
| I
!
|

I I

Submitted by Frank Yellin, Lucid, Inc.

Closures

This article introduces closures, a powerful feature of Common Lisp that allows
you to write succinct code.

A closure is a function together with the environment in which it was created. The
principal idea behind closures is that in Common Lisp, functions axe '~first-class
objects," that is, you can write code that takes a function as an argument, and you
cam write code that returns s function as one of its values.

C l o s u r e s a s . A r g u m e n t s t o ~ ' u n c t i o n s

Let's look at some simple examples. The first example defines a function that
takes a. single axgument, which must be a function or a symbol with a function
definition, and ca.Us that function with the single argument 2:

• (deftm apply-to-two (flmc)
(f~aca.ll ~aac 2))

APPLY-T0-TW0
• (apply-~o-~wo 'I+)
3
• (app ly-~o-~8 'p .11mp)
T

The function axgument does not need to be a named function. The following
examples use a l a m b d a expression for the function argument:

> (apply-to-~vo
#'(Immbaa (•) (+ • 3)))

8

> (apply-~o--~wo
#'(la~ixta C•) (+ 1 (* • • x))))

9

The expression # ' (1Rbda (x) (+ • 3)) is a function that takes a single argument
and ~,dds 3 to it. The expression #'(lambda (x) (+ 1 ~* • • x)))) is a function
that takes a single argument, cubes it, then adds I.

A number of predefined Common Lisp func t ion can take a function as one of their
arguments. Among the more useful ones axe m a p c a r , which applies a function to
each element, r e m o v e - i f and r e m o v e - l f - n o t , which remove elements from a list

II-3/4.33

or array, and f i n d - i f and f i n d - i f - n o t , which find the first i tem in an ar ray or list
tha t satisfies a condit ion.

F u n c t i o n s t h a t R e t u r n C l o s u r e s

A more powerful use of closures is that functions can return other functions as their
value. In the following example, the function mako-addsr takes as its argument a
single value • and returns as its value a function. The returned function takes a
single argument, which it calls y, and returns the value (+ • y).

> (defun make-adder (x)
(check-type • number)
S'(Xambd~ (y) (+ • y)))

MAKE-ADDER
> (s e t q add2 (hake-adder 2))
#<Interpreted-Funct ion (I.AHBD£ (T) (+ • ¥)) 949476>
> (~unca l l add2 8)
7
> (~unca.ll (make-adder pi) 1)
4.141592653589793
> (f u n c a l l add2 1)
3

Notice t ha t someth ing very subtle is going on. When we call (make-adder 2), it
re turns a funct ion. T h a t function references the local vvxiable z, which was bound
to the in teger 2 when the function was created. The function tha t is re turned
" remembers" t h a t • had the value 2 when the funct ion was created. In Common
Lisp terms, the local variable • has been c losed ove r , tha t is, its value is not
saved in a global variable somewhere but is intrinsically par t of the function tha t
is re turned. The result ing function is called a closure .

An i m p o r t a n t fea ture of Common Lisp is tha t every function has access to the
environment in which it was created. It can both access and modify the variables in
that environment. For example, here is one possible, albeit inefficient, alternative
implementation of cons, car, and cdr:

> (de funmy,cons (x y)
#'(la~nbda (op t ion &optional va lue)

(case opt ion
(: ca r z)
(: cdx y)
(: s o t - c a x (se r f • va lue))
(: s e t - c d r (l e ~ y v a l u e)))))

KY-CONS
> (defm~my-cax (cons) (fu.nca.,U cons :cax))
KY-CAR
> (defunmy-cdz" (cons) (funca l l cons :cdz'))

II-3/4.34

IP/-CDR
• (defun my-see-cot (cons va.lue)

(f unca l l cons :see-car value))
K Y - S E T - C I R

• (deCu~ ~y-sec-cdz Ccou value)
(fXDllCall cone :sel;-ccLT Ts.,1.ue))

• (de fse t f my-car my-set-car)
r/-CaK
• (de fse t f my-cdr my-sel;-cdL¢)
NY-CDR

• (setq c e l l (my-cons 'a 'b))
#<lnl;erpreCed-Function . . . 9 5 3 3 8 6 >

• (my-car cell)

• (my-cdr c e l l)
S

• (seer (my-car ce l l) 44)
44
> (my-car c e l l)
44

Every funct ion remembers the lexical environment in which it was created. In
addi t ion to modify ing and accessing local variables, a funct ion can also, under
certain condit ions, r emember the names of any b l o c k form in which it was created,
and the names of any t a g b o d y tags that it can go to:

• (defun ou te r - f unc t i on ()
(block en ter -b lock

(4 . . er-~funcl;ion
' (lambda (x) (r e tu rn - f rom o u t e r - b l o c k x)))

(e r r o r "This piece of code
vilZL neve r be execu t ed")))

0UT~-FUaCTZON
• (defun 4 ~ e r - f u n c t i o n (arg)

(funca.'l,.l arg 23))
IIF£R-FUICTIOI
• (out e r - f u n c ¢ i o n)
23

However, the foUowing code would cause an error:

• (defun b a d - c l o s u r e ()
(b lock outar , -b , l o c k

' (lambda (x) (r e t u rn - f rom o u t e r - b l o c k x))))
BAD-CLOSUEE
• (b a d - c l o s u r e)
< l n t e r p r e t ed-Funct ion
(LAMBDA (X) (PJ~TURN-FROM 0UTER-BLOCK X)) C8C40E>

II-3/4.35

> (f u n c a l l • 23)
>>Error : £ RETUR31-FROM b lock OUTER-BLOCK occurred

from within an out of scope closure

Once you've exited from a block or a tagbody, any closures created inside the block
or tagbody that explicitly use the block name or tagbody tags can no longer be
used.

Other Uses of Closures

Closures can be used for many different purposes in Common Lisp. For example,
you can use closures to get information from a child process:

(l e t ((r e a d y n i l))
(make-procesn : f u n c t i o n ' c h i l d - f u n c t i o n

:name " c h i l d "
: axgs (list

#'(lambda (x) (,etq ready z))))
(p rocess -Fa i l ; "Nait for child"

#'(lambda () (eq • :ready)))
. . . o t h e r c o d e . . .)

;;; The c h i l d p rocess can be d e f i n e d as f o l l ows :

(defun child-process (closure)
. . . d o s o m e w o r k . . .

(f u n c a l l c l o s u r e : r e a d y) ; t e l l my p a r e n t I~m ready
. . . d o s o m e ~ o r k

(f u n c a l l c l o s u r e : e v e n - r e a d i e r)
)

The child process can use the closure to communicate directly back to the parent.
This method has several advantages over having the child set a global variable to
indicate its state.

i,

2.

The child doesn't need to know how it is sending information to its parent.

Several different parent processes can communicate with several different child
processes. Since each parent communicates by using its own copy of a local
variable, there is never any interference between processes.

.Another interesting use for cJosures is delayed evaluation. Delayed evaluation can
be used to give the illusion of infinitely]axge objects~ even though Lisp only creates
as much of the object as the user wants to look at.

II-3/4.36

Imagine an implementation of streams (an infinite list of items). The positive
integers are the stream I, 2, S, 4, 5 and the prime numbers are the stream
2, 3, 6, 7, 11, 13,

Obvious]y, we can't compute all the elements of a stream ahead of time. So, we'll
define a stream to b~ a list of two elements. The first element is the first item
in the stream. The second element is an expression whose value we've delayed
evalusting. We evaluate that expression to get the stream consisting of all the
elements except the first.

Closures make it easy to implement delayed evaluation. You can delay the
evaluation of the expression by typing #'(tambala () ezpression). The returned
value will be a closure. If you call that closure with funcal l , you get the value of
the original expression.

; ; ; First, let's create some stream functions:
> (defun first-stream (stream)

(: f iz l~ stream))
FIRST-STR~a/I
> (defun rest-el;ream (stream)

(funca l l (second stream)))

; ; ; And then, l e t*s make some funct ions
; ; ; to look at 1;he streams gears c rea ted:
> (defun nth-stream (n stream)

"return the nth element of a stream"
(i f (zerop n)

(first-stream stream)
(nth-stream (I- n) (rest-stream stream))))

ITH-STRE4J¢
> (defun firsts-stream (n el;ream)

'*return a list of the first n elaents in a stream"
(if (zerop n)

()
(cons (first-stream stream)

(firsts-stream (I - n)
(rest-stream stream)))))

ITH-STREAM

; ;; F i n a l l y , l e t ' s c rea te some streams:
> (setq zero-stream (list 0 #'(lambda () zero-stream)))
(0 #<Xn1; erpr et ed-Fnnc~io=
(LAXBDA IIL ZER0-STREAM) CE888E>)
> (firsts-stream 10 zero-e~ream)
(0 0 0 0 0 0 0 0 0 O)

N o t e the use of delayed evaluation. We define the stream zero - s tream in terms of
itself! Similarly, we can define the integers as follows:

11-3/4.37

> (dofun integers-from (n)
(list n #'(lam~la () (integers-from (l+ n)))))

IETEGERS-FROM
> (firstn-Jtream 20 (integers-from 0))
(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)

Even though the function # ' i~ tegers - fron looks ~ke it should recurse forever,
it doesn' t . T h a t ' s because the evaluation of the recursive par t is delayed until
something else~ in this case, the evaluation of f i r s t n - s t r e a m , explicit ly asks us to
recurse.

Here are some other funct ions we can write:

> (defun map-stream (function stream)
(list (funcall function (first-stream stream))

t ' (lmnlxla ()
(map-s t ream f u n c t i o n (r e s t - s t r e a m s t r e a m)))))

MAP-STI~AM
> (defun r e m o v e - i f - s t r e a m (f u n c t i o n stream)

(let ((first-elemut (fir, t-stream streaz)))
(if (not (fnncall function first-element))

(list first-element
#' (latoNa ()

(remove-if-stream
function (rest-stream stream))))

(remove-if-stream function
(r e s t - s t r e a m stream)))))

REMOVE-IF-STREAF.

; ; Get t h e first 20 e l emen ts o f t he squares
; ; o f t he numbers Shat a re n o t even.
> (~ i r s : n - s : r e a m 20

(map.-s~ream # ' (l a t o N a (x) (* • x))
(r e m o v e - i l - s ~ r ~ a m # ' evenp

(integers-from O))))
(I 9 25 49 81 121 169 225 289 361 4-41 629

6255 729 841 961 1089 1225 1369 1821)
> (defu.~ prine-sieve (s~rean)

• (l e t ((f i r s $ - e l e m e n t (f i r s t - s t r e a m s t r e a m)))
(cons - s t r eam

fireS-element
(prime-sieve

(remove-i:f-si :ream
• '[.lambda (7) (z~e.roP (rood 7 fi:s~-elomen~)))
(re.t-stream etream))))))

PRI~E-SIEVE
> (setq primes (priaae-sieve (integers-from 2)))
(2 # < I n t e r p r e t e d - F u n c t i o n . . . CFTB46>)
> (firstn-stream 28 primes)

II-3/4.38

(2 3 6 7 11 13 17 19 23 29 31 37 41 43
47 63 69 61 67 71 73 79 83 89 97)

Used properly, closures are an important programming paradigm that can be
applied to a variety of problems.

Second Puzzle

The second puzzle looks like very simple since we know the value of each term of the application. But
now the current continuations are these of the evaluator while evaluating the functional and parametric
part of the application. Let us suppose that, as in Lisp, terms are evaluated from left to right. The
original form is ko (kl (call/ccl call/cc2) (can/ccs call/cc4)) where kl is A¢.ko (¢k2 (call/ccs
call/cc4)) and k2 is Ac-la, (k! e). The original form becomes to(k, k2) that is to say t,,(k2 k S (call/cc3
ca11/cc4)) where k S is Ae "k,, (k2 c}. The new evaluation of the argument leads to t,,(ks k~) which in
turn will lead to t0(k~ k~) ... i.e. a tai1 recursive endless loop.

One may ponder wether the evaluation order has may influence on this computation. If terms are
evaluated now from right to left, the computation would now be ku((ca111cc, ca11/cc2) k2 (call/cce
call/cc4)) where ks is Ae.~ (ka(calllccl call/ccs) e) and where kl is A¢ "to (¢ k2). The com-
putation is therefore ~,,(kl k2) i.e. k,,(k2 k2) i.e. ko(k~ (call/eel call/ccs) ks) i.e. ko(k~ k2) which
also loops endless. The only difference is that here only one continuation is built by cycle instead of
two if the previous evaluation order was followed. This order thus lessens garbage collection.

This result is due to the fact that t(call/cc call/cc) gives the current continuation k to this
same continuation k and therefore creates a cycle (k k). This fact can be exploited for recursiol,

without letrec. Consider for instance

(let ((fact nil)
(rl))

(let ((n (call/cc call/cc)))
(if fact

(if (= n O) r
(begin (set! r (* n r))

(fact (I- n))))
(begin (set! fact n)

(fact I0)))))
; ; ; R e t u r n s 10!

References

[Danvy & Malmkjmr] Olivier Danvy, Karoline Malmkjmer, I n t e n s i o n s and E x t e n s i o n s in a R e f l e c t i v e

Tower , 1988 ACM Conference on Lisp and Functional Programming, pp 327-341, Snowbird,

Utah. CHRISTIAN QUEINNEC NITSAN SENIAK

II-3/4.39

