
Copyright (~)1987, 88 by Morton Goldberg, All Rights Reserved

M E N U S F O R S C H E M E
by

Morton Goldberg
3268 Alpine Drive

Ann Arbor, MI 48108

CompuServe: 72346,565
ARPANET: goldberg@vmb.brl.mil

M e n u s f o r S c h e m e is a t rademark of Morton Goldberg. Microsoft, MS-DOS, and MS are registered
trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated

Programs with menu-driven user interfaces are quite common these days, and a large body of end-users
ranging from novices to expert users show a preference for such user interfaces. In the MS-DOS world,
Microsoft is a t tempting to establish its MS Windows package as the standard for such user interfaces but
its use is by no means universal. In particular, Texas Instruments (TI) does not provide any kind of support
for MS Windows with its PC Scheme language software. TI does provide its own window facility with PC
Scheme but doesn't extend the facility to the menus, alerts, and dialogs commonly provided by menu-driven
user interfaces such as MS Windows. M e n u s £or S c h e m e is my a t tempt to fill this void.

M e n u s f o r S c h e m e is implemented using the SCOOPS (Scheme Object-Oriented Programming System), an
extension to Scheme provided by TI. A basic familiarity of the terminology of object-oriented programming
as it applies to SCOOPS is assumed in the body of this article. A glossary is supplied for those readers who
are not familiar with such terminology.

T H E F A C I L I T I E S P R O V I D E D B Y M e n u s for S c h e m e

M e n u s / ' o r S c h e m e provides horizontal and vertical menus, alerts, and a simple form of dialog box.

An alert is a popup window presenting a message requiring no particular action on the part of the user
except the action required to close the window. M e n u s / ' o r S c h e m e provides text-only alerts called popup
text windows.

A dialog box is a popup window allowing the user to interact with a program in a more complex way than
making a simple selection from a menu. M e n u s fo r S c h e m e provides only a very simple form of dialog
box in which a message and a type-in area are presented to the user. Nominally the message prompts for
some information that the user will then enter into the type-in area. In M e n u s fo r Scheme, these simple
dialogs are called popup query windows.

A menu is a window tha t pops-up on the screen and presents the user with two or more choices, called menu
items. When one of the menu items is selected, it determines the next action taken by the program. The
user may decide to cancel the menu without selecting any of the menu items.

M e n u s for S c h e m e implements two classes of menus: horizontal ones and vertical ones. The two classes
differ only in their appearance on the screen. Horizontal menus present all their menu items on one line
of the screen. Vertical menus present each of their menu items on a separate line of the screen. They are
somewhat easier to lay out than horizontal menus, and they can hold more menu items.

S e l e c t i ng M e n u I t e m s

A menu has a bar cursor can be moved to cover a menu item. The bar is moved by the arrow keys, but a
selection is not made until the enter.key is pressed. Selection can also be made by pressing a selector key,
which can be any key on the keyboard that generates a single ASCII character. The selector is usually the
first capital letter appearing in the text describing a menu item on the screen, but M e n u s f o r S c h e m e
allows arbitrary association between a selector and a menu item. It even allows for multiple selector keys to

1I'2.49

be associated with a single menu item. Pressing the escape key will always abort the item selection process
and close a menu. In this case no selection is made.

C o m b i n i n g Dia logs a n d A l e r t s w i t h M e n u s

When selecting a menu item results in an action that generates a user message requiring no response from
the user, a popup text window is used to display the message. The text window is erased when the user
presses the escape key.

When selecting a menu item results in an action requiring additional input from the user, this may be
solicited by means of a subsidiary menu or by a popup query window, which is a popup window containing a
query message and an input field for receiving the user's response. The input field is a string of spaces which
may be displayed with text attributes that differ from the text attributes of the rest of the query window.
A cursor appears within the input field, signaling its readiness to receive input. Destructive backspace is
supported so the user can perform simple editing. A query window is erased when the user's response satisfies
the query, or when the user presses the escape key.

A N E X A M P L E O F P C S C H E M E C O D E U S I N G M e n u s / ' o r Scheme

At this point you might like to see the kind of PC Scheme a programmer would write when using M e n u s
/'or Scheme. Listing 1 shows an example a toy program that demonstrates all the main capabilities of
M e n u s / ' o r S c h e m e . Figure 1 shows some of the screen output produced during the execution of Listing 1.

A B R I E F L O O K A T H O W Menus f o r Scheme IS I M P L E M E N T E D

Figure 2 shows the relationships among the classes forming the menu system. If you ignore class key -
mon i to r for now, what you see is simple class inheritance the Smalltalk-80 kind. The most general class is
basic-popup-window. This is a component class, i.e., it is not instantiable. It defines the instance variables
and methods common to all types of popup windows.

Class bas ic-popup-window is has two major subclasses, popup- tex t -window and bas ic-menu. The only
subclass of popup- tex t -window is the more specialized popup-query-window. Basic-menu is another com-
ponent class, but its two subclasses, v e r t i c a l - m e n u and hor izonta . l -menu are instantiable. Now what
about class k e y - m o n i t o r ? Well, it is a class that can function both as a component class and as an instan-
tiable class. It is not used as an instantiable class in Menus for Scheme, but I have instantiated it in
applications to provide command loops with single-key command accelerators.

Both class k e y - m o n i t o r and class bas ic-popup-window are declared as mixins to class bas ic-menu. This
means menus are as much key monitors as they are popup windows, and they inherit behavior from both. To
put it somewhat whimsically, consider menus to he the hybrid offspring of a mating between popup windows
and key monitors. They show their key-monitor-like traits when they do input and their popul>-window-like
traits when they do output.

M e n u S y s t e m W i n d o w s

The menu system is built on PC Scheme's window system, which supports two kinds of window objects:
graphics screens and text windows. The menu system uses text windows exclusively. These are output
ports delivering character data to a constrained rectangular area of a display, which must be in text mode.
A Scheme text window may be a popup window, a window which is expected to be on the screen for a
short time only. In this case, Scheme saves the text that it will be overwritten, just before the popup
window appears, and restores it when the popup window disappears. Class bas ic-popup-window provides
the interface between the menu system and the Scheme-supplied popup window facility.

P o p u p T e x t W i n d o w s

SCOOPS supports active values for instance variables. Class popup- tex t -window is one of two places in
the menu system where this feature is used. Text , the instance variable which stores a popup text window's
message, has an active set-method. Whenever the contents of t e x t are modified by a s e t - t e x t message,
the me thod a d j u s t - s i z e is called to resize the window to conform to its new text.

11-2.50

P o p u p Q u e r y W i n d o w s

Class popup-query-window uses class popup- tex t -window as a component. An instance of the class has an
input field which accepts a response to the message it presents. When creating a new instance, an application
needs to put entries for the instance variables cu r so r - row, c u r s o r - c o l , and i n p u t - w i d t h on the init-list it
passes to the popup query window constructor. These instance variables tell the new instance where to put
the input field, how big it should be, and where to put the input cursor.

Class popup-query-window has a instance variable t e x t which is similar to the instance variable of the
same name in class popup- t ex t -windou . It holds the text of the message presented by the query window,
and it has an active set-method. But t e x t isn't inherited from class popup- tex t -window. An instance of
class popup-query-window needs to call a different method, a d d - i n p u t - f i e l d , when the contents of t e x t
are modified. A d d - i n p u t - f i e l d locates the string in t e x t which goes on the line cu r so r - row, appends
a string of spaces of width i n p u t - w i d t h to it, and calls the method a d j u s t - s i z e , inherited from class
p o p u p - t e x t - w i n d o , , to size the window to fit the modified version of the text.

When a popup query window appears on the screen, the instance variables c u r s o r - r o w and c u r s o r - c o l are
accessed to position the input cursor at the beginning of the input field, and then the auxiliary procedure
r e a d l n is called to handle the user's response, l~eadln keeps the characters typed-in by the user in a list
maintained as a push-down stack. This makes for easy destructive backspace editing. When the user presses
the enter key, the list is reversed and converted into a string. The string returned by r e a d l n is stored in
the gettable instance variable r e sponse . The application retrieves it by sending a g e t - r e s p o n s e message to
the popup query window. Because of its very general utility, I wrote r e a d l n as a normal Scheme procedure
rather than making it a method or a local procedure of a method.

K e y M o n i t o r s

Key monitors are keyboard filters. The basic idea behind them is to have a method, l o o k - f o r - k e y , that
looks for key codes and a mapping that translates the key codes into filter actions. In class k ey -mon i to r ,
the mapping is represented by a translation vector of procedures, and the key codes serve as indexes into
the vector. Scheme make this representation attractive because in Scheme procedures are data objects and
may be stored in vectors just like any other kind of data object. When l o o k - f o r - k e y gets a key code, it
simply calls the procedure at the vector index corresponding to the key code.

That ' s the theory. In practice there is a complication. PC Scheme gets some key codes as a pair of
bytes, the first of which is zero. This is dealt with by actually representing the key code mapping by two
128-byte translation vectors, stored int the instance variables a c t i o n s - f o r - A S C I I - k e y s and a c t i o n s - f o r -
s p e c i a l - k e y s , rather than one 256-byte translation vector. So l o o k - f o r - k e y has been written t o accept
the translation vector it uses as an argument. L o o k - f o r - k e y is first called with the argument a c t i o n s - f o r -
a s c i i - k e y s . When it sees a zero, it calls the procedure installed at index zero of a c t i o n s - f o r - a S C I I - k e y s .
This procedure simply calls l o o k - f o r - k e y again;this time passing it the argument a c t i o n s - f o r - s p e c i a l -
keys so that the next code l o o k - f o r - k e y sees will be translated by a c t i o n s - f o r - s p e c i a l - k e y s rather
than act ions-for-ASCII-keys.

Class key-monitor supplies the methods, install-ASCII-key and install-special-key, for installing
procedures in the translation vectors. This serves to protect the translation vectors.

M e n u s

The only difference between a horizontal menu and vertical menu is that a horizontal one goes across the
screen on a single line and a vertical one goes down the screen in many lines. This is an ideal situation for
SCOOPS, one in which its inheritance feature can be used to maximum advantage. The component class
bas ic -menu and its methods contain all the format-independent code, which is practically everything. Only a
constructor and a format-dependent initialization method need be added for each of the instantiable classes.
In the case of class h o r i z o n t a l - m e n u , the format-dependent initialization method requires an additional
instance variable, l a b e l - s p a c i n g , from which it gets the amount of spacing to insert between two menu
labels.

11-2.51

The init method of class basic-menu does a lot work. First, it translates the menu description received from
the application into an internal representation. This gets stored in the instance variable item-table. Next,
using instance variables and methods inherited from class key-monitor, it builds a keyboard filter with the
following properties:

• The arrow keys drive the bar cursor from menu item to menu item.

• The return key selects the menu item highlighted by the bar cursor.

• The escape key cancels the menu.

• The application-specified selector keys select their proper menu items.

• All other keys are ignored.

Finally, the init method calls on the format-specific init method of either class horizontal-menu or class
vertical-menu to finish the initialization. The init method doesn't need to know which of the two instan-
tiable menu classes it is working for when it makes this call. As long as both of the instantiahle classes use
the same name for their init method--and they do, of course--SCOOPS makes sure everything comes out
right.

Menu Items

Class menu-item is not part of the c~ass ensemble shown in Figure 2. Because it stands.by itself, it must
be instantiable. It has no methods, except the SCOOPS generated get-methods and set-methods, so for all
practical purposes a menu item can be considered a pure data object.

Menu items are created by the constructor make-menu-item. A programmer does not deal directly with this
constructor. When an application calls on one of the menu constructors to create a menu, it passes an item
list to the menu constructor. After the menu constructor has created the new menu, but before it returns to
the application, it sends the new menu an init message with the item list as its argument. The init method,
which the menu inherits from of class basic-menu, calls on the method make-item-table, also inherited
from class basic-menu, to construct menu items and install them in the instance variable item-table, a
vector of menu items.

Hake-item-table also constructs a procedure that simulates the bar cursor method of selecting the menu
item. This procedure is bound to the selector key character(s) for that menu item by the install-ASCII-
key reel;hod inherited from class key-monitor. Consequently, at the menu level, there is really only one way
a to select a menu item even though it appears to the user that there" are two ways to do it.

A GLOSSARY OF SCOOPS TERMS

ACTIVE VALUE. An INSTANCE VARIABLE has an active value if its SET-METHOD calls a procedure rather
than performing its normal function of assigning a new value to the instance variable. The procedure
gets passed the argument of the set-method, and whatever is returned by the procedure is assigned to
the instance variable. Similarly, an instance variable also has an active vMue if its GET-METHOD calls
a procedure rather than merely retrieving the current value of the instance variable. In this case, the
procedure is passed the current value, and the get-method returns whatever the procedure returns. An
instance variable that is both gettable and settable is doubly active. Active values can transform
the relatively tame operations of getting or setting into monsters with really hairy side-effects. See the
discussions under INSTANCE VARIABLE, GET-METHOD, and SET-METHODs for further explanation.

CLASS. A collection of private variables (CLASS VARIABLES and INSTANCE VARIABLES) and procedures
(METHODS) that together function as an abstract data type. The methods comprise the set of operations
applicable to any object belonging to the class. The private variables are visible to the methods, but
not elsewhere, while the methods are generally visible. When a new class is defined, it may incorporate
the variables and methods of an existing class, in which case the new class is said to inherit from
the existing class. SCOOPS provides a defining form, define-class, for the creation of new classes,
and a debugging tool, describe, to permit examination of a class or an INSTANCE of a class. Unlike
Smalltalk-80, SCOOPS does not provide any pre-defined classes for programmers to build on.

II-2.52

CLASS VARIABLE. A variable that is private to a CLASS, but shared by all the INSTANCES of the class. Class
variables may be declared as having options. In SCOOPS, class variables must be declared as members
of the classvaxs list of a class definition. See the INSTANCE VARIABLE for a discussion of options.

COMPONENT CLASS. A CLASS defined to serve as a prefabricated subassembly from which other, more
elaborate classes can be built. Contrast this with INSTANTIABLE CLASS. Sometimes a class can be both
a component class and an instantiable class.

GET-METHOD. A method automatically generated by SCOOPS for an INSTANCE VARIABLE in response to
a gettable declaration in the options list of its CLASS definition. A get-method returns the value of
its instance variable. For example, if john is an instance of some class which has a gettable instance
variable name and the copy of name belonging to john has the string "John Q. Public" as its value,
the message

(send john get-name)

returns the string "John Q. P u b l i c " .

INHERITANCE. When a CLASS inherits from a MIXIN, it absorbs all the CLASS VARIABLES, INSTANCE VARI-

ABLES, and METHODS of the mixin as if they were defined in the inheriting class itself. Permitting
multiple mixins adds a complication to SCOOPS which doesn't come up in object-oriented languages
permitting only a single mixin (e.g., Smalltalk-80). In SCOOPS, it is possible for two or more mixins
to define methods or variables with conflicting names. Even worse, mixins can have mixins, and some
of these could also define methods or variables with conflicting names. SCOOPS resolves such conflicts
by giving priority to the first object (method or variable) it sees as it makes a depth-first search along
the class inheritance graph. Any other objects with the same name are shadowed.

INSTANCE. Conceptually an instance is a data object which derives its type from its CLASS. The class imposes
a structure and a set of operations on it. In SCOOPS, instances are represented by environments and
are created by calling the special form make-instance with a class name and (optionally) initial values
for any inittable INSTANCE VARIABLES it has.

INSTANCE VARIABLE. A variable that is private to an INSTANCE of a CLASS. An instance variable may
be declared as having options. In SCOOPS, instance variables must be declared as members of the
instva.rs list of a class definition, and may have any of the options gettable, settable, or iniCtable
(spelled thus in SCOOPS--an alternate spelling is initable). If an instance variable is declared gettable,
it becomes accessible to an application by means of a GET-METHOD, which is automatically generated by
SCOOPS. Similarly, if it is s ettable, it is modifiable by means of ~ SET-METHOD, and if it is inittable,
it may be initialized when it is created by make-instance.

INSTANTIABLE CLASS. A CLASS from which useful instances can be constructed is said to be instantiable.
Contrast this with COMPONENT CLASS.

MESSAGE. A special kind of procedure call. It passes an INSTANCE and possibly other arguments to a
method. In SCOOPS, messages are special forms distinguished by the initial keyword send. Examples
of messages can be found under GET-METHOD and SET-METHOD.

METHOD. An operation that an application may perform on an INSTANCE of a CLASS. Methods are repre-
sented in SCOOPS by procedures and it provides a defining form, define-method.

MIXlN. When a CLASS is used as a component of another class, the first class is said to be a rnixin of the
second. See INHERITANCE.

SET-METHOD. A method automatically generated by SCOOPS for an INSTANCE VARIABLE in response to
a settable declaration in the options list of its class definition. A set-method assigns its argument to
its instance variable. For example, if john is an INSTANCE of some CLASS which has a settable instance
variable name, then the message

(send john se t -name "John Q. P u b l i c ")

assigns the string "John O. P u b l i c " to the copy of name belonging to john. Set-methods are used for
effect; they return nothing useful.

11-2.53

A V A I L A B I L I T Y OF M e n u s for Scheme

M e n u s for S c h e m e can be downloaded from Data Library 13 of the AI Expert Forum on CompuServe.
Residents of the U.S., Canada, and Mexico may obtain Menus for Scheme directly from the author for a
small fee. Contact the author by electronic or paper mail at one of addresses given at the beginning of this
article for full details.

Do a DOS command r:ej~iii~E~.~i~::ili::~ii: Garbage collect Exit menu eXit to DOS
::

I'.12] (menus) I Free Space Remaining: 62415 I
Press [Esc] to Proceed

~Ghicallmon lu I I example

I Exit menu

PC Scheme 3.0 18 August 87

Figure 1. Output from Example Program

KEY-MONITOR "BASIC-POPUP-WINDOW

POPUP-TEXT-WINDOW

~::30,PU P-QU ERY-WlN EXDW

'BASIC-MENU

VERTICAL-MENU

Jt
Figure 2.

] ~HORIZONTAL-MENU

Menus for Scheme Class Hierarchy

11-2.54

C

0 ¢. •
L Q . 3

. ~ 0

(b . . c

^

0 ~ Q . O 0 ~

3~
0

° ~

(U

& ~ .~
= U

° ~ ° ~

o ' ~

° ~

u

o >

0 O" ~

,IX • • 0 N

: : ~ -

3

°~
u

i
• e e

, - |

z
uJ
Z

z

z

u

|

r~J

:1£

X
M,I

~ 0 O ~
• > 4 - , (0

-~.~ ~ ® ~ > ~

q-

~ o ~ ~R

• ~ .~ .'~

q..

0

~ 0 ,~.~ 0

"E " ~ ~ .~

4-/ .,~ . ~ q -
~'~ ~ 0

=o , . ~

g3 , ~

0 "10 •

. . . . : : :." :."

uJ

uJ

~n

L~

L

® 3

W

0
U

m

u

~, ~ ' ;

~-~.~ ~- o
R c , u ~ ° Q -

u i .-Y,'E o
e ~ 0 ~

, ~ ~ ~ ' ~

UJ X , ~ q -

MJ I,.- ~0 ~..,1~ t,,. ~l [

, ~ o • .

JQ ~=~ 'P MJ

0 ~ U U . I =
~ IK m ~
4-P 0 0 ~ . ~

- - - K E

2 , , , c , X ~ , O . ~ , d - 0 ~

~ . . - - & - - R - - & ,- . 8 . > ~ , > . ~ , >.>., >.>,,
~ e-~ I~ ~ " 0 " ~ . ~ 0 . ~ , ~ 0 0

w Q . ~ . ~ 4-,' 4-' q - ,i=, ~,11-~ ~,t- 4.* ,l.~ q -

q" >J= ~ >-~ U) >J= U~

11-2.55

A

?

~ ° ~

r . $ 2 ~

• ~ ~ ~

C 0

I-- 0 • 31 31 . ~ • . ~

= ~ . ~ ..

. i~ i-: :: :: i~ i.: i~ : :~ =

O I = ~ - , , -

. , -® ~ . - ~ - ® . ~ - 8 : . = ~ ' ~ "

_1
_1
o

w

z

i -
u g

v

O

m

O

° ~ -! |
A
=, . ,~

:: ::~ !~ : : ~ ,~ : : : : ~

u J

. . . . ~ ~ i~ :: :: :: :: :: :: :: ::.~ -

II-2.56

v v * * J= .~ :

|

- ~ ,.~ qlk f -

. - o o o : ! !

q ~ ' ~ ~ ~ ~ '~ "O I~ . ~ *

0 ~ X ~ N . ~ I . ~ ,I-,~ ~ ~ ~ ~ =1 ~ ~,
q , - ' ~ • U ~ ~ ,~,, 12- U) ~,,.. E . ~ E ~ C ,I.~ *--~*--. * 0

. '~ ,., ~ : : .~, ~ .

uJ

z

u)
uJ

uJ
Z

i

z
uJ

v ~

°~

O X

v A

uJ .~ X

C

~ O

z ~ O ~ =

N "~ n. -

o~

.~,~ . .0 llJ

II-2.57

