
L , - - (a I g o r i t h r fi s) - - J
Pavel Curtis, editor

Xerox PARC
3333 Coyote Hill Rd.
Palo Alto, CA g4304

Pavel.pa@Xerox.Com

I have not been deluged with submissions for
this column. I've gotten a few, but not enough
to make it easy to put out another issue each
quarter. Let me therefore repeat my charter:

The (a l g o r i t l u a s) depar tment consists of ar-
ticles that fit into one or more of three broad
categories:

• Annotated implementations of interesting
and relevant algorithms; they should make
particularly good or novel use of the unique
features of the Lisp family of program-
ming languages (e.g., closures, continua-
tions, code as data, polymorphism),

• Annotated implementations of algorithms
whose subject mat te r is the Lisp family of
languages (e.g., code analysis tools, itera-
tion facilities, generic ari thmetic), and

• Discussion of performance issues, bench-
marking, or implementat ion experiences for
interesting algorithms writ ten in or about
the Lisp family of languages.

If you've got a piece of code that seems like
it might be appropriate for inclusion here, or ff
you've writ ten an article on such an algorithm
or piece of code, please send it along to one of

the addresses given above. I f I agree that it's ap-
propriate and it's a complete article, I'll print it
in place of the column, as I did last issue. If it's
not so polished, or even ff it's simply a modest ly
commented piece of raw seething Lisp code, I'll
write a column around it, as I did two issues
ago and do this issue. In fact, a major por-
tion of this issue's column was generated from
an electronic mail discussion; the ideas weren' t
even polished enough to be real working code
yet!

So give your code, ideas, or article a chance
at a spot in-this column; we could be reading
about your code next issue!

Our topic for this issue is the serf facility
of Common Lisp, the mechanism by which so-
called "generalized variables" can be read and
written.

Surely all Common Lisp programmers are
aware of the existence of the serf macro itself
and most of its cousins, such as i n c f , push,
and pop, but dramatically fewer hackers have
ventured much further into the details of the
facility. Probably, several of you have used

I I - 2 • 27

the short form of defsetf to associate a "set-
ting" function with a particular "gett ing" func-
tion. A somewhat smaller group have used ei-
ther the longer form of d e f s o t f , to define a
more complex setter macro, or d e f i n e - m 0 d i f y -
macro, to create new macros like i n c f and
doc:f. It seems, however, that" very few peo-
ple have plunged into the depths of true " s e r f
methods" , those groups of five values passed
around by constructs like define-serf-method

and got-serf-method.

In this column, we take a trip into the detailed
depths of set : f methods, noting along the way
just a few of the odd and marvelous things that
can be accomplished with them.

We'll start with a couple of new macros, im-
plemented in Common Lisp by Rick Harris, that
use generalized variables in new ways. L o c f

creates "locatives", anonymous handles through
which you can get and set the contents of any
generalized-variable reference. L e t f binds gen-
eralized variables in much the same way that
l e t binds special variables.

Then we'll move on to creating new kinds
of generalized variables. I'll show useful s e r f
methods for expressions involving such opera-
tors as cons, l i s t , and quote; these enable,
among other things, a pat tern-matching assign-
ment s ta tement using backquote. Finally, we'll
see how a proper s e r f method for v a l u e s would
yield a kind of " m u l t i p l e - v a l u e - s e r f " if only
s e r f itself had been slightly more broadly de-
fined.

Before we see our first sights, however, let's
recall the major points of the discussion on
pages 104-107 of Common LISP: The £an-
guage. Given a particular generalized-variable
reference, an expression that extracts a value
from some location, we can derive a correspond-
ing ~ s o t f method" . The s o t f method explains
how to store into that location and also how
to evaluate the subexpressions of the reference
form. The subexpression information is needed
to properly implement expressions like this:

(incf (car (foo)))

A naive way to expand this expression is

(rplaca (foo) (1+ (car (foo))))

but this is incorrect if the function foo has side-
effects; foo is called too many times. Thus,
the s e r f method for (c a r (f o o)) must explain
somehow that (f oo) is an expression to be eval-
uated only once. A correct expansion would
look something like this:

(let* ((~v (foo))
(sv (I+ (car iv))))

(progn
(rplaca tv sv)
sv))

The information used by the implementat ion of
i n c f to produce such an expansion is the s e r f
method of the form (c a r (f o o)) .

One of the things that is "generalized" in a
"generalized variable" is that is need not con-
tain just one value. Since the value of a general-
ized- variable reference is provided by a more-or-
less arbi trary expression, and since expression
can return multiple values, generalized variables
can "contain" multiple values. The structure of
s e r f methods is defined so as to account for this
possibility. A s e r f method is represented as a
set of five values:

• A list of temporary variables.

• A list oT value forms, subexpressions of the
generalized-variable reference.

• A list of store variables, more temporary
variables.

• A storing form, evaluated to update the
generalized variable.

• An accessing form, evaluated to fetch the
value(s) of the generalized variable.

The idea is that , to do anything with the gener-
alized variable, one should first bind the tempo-
rary variables to the results of the value forms;
there must be the same number of each. Within

11-2.28

those bindings, then, one can evaluate the ac-
cessing form as often as desired to fetch the
(then current) value(s) of the generalized vari-
able. In order to update the generalized vari-
able, one must also bind the store variables to
the value(s) one wishes to store; within all of the
bindings, then, one evaluates the storing form
to actually perform the modification. The stor-
ing form should return the value(s) that was
(were) stored.

I realize that this all sounds very complex,
but it's not really that bad. Let's look at a
couple of concrete examples, beginning with the
expression (e a r (Zoo)) from above. The only
subexpression is (Zoo), so we'll only need a sin-

gle temporary variable; call it iv. This gener-

alized variable, the ear slot of whatever (Zoo)

returns, can only accept a single value, so we'll

have just one store variable; call it sv. The stor-
ing form should put sv into the ear of tv and
then return sv; the expression

(proffn (rplaea tv sv)

sv)

does that . Finally, the accessing form simply
fetches the ca r of tv :

(car zv)

Thus, a correct serf method for the general-

ized-variable reference (car (Zoo)) is the fol-

lowing:

• (iv)

• ((Zoo))

• (sv)

• (progn (rplaca tv sv)

sv)

• (car iv)

If it looks like there are too many parentheses

in the second item above, recall that it is the
value forms, a list of subexpressions. By look-

ing for these items in the expansion given for

incf above, one can begin to get an idea of how

such macros are implemented.

It should be noted that serf methods usually

use gensymed variable names, rather than cv

and sv, to avoid the possibility of naming con-

flicts. I'll continue to use more readable names

in the examples, though, so as not to further

complicate things.
For a second example of a secf method, sup-

pose that in a particular window system the

function window-size takes a window as an

argument and returns two values, real num-

bers representing the height and width of that

window, respectively. Suppose further that

windows are represented by defstruc¢-defined

structures with two fields named r~idzh and
heighS, among others. Thus, window-size

could be implemented as follows:

(deftm window-size (w)

(values
(window-height w)

(window-width w)))

Let's now design the se~f method for an ex-

ample use of window-size, say (window-size

(froCz)). As before, there is only one subex-

pression, so we have just one temporary variable,
called cv as before. For symmetry with what

window-size returns, however, we assume that

we get two values to store, the new height and
width. Thus, we need two store variables this
time, one to hold each value; call them svl and

sv2. The storing form should set both height

and width appropriately and return those same

values:

(values
(serf (window-height iv) svl)

(serf (window-width iv) sv2))

Finally, the adcessing form is again simple,
just (window-s ize cv). The complete see r
method for (window-s ize (f roCz)) is thus
these five values:

• (~v)

• ((f r o t z))

I I-2.29

(defmacro se~f (place expr &rest more-pairs)
(if (nee (null more-pairs))

'(progn
(serf ,place ,expr)
(serf ,©more-pairs))

(multiple-value-bind (tvars vals svars store access)
(gee-serf-method place)

'(let* (,@(mapcar #'list tvars vals)
(,(car svars) ,expr))

, s t o r e))))

Figure 1: An implementation of the s e r f macro of Common Lisp

• (svl sv2)

• (values
(serf (window-height iv) svl)
(serf (window-width ~v) my2))

• (window-size (frotz))

Now that we have some understanding of
what 's in a serf method, let's look at some
macros that use them, beginning with set : f it-
self. There are two functions in Common Lisp
that return set :f methods:

• get-serf-method

• get-set f-method-mult iple-value

Both of these take a single argument, the gen-
eralized-variable reference whose set : f method
is desired. 1 They each return the five val-
ues comprising the s e r f method for the given
form. The only difference between the two is
in their t reatment of s e r f methods with more
than one store variable. Because for many
macros it only makes sense for a single value
to be expected (i n c f is such a macro), it was
decided that there was a need for a function

1Actually, in the version of Common Lisp being stan-
dardized by ANSI, these functions may have an op-
tional second argument, the &environment in which
any macros should be expanded during the search for a
serf-able generalized-variable reference. I will ignore
this issue in this article.

that checked the s e t f method before return-
ing it, checking tha t exactly one store variable

was provided; g e t - s e r f - m e t h o d is that func-
tion. The other function, g e t - s e r f - m e t h o d -
m u l t i p l e - v a l u e , is less discriminating; it re-
turns the s e r f method regardless of the number

of store variables.

The convenience of g e t - s e r f - m e t h o d ' s built-

in check is nice, but unfor tunate ly the designers
went one step further: they erroneously decided

that there were no macros in Common Lisp
itself for which multiple store variables made
sense. This means that none of the ser f - l ike
macros in Common Lisp accept generalized vari-
ables containing more than one value, like our
window-s ize function above. Even the simple

expression

(serf (window-size win)
(values h w))

is illegal in Common Lisp as defined in the silver
book. I'll have more to say about this near the
end of the article; for now, let's look at s e r f as

currently defined.
The-implementat ion of sel : f is quite simple;

see Figure 1. After dealing with the case where
more than one place/value pair was given, 2 we
merely call g e t - s e t : f - m e t h o d to analyze the

~The astute (or perhaps obscure) reader will have
noticed that this implementation does not arrange for
(s e r f) to evaluate to n i l , as required by the specifi-
cation. I leave this "generalization" to the reader.

11-2.30

(defmacro locf (place)
(multiple-value-bind (tvars vals svars store-form access-form)

(get-serf-method place)
'(let ,(mapcar #'list tvars vals)

(make-locative

:access-fn #'(lambda ()
, access - form)

:modify-fn #'(lambda ,svars
,store-form)))))

Figure 2: Implementat ion of l oc f .

generalized-variable reference and then put the
pieces of the s e r f method together in a straight-
forward manner. We construct a l e t * in which
the temporary variables are bound to the value
forms and the single store variable is bound to
the given expression. Within these bindings, we
simply evaluate the storing form to effect the as-
signment. As an example, the form (s e r f (c a r
(f o e)) (b a r)) would macro-expand into this:

(let* ((iv (foe))
(SV (bar)))

(progn
(rplaca tv sv)
sv))

Let's move on now to the first of our new uses
for this machinery, a Common Lisp implementa-
tion of the l o c f macro from Symbolics Zetalisp,
sent to me by Rick Harris from the Rensselaer
Polytechnic Institute. The idea of l o c f is that
it maps a generalized-variable reference into a
so-called "locative" for that location. The func-
tion l o c a t i o n - c o n t e n t s takes a locative and
returns the contents of the corresponding gener-
alized variable. To set that generalized variable,
one uses s e r f of l o c a t i o n - c o n t e n t s . Wi th
such a facility, one could, for example, rewrite
a macro like incf as a function:

(defun increment (loc)

(incf (location-contents loc))

Let x and l o c be defined as follows:

(setq x (cons 1 2)
loc (locf (car x)))

After evaluating (increment loc) a couple of
times, the value of x would be (3 2) . In ef-
fect, l o c f creates an anonymous handle on a
part icular generalized variable, in this case the
c a r of x. This sort of thing is handy when your
program must work with many types of da ta
and you don' t want to write a lot of special-
purpose code. Instead of passing the actual da ta
objects around, you create and pass locatives to
the relevant slots in them. The receiving code
can manipulate the slot wi thout knowing what
kind of object it 's in.

Enough motivation, let's look at the imple-
mentation. The essential idea is that l o c f cre-
ates a structure containing two functions, one
that returns the value of the generalized vari-
able and one that sets that value. These func-
tions are closures created from the information
in the s e r f method of the given form; see Fig-
ure 2. Note that the value forms are evaluated
at the time the locative is created, not every
time it's used; this ensures tha t any side-effects
they might have are not duplicated. The l o c a -
t i v e structure type is defined by d e f s t r u c t in
the obvious way:

(clef struct locative

access-fn
modify-f n)

The function location-contents merely fun-
c a l l s the access function of the given locative.

11-2.31

(defun location-contents (locative)
(funcall (locative-access-fn locative)))

(defsetf location-contents (locative) (new-value)
(funcall (locative-modify-fn locative) new-value))

Figure 3: Implementation of the operations on locatives.

(defun execute-process (process)
(l e t ((machine (find-free-machine)))

(letf (((current-process machine)
(run process machine))))

(process-id process)))

Figure 4: A more-or-less typical use of l e t f .

The s e r f method for l o c a t i o n - c o n t e n t s is
about as simple; we f u n c a l l the m o d i f y - f n in-
stead, passing along the new value for the loca-
tion. See Figure 3 for the detail~.

I 'm honor-bound to mention a few things
about this implementation. The most im-
portant is that I 've left out some pieces of
Rick's code in order to simplify the presenta-
tion. There are a few ways in which what he
wrote is more efficient and more debuggable
than what I 've shown here. Also, for compat-
ibility with the original Zetalisp construct, he
treats places of the form (¢dr . . .) as a non-
consing special case. His complete source is
given at the end of the article.

It also hears mentioning that a Common Lisp
implementat ion of locatives cannot be as effi-
cient as in Zetalisp, in which they are repre-
sented as immediate pointers to memory cells.
On the other hand, the Zetalisp implementation
can't handle every kind of generalized variable,
so perhaps the advantages balance out some-
what. In any case, before using this Common
Lisp l o c f one should be aware that the perfor-
mance characteristics will be radically different
from Zetalisp's construct.

The other s e r f method client we'll look at
was also programmed by Rick Harris and is also

taken in part from Zetalisp; it is the l e t f con-
struct for "~iynamicaUy binding" arbi t rary gen-
eralized variables.

You've almost certainly had a use for this at
some point, even if you weren't aware of it at the
time. There's some slot in a s tructure or some
such that you want to have a different value
during the execution of some piece of code and
you want to restore the old value when you're
done. So what do you do? You bind a new
variable to the old value, put the new value in
the location, and execute the relevant code in-
side an u n w i n d - p r o t e c t that puts the old value
back at the end. L e t f encapsulates this idiom in
a convenient notation through the use of serf
methods. Figure 4 shows a typical use of the
m a c r o .

As with other binding forms, like l e t , the
l e t f construct can take an arbi trary number
of place/value pairs to bind. All of the values
to be bound are computed before any of them
are assigned, as with l e t . The implementat ion
is somewhat more complex than that of l o c f ,
almost entirely because of the arbi t rary number
of generalized-variable references; see Figure 5.

For each binding in the l e t f form, we call
g e t - s e r f - m e t h o d to analyze the generalized-
variable reference and accumulate the results in

11-2.32

(defmacro letf (bindings &body body)
(let ((tvar-list nil)

(val-list nil)
(svar-list nil)
(store-list nil)
(access-list nil)
(bound-exprs (mapcar #'cadr bindings))
(save-vars (mapcar #'(lambda (ignore) (gensym)) bindings)))

(dolist (binding bindings)
(multiple-value-bind (tvars vals svars store access)

(get-serf-method (car binding))
(setq tvar-list (nconc tvar-list tvars))
(setq val-list (nconc val-list vals))
(setq svar-list (nconc svar-list svars))
(setq store-list (nconc store-list (list store)))
(sotq access-list (nconc access-list (list access))))))

' (l e t * (,~(mapcar #'list tvar-list val-list)
,@(mapcar #'list save-vars access-list))

(unwind-protect
(let ,(mapcar #*list svar-list-bound-exprs)

,@store-list
,@body)

(let ,(mapcar #'list svar-list save-vats)
,@store-list))))))

Figure 5: The implementation of l e t f .

several lists. The expansion first binds all of
the temporary variables to all of their respective
value forms, and then saves the initial values of
all of the generalized variables in gensymed vail-
ables. Within an unwind-p ro tec t , the bound
value expressions are evaluated and bound to
the various store variables and all of the stor-
ing forms executed. This gets everything ready
to evaluate the body of the original l e t f . Fi-
naUy, the clean-up part of the unwind -p ro t ec t
again binds the store variables, this time to the
variables holding the saved values of the bound
locations, and within those bindings evaluates
the storing forms again to restore the old val-
ues of the generalized variables.

Well, that 's a bit of a mouthful, so let's look

at the expansion of an example that uses our
s e r f method for (ca r (f o e)) from before. The
letf form

(letf (((car (foe)) (bar)))
(body-stuff))

expands into a form like this:

(let* ((tv (foe))
(#:gl (car iv)))

(unwind-protect
(let ((sv (bar)))

(progn (rplaca tv sv) sv)
(body-stuff))

(let ((sv #:gl))
(progn (r p l a c a t v sv) s v))))

II-2.33

Sure enough, this saves the old value of the car
of (f o e) , puts (b a r) ill there during the exe-
cution of the body, and restores the old value
upon exit, just like the doctor ordered.

Again, I've changed Rick's code to simplify
the presentation and, again, you can see his
more complete implementation of the Zetalisp
original at the end of the article. There is one
significant difference between this l e t f and the
one in Zetalisp, when used in a multiprocess-
ing Lisp implementation. In Zetalisp, the old
value is restored every time there's a context
switch to allow some other process to run and
the new value is put back when control returns
to the binding process. In this way, the bindings
made by l o t f are identical to normal special
variable bindings. Since Common Lisp doesn't
say anything about multiple processes, we can't
portably implement that special behavior. For
single-process applications, though, this letf
can be used pret ty much everywhere that Ze-
talisp's can.

Let's move on now to consider new kinds
of generalized variables. All of those defined
in Common Lisp are simple da ta structure ac-
cessors, like car, gethash, symbol-plis% etc.
This isn't a requirement for all generalized vari-
ables, though. The contract of a generalized
variable is simply that it must behave like a vari-
able: after storing a set of values into it, evalu-
ating the access form must yield the "same" val-
ues. I put "same" in quotes here because there
isn't a consistent view of the kind of equality
to use here. For most of the built-in general-
ized variables, like c a r and ge tha sh , a predicate
like e q l is probably intended, but for others,
like subseq, none of the Common Lisp equality
predicates is appropriate. The notion of "same-
ness" is dependent on the kind of generalized
variable.

This "variable-like" behavior, though, is the
entire requirement on a new kind of generalized
variable. As Jona than Rees mentioned to me,
for example, such variables might not have any-
thing to do with the memory of the running Lisp
system. Here are some compelling examples of

this sort of generalized variable:

(serf (file-length "index.hash")
4096)

(setf (host-address "gidney")
(generate-new-ip-address))

Operations on generalized variables also need
not be computationally cheap. For example,
suppose that the function mvmult multiplies a
matr ix by a vector, yielding a new vector. Then
the form

(serf-(mvmult A x) b)

might solve systems of linear equations in order
to find x, given A and b. The possibilities are
truly endless.

One interesting new kind of generalized vari-
able, suggested to me by Kent P i tman , is value
constructors, like cons. What should an ex-
pression like (cons a b) mean as a generalized-
variable reference? Well, since it behaves like a
variable, we know that after evaluating an ex-
pression like

(serf (cons a b) (foe))

the value of (cons a b) will be the "same" as
whatever :foe returned. If we let "same" mean
e q u a l here, then a must now hold the c a r of
foe ' s result and b must hold the cdr . Thus,
assigning to a generalized-variable reference of
the form

(cons place1 place2)

should destructure the assigned value into the
two places. How handy! But can we implement
this behavior in Common Lisp? It turns out
tha t it isn't very difficult at all.

The only direct way to add a new s e r f
me thod to Common Lisp is with the d e f i n e -
s e t : f -me thod form. It has this syntax:

(define-serf-method name pattern
body)

11-2.34

(define-serf-method cons (x y)
(let ((svar (gensym)))

(values
,()
,()

(list svar)
'(progn

(s e t q ,x (c a r , s v a r))
(s e t q ,y (c d r , s v a r))
,svar)

' (c o n s ,x , y))))

Figure 6: A simplified s e r f me thod definition for cons.

(def ine-serf-method cons (x y)
(l e t ((s v a r (g e n s y m)))

(m u l t i p l e - v a l u e - b i n d (x - t v a r s x - v a l s x - s v a r s x - s t o r e x - a c c e s s)
(get-serf-method x)

(multiple-value-bind (y-kyats y-vals y-svars y-store y-access)
(get-serf-method y)

(values
(append x-tvars y-vars)
(append x-vals y-vals)
(list svar)
' (l e t ((, (c a r x - s v a r s) (c a r , s v a r))

(,(car y-svars) (cdr , svar)))
,x-store
,y-store
, svar)

'(cons , x - a c c e s s , y - a c c e s s)))))) ; a c c e s s i n g form

; temporary variables
; value forms
; store variables
; storing form

Figure 7: The complete s e r f me thod definition for cons.

where pattern is a defmacro-style argument list.
This tells the s e r f facility to call this code
whenever it needs the s e r f me thod for a gener-
alized-variable reference whose c a r is the sym-
bol name. The body should return five values,
the ones we've been using all along to represent
s e r f methods.

We'll begin with a simplification of the real
s e r f method for cons; we'll assume for the mo-
ment that place1 and place2 have to be simple

variables. Thus, we're only going to deal with
generalized-variable references like i c o n s a b)
and not more complex uses like

(cons (axe f x 12).
(gethash 17 hi))

For this simple case, the serf method definition
is easy to write; it appears in Figure 6.

There can' t b e any subexpressions with side-
effects, so we don' t need any temporary variables
or value forms. We use gensym to get a fresh

11-2.35

store variable and then it's easy to write the
storing form; it simply assigns the car and cdr
of the value to x and y. We also have to remem-
ber to return the stored value from the storing
form. The accessing form is trivial, identical to
the original reference.

So the easy case is easy, but what must be
done to accommodate the general case, hairy
references like the one involving a r o f and g e t h -
ash above? Since we've constructed a new gen-
eralized-variable reference (using c o n s) o u t of
two others (using a r e f and gothash) , we should
expect that we'll construct a new s e r f method
out of two others. We'll need to call g e t - s e r f -
method to analyze the two subforms of cons for
us; the details appear in Figure 7.

The subexpressions of a generalized-variable
reference using cons are those of the two argu-
ments. Thus, the temporary variables and value
forms for our s e r f method are simply the con-
catenation of those for the subforms x and y.
The store variable is as before and, in a sense,

so is the storing form. We must first set up the
bindings of the store variables for the subforms,

but then it 's just as in the simple case above;
we store into x and y
ing forms instead of
return the value tha t

(we have to use their stor-
simple sotqs) and finally
was stored. Similarly, our

accessing form is like the one in the simple case
except that we use the accessing forms of x

and y.
This fully general s e r f method for cons a/-

lows us to do some complex kinds of destructur-

ing:

(sot'~ (cons a (cons b (cons c d)))
, (t 2 3 4))

assigns 1 to a, 2 to b, 3 to c, and the list (4) to

d. We could go further and define serf meth-
ods for the other value constructors of Common

Lisp, like vector and the constructor functions

defined by defstruct. There's one construc-

tor that's particularly amusing in this context:

backquote.
Consider the expression ' (a ,b c) as a gen-

eralized-variable reference for a moment. After

evaluating the odd-looking assignment
k

(serf ' (a ,b c) (foo))

the expression '(a ,b c) should evaluate to

the result of calling foo. For this to be true,

foo must have returned a list of length 3 whose

first element is the symbol a, whose second ele-

ment was stored into the variable b and whose

third element is the symbol c. But what if the

result of foo isn't a list, or that list is not three

elements long, or the first and third elements

aren't a and c? Then surely an error should be

signalled since the assignment cannot be car-

ried out correctly, right? In a way, this would

amount to a kind of "pattern-matching" assign-

ment statement, a useful addition to the lan-
guage. Let's look at how we could achieve this.

First, what is the expansion of an expres-

sion like '(a ,b c)? Common Lisp does not

specify this exactly, but on most systems back-

quoted expressions expand into normal expres-
sions made out of operators like cons, list,

list*, and quote. For example, in Xerox

Lisp, '(a ,b c) expands into (list 'a b 'c).

Thus, in that particular implementation~we

would be concerned with the serf methods of

list and quote.

Any call to list can be rewritten as a set of

nested calls to cons, whose serf method we've

already defined. Fortunately, it's easy to take
advantage of'this to define a set:f method for

list, as shown in Figure 8. We simply return

the serf method for the rewritten expression

instead of computing one ourselves. There's a
problem here, though. When you rewrite (list

'a b 'c) in this way, you get

(cons (quote a)

(cons b
(cons (quote c)

nil)))

We were about to define a ser f method for

quote, but what about that nil down there

at the end? We will end up asking for a sotf

method for it and serf is likely to think it's just
a simple variable, which is just the wrong thing.

We'll come back to this in a moment.

11-2.36

(define-serf-method list (&rest args)
(get-serf-method (reduce #'(lambda (are form)

' (cons ,arg ,form))
ares
:from-end t
:initial-value nil)))

Figure 8: The s e r f method definition for list.

(defun f a n c y - g e t - s e r f - m e t h o d (form)
(if (c o n s t a n t p form)

(l e t ((s v a r (g e n s y m)))
(values

nil
nil

(list svar)
' (p r o g n

; temporary variables
; value forms
; store variables
; storing form

(assert (equal ,form ,svar) ()
"pattern-matching failed: "S should have been °S"
,svar ,form)

,form)

form)) ; accessing form
(get-serf-method form)))

Figure 9: An enhanced version of g e t - s e r f - m e t h o d

The s e r f me thod for q u o t e is a bit stranger.
After evaluating

(s e r f (quote a) (foo))

we need (q u o t e a) to yield the same value that
foo returned. That is, we need f o o to re turn
the symbol a. We don't need to do any actual
assignments to make this true, we just have to
check the given value. If sv were our store vari-
able, then this would make a good storing form:

(progn

(assert (equal sv 'a) ()
"'S should be °S" sv 'a)

~a)

This serf behavior shouldn' t be peculiar to
quo te , though; the s e r f me thod for every con-
stant expression should be like this, including

that pesky n i l from above. The problem with
this observation is that Common Lisp doesn' t
have a way for us to specify a s e r f method for
expressions like 17 and "a s t r i n g " .

In order to accomplish our desired s e r f be-
havior for backquoted expressions, we'll have to
subst i tu te our own function in place of g e t -
s e r f - m e t h o d . Fortunately, constant expres-
sions are only useful as generalized-variable ref-
erences when they're arguments to value con-
structors. Since we're writing all of those s e r f
method definitions, we can simply have them
call our function to do their analysis instead of
g e t - s e r f - m e t h o d . I 've called this new function
f a n c y - g e t - s e r f - m e t h o d ; its definition is sim-
ple and appears in Figure 9.

We now have everything in place to compute

I I - 2 . 3 7

(let* ((#:g32 (foo)))
(let ((#:g33 (car #:g32))

(#:g34 (cdr #:g32)))
(progn

(assert (equal 'a #:g33) ()
"pattern-matching failed: "5 should have been "S"
#:g33 'a)

#:g33)
(let ((#:g35 (car #:g34))

(#:g36 (cdr #:g34)))
(s e t q b #:g3S)
(let ((#:g37 (car #:g36))

(#:g38 (cdr #:g36)))
(progn

(assert (equal 'c #:g37) ()
"pattern-matching failed:
#:g37 'c)

#:g37)
(progn

(assert (equal nil #:g38) ()

#:g38)
#:g36)

#:g34)
#:g32))

l'pattern-ma~ching failed:
#:g38 nil)

"S s h o u l d h a v e b e e n *S"

"S s h o u l d h a v e b e e n *S"

Figure I0: The macroexpansion of (serf ' (a ,b c) (foo)).

the expansion of our original pattern-matching
assignment statement; see Figure 10. Pretty
amazing, eh? Looking at it makes one realize
that it might be worth putting that a s s e r t ex-
pression into a separate function. If you squint
hard enough, you can actually find the assign-
ment to b there in the middle of the code.

For our final stop of this whirlwind tour of
se'tf method applications, let's consider one
last kind of constructor, the va lues function.
This is somewhat like the others, but it has
an arbitrary number of subforms, each of wl~ich
should be a generalized-variable reference, and
it involves the use of multiple store variables.
The code appears in Figure 11.

The part that deals with analyzing the arbi-
trary number of argument places is almost iden-
tical to that part of the implementation of l e c f ;
the five values of each constituent s e r f method
are accumulated in lists for later use. The s e r f
method itself has all of the temporary variables
and value forms from the arguments, as in the
definition for cons.

We need as many store variables as there are
arguments to the va lues form, since we'll be
doing that many assignments. The storing form
simply sets up all of the bindings needed by the
storing forms for all of the arguments and then
executes those forms one after another, finally
returning all of the values that were stored. As
in the cons case, the accessing form is straight-

11-2.38

(define-serf-method values (&rest places)
(let ((tvar-list nil)

(val-list nil)
(svar-list nil)
(store-list nil)
(access-list nil)
(my-svars (mapcar #'(lambda (x) (gensym)) places)))

(dolist (place places)
(multiple-value-bind (~vars vals svars store access)

(fancy-get-serf-method place)
(setq tvar-list (nconc tvar-list tvars))
(setq val-list (nconc val-list vals))
(setq svar-list (nconc svar-list svars))
(setq store-list (nconc store-list (list store)))
(setq access-list (nconc access-list (list access)))))

(values
tvar-list

val-list
my-svars
'(let* ,(mapcar #'list

; temporary variables
; value forms
; store variables
; storing form

svar-list my-svars)
,@store-list
(values ,my-svars))

'(values ,@access-list)))) ; accessing form

Figure 11: A complete s e r f me thod definition for v a l u e s .

forward.
Unfortunately, as was mentioned much ear-

lier, we can't use this nice s e r f me thod with
any of the macros in Common Lisp, since it
usually includes more than one store variable.

There is some reason to hope t h a t this will be
changed in the version of the language being
standardized by ANSI, though, so it may yet
find acceptance. If so, we would be able to use
it to say

(serf (v a l u e s (c a r a)
(gethash b 'c)
(aref d 13))

(some-hairy- comput at ion))

which stores the first value returned by some-

h a i r y - c o m p u t a t i o n into the c a r of a, the sec-
ond into the hash table b, and the third into
the array d. In effect, this gives us a general
m u l t i p l e - v a l u e - s e r f form all as a par t of the
normal s e r f macro with which we're so famil-
iar.

Well, I hope I've led you on an interesting and
comprehensible trip into the possibilities inher-
ent in the s e r f facility of Common Lisp. As a
final, intriguing example, I leave you with this
piece of code, enabled by our labors here:

(pop (list* a b c))

After writing the serf method for list*, you
inight enjoy figuring out just what this some-
times useful idiom does. [~

II-2.39

; ; ; ; LOCF Implementa t ion by Richard H a r r i s , RPI

; ; ; " loc f access- form Macro
; ; ; Takes a form tha t accesses some c e l l and produces a cor responding
; ; ; form to c r ea t e a l o c a t i v e p o i n t e r to t h a t c e l l . Examples:
; ; ;
; ; ; (l o c f a) ==> #<Locative to £>
; ; ; (l o c f (a re f q 2)) ==> #<Locative to (A~F Q 2)>"

(d e f s t r u c t (l o c a t i v e
(: c o n s t r u c t o r make- loca t ive (access modify name))
(: p r i n t - f u n c t i o n p r i n t - l o c a t i v e))

access
modify
name)

(d e f u n p r i n t - l o c a t i v e (l o c a t i v e s t ream depth)
(dec lare (ignore depth))
(format stream "#<Locative to °S>" (loca t ive -name l o c a t i v e)))

(defmacro loc f (s e t f - fo rm)
(i f (and (consp se t f - fo rm)

(eq ' c d r (car s e t f - f o r m)))
(cad.r s e t f - fo rm)
(m u l t i p l e - v a l u e - b i n d (V~LrS va l s s t o r e s s t o r e - fo rm access- form)

(g e t - s e t f - m s t h o d se t f - fo rm)
'(let ,(mapce.r #'list vats vals)

(make-locative
' (l ambda ()

,access-form)
' (lambda , s t o r e s

, s t o r e - f o r m
, (ca r s to res))

' , . e t f - f o r m)))))

(procla im ' (i n l i n e l o c a t i o n - c o n t e n t s))
(defun l o c a t i o n - c o n t e n t s (l o c a t i v e)

(typecase l o c a t i v e
(cons

(cdx l o c a t i v e))
(l o c a t i v e

(f u n c a l l (l o c a t i v e - a c c e s s l o c a t i v e)))
(t

(e r ro r " ' S i s not a l o c a t i v e " l o c a t i v e))))

(d s f s e t f l o c a t i o n - c o n t e n t s (l o c a t i v e) (va lue)
' (t y p e c a s e , l o c a t i v e

(cons
(s e t f (cdr , l o c a t i v e) , va lue))

(l o c a t i v e
(f u n c a l l (l o c a t i v e - m o d i f y , l o c a t i v e) , va lue))

(t
(e r r o r " 'S i s not a l o c a t i v e " , l o c a t i v e))))

11-2.40

; ; ; ; LETF Implementa t ion by Richard H a r r i s , RPI

; ; ; The f o l l o e i n g i s r e a l l y a c ro s s between the (Symbolics) f u n c t i o n s l e t f
; ; ; and l o t - g l o b a l l y :
; ; ;
; ; ; " l e t f p l a c e s - a n d - v a l u e s b o d y . . . Spec i a l form
; ; ; Jus t l i k e l e t , except t h a t i t can bind any s t o r age c e l l s r a t h e r than
; ; ; j u s t v a r i a b l e s . "

; ; ; " l e t - g l o b a l l y ((v a t v a l u e) . . .) b o d y . . . S p e c i a l form
; ; ; S i m i l a r in form to l e t . The d i f f e r e n c e i s t h a t l e t - g l o b a l l y does not
; ; ; b ind the v a r i a b l e s ; i n s t e a d , i t saves the o ld va lues and s e t s the
; ; ; v a r i a b l e s , and s e t s up an unwind-p ro t ec t to s e t them back ."
; ; ;
; ; ; This d i f f e r e n c e i s impor tan t (only) in a m u l t i p l e - p r o c e s s Lisp system.

(dsfmacro l e t f (b ind ings kbody forms)
(l e t ((t v a r s n i l)

(t v a l s nil)
(s t o r e - v a r s n i l)
(store-fornmnil)
(a c c e s s - f o r m s n i l)
(va lue - fo rms nil)
(save-vats nil))

(d o l i s t (b inding b ind ings)
(l e t ((s e r f - f o r m (i f (atom b ind ing) b ind ing (car b i n d i n g)))

(value-form (if (atom binding) nil (cadr binding))))
(multiple-value-bind (vars vals stores store-form access-form)

(g e t - s e r f - m e t h o d s e t f - f o r m)
(s o t q t v a r s (nconc t v a r s v a r s))
(s e t q t v a l s (nconc t v a l s v a l s))
(s e t q s t o r e - v a t s (nconc s t o r e - v a t s s t o r e s))
(s e t q s t o r e - f o r m s (nconc s t o r e - f o r m s (l i s t s t o r e - f o r m)))
(s e t q a c c e s s - f o r m s (nconc a c c e s s - f o r m s (l i s t a c c e s s - f o r m)))
(s e t q v a l u e - f o r m s (nconc va lue - fo rms (l i s t v a l u e - f o r m)))
(s e t q s a v e - v a r s (nconc s a v e - v a t s (l i s t (gensym)))))))

' (l o t , (mapcar # ' l i s t t v a r s t v a l s)
(l e t , (mapcar # ' l i s t s a v e - v a t s a cce s s - fo rm s)

(unwind-p ro t ec t
(progn

(lot ,(mapcar #'list store-vats value-forms)
,@store-forms)

,aforms)
(let ,(mapcar #'list store-vars save-vats)

,@store-forms))))))

(defmacro i s t f * (b ind ings kbody forms)
(i f (n u l l (cdr b i n d i n g s))

'(letf ,bindings
,Oforms)

'(istf (,(car bindings))
(lstf* ,(cdr bindings)

,eformu))))

II-2.41

