched my current package to from pk2 to pki, why is thatf

You probably guessed, this is a package problem. The function that you would
normally expect being automatically defined are foo-a foo-b foo-p and make-foo.

They are being defined, but not in the package that you were expected. Common Lisp
the Language says on page 308 that the name of automatically created functions are
interned in the package current at the time of processing of defstruct. This time is
different from the time of reading. The name foo is interned into pkl, because the '
name is intérned at read time. make-foo is interned after the whole defstruct form
has been read. It happens when the evaluator or the compiler expand the form. If
pk2 is current at this time, make-foo will be interned in pk2. It is confusing enough

that the CLOS design committee decided to do away with automatically generated
names,

11-1.36





