]

a Meryg-/os

Submitted by Frank Yellin, Lucid, Inc.

Closures

Closures as

This article introduces closures, a powerful feature of Common Lisp that allows
you to write succinct code. ‘

A closure is a function together with the environment in which it was created. The
principal idea behind closures is that in Common Lisp, functions are “first-class
objects,” that is, you can write code that takes a function as an argument, and you
can write code that returns a function as one of its values.

Arguments to Functions

Let’s look at some simple examples. The first example defines a function that
takes a single argument, which must be a function or a symbol with a function
definition, and calls that function with the single argument 2:

> (defun apply-to-two (func)
(funcall func 2))

APPLY-TO-TWO

> (apply-to-two ’1+)

3

> (apply-to-two #'plusp)

T

The function argument does not need to be a named function. The following
examples use a lambda expression for the function argument:

> (apply-to-two
#’(lambda (x) (+ x 3)))
3
> (apply-to-twa
#'(lambda (x) (+ 1 (* x x x))))
9

The expression #’(lambda (x) (+ x 3)) is a function that takes a single argument
and adds 3 to it. The expression #’(lambda (x) (+ 1 (* x z x)))) is a function
that takes a single argument, cubes it, then adds 1.

A number of predefined Common Lisp functions can take a function as one of their
arguments. Among the more useful ones are mapcar, which applies a function to
each element, remove-if and remove-if-not, which remove elements from a list

I11-3/4.33

or array, and find-if and find-if-not, which find the first item in an array or list
that satisfies a condition.

Functions that Return Closures

A more powerful use of closures is that functions can return other functions as their
value. In the following example, the function make-adder takes as its argument a
single value x and returns as its value a function. The returned function takes a
single argument, which it calls y, and returns the value (+ x y).

> (defun make-adder (x)

(check-type x number)

#'(lambda (y) (+ x ¥y)))
MAKE-ADDER
> (setq add2 (make-adder 2))
#<Interpreted-Function (LAMBDA (Y) (+ X Y)) 949476>
(tuncall add2 B)

(funcall (make-adder pi) 1)
.1416926563589793
(funcall add2 1)

WV VYV

Notice that something very subtle is going on. When we call (make-adder 2), it
returns a function. That function references the local variable x, which was bound
to the integer 2 when the function was created. The function that is returned
“remembers” that x had the value 2 when the function was created. In Common
Lisp terms, the local variable x has been closed over; that is, its value is not
saved in a global variable somewhere but is intrinsically part of the function that
is returned. The resulting function is called a closure.

An important feature of Common Lisp is that every function has access to the
environment in which it was created. It can both access and modify the variables in
that environment. For example, here is one possible, albeit inefficient, alternative
implementation of cons, car, and cdr:

> (defun my-cons (x y)
#'(lambda (option &optional value)
(case option
(:car x)
(:cdr y) :
(:set-car (setf x value))
(:set-cdr (setf y wvalue)))))
XY-COXS
> (defun my-car (cons) (funcall cons :car))
KY-CAR
> (detun my-cdr (cons) (funcall comns :cdr))

1I-3/4.34

MY-CDR

> (defun my-set~car (cons value)
(funcall cons :set-car value))

HY-SET-CAR

> (defun my-set—cdr (cons valune)
(funcall cons :set-cdr value))

> (defset? my-car my-set—car)

XY-CAR

> (defset? my-cdr my-set-cdr)

XY-CDR

> (setq cell (my-cons ’a ’b))

#<Interpreted-Function ... 953386>

> (my-car cell)

A
> (my-cdr cell)
B
>

(set? (my-car cell) 44)

S

> (my-car cell)
44

Every function remembers the lexical environment in which it was created. In
addition to modifying and accessing local variables, a function can also, under
certain conditions, remember the names of any block form in which it was created,

and the names of any tagbody tags that it can go to:

> (defun outer-function ()
(block onter-block
(inner-function
#’(lambda (x) (return-from outer-block x)))
(error "This piece of code
¥ill never be executed")))
OUTER-FURCTION
> (defun inner-function (arg)
(funcall arg 23))
IRNER-FURCTION
> (outer-function)
23

However, the following code would cause an error:

> (defun bad-closure ()
(block outer—block
#’(lambda (x) (return~from outer-block x))))
BAD-CLOSURE
> (bad-closure)
#<Interpreted-Function
(LAMBDA (X) (RETURN-FROM OUTER-BLOCK X)) CBC40E>

11-3/4.35

> (funcall s 23)
>>Error: A RETURN-FROM block OUTER-BLOCK occurred

from within an out of scope closure

Once you’ve exited from a block or a tagbody, any closures created inside the block
or tagbody that explicitly use the block name or tagbody tags can no longer be

used.

Other Uses of Closures

Closures can be used for many different purposes in Common Lisp. For example,
you can use closures to get information from a child process:

(let ((ready mnil))

(make-process :function ’child-function

‘name "child"

rargs (list

#’(lambda (x) (setq ready x))))

(process-wait "Wait for child"

#'(lambda () (eq x :ready)))
... other code ...)

7+ The child process can be defined as follows:

(defun child-process (closure)
... do some work ...
(funcall closure :ready) ; tell my parent I’m ready
... do some work
(funcall closure :even-readier)

)

The child process can use the closure to communicate directly back to the parent.
This method has several advantages over having the child set a global variable to
indicate its state.

1. The child doesn’t need to know how it is sending information to its parent.

2. Several different parent processes can communicate with several different child
processes. Since each parent communicates by using its own copy of a local
variable, there is never any interference between processes.

Another intenesting use for closures is delayed evaluation. Delayed evaluation can
be used to give the illusion of infinitely large objects, even though Lisp only creates
as much of the object as the user wants to look at.

11-3/4.36

Imagine an implementation of streams (an infinite list of items). The positive
integers are the stream 1, 2, 3, 4, 6, ... and the prime numbers are the stream

2,3,6,7, 11, 13,

Obviously, we can’t compute all the elements of a stream ahead of time. So, we’ll
define a stream to be a list of two elements. The first element is the first item
in the stream. The second element is an expression whose value we've delayed
evaluating. We evaluate that expression to get the stream consisting of all the
elements except the first.

Closures make it easy to implement delayed evaluation. You can delay the
evaluation of the expression by typing #’(lambda () ezpression). The returned
value will be a closure. If you call that closure with funcall, you get the value of

the original expression.

;1: First, let’s create some stream functions:
> (defun first-stream (stream)
(Zirst stream))
FIRST-STREAM
> (defun rest-stream (stream)
(funcall (second stream)))

;3; And then, let'’s make some functions
::; to look at the streams we’ve created:
> (defun nth-stream (n stream)
“return the nth element of a stream"
(if (zerop n)
(first-stream stream)
(nth-stream (1- n) (rest-stream stream))))
NTH-STREAN
> (defun firstn-stream (n stream)
"return a list of the first n elementsz in a stream"
(it (zerop n)
O
(cons (first-stream stream)
(firstn-stream (1~ n)
(rest-stream stream)))))
ETE-STREAM

;:; Finally, let’s create some streams:

> (setq zero-stream (list 0 #’(lambda () zero-stream)))
(0 s<Interpreted-Function

(LAMBDA XIL ZERO-STREAM) CEE88E>)

> (firstn-stream 10 zero-stream)

(00000000 0)

Note the use of delayed evaluation. We define the stream zero-streamin terms of
itself! Similarly, we can define the integers as follows:

11-3/4.37

> (defun integers-from (n)

(list n #’(lambda () (integers~from (i+ n)))))
INTEGERS-FROM
> (firstn-stream 20 (integers-from 0))
(01234567889 10 11 12 13 14 15 16 17 18 19)

Even though the function #’integers-from looks like it should recurse forever,
it doesn’t. That’s because the evaluation of the recursive part is delayed until
something else, in this case, the evaluation of firstn-stream, explicitly asks us to
recurse.

Here are some other functions we can write:

> (defun map-stream (function stream)
{(list (funcall function (first-stream stream))
#'(lambda ()
(map-stream function (rest-stream stream)))))
MAP-STREAM
> (defun remove-if-stream (function stream)
(let ((first-elemant (first-stream stream)))
(if (not (funcall function first-element))
(list first-element
#’(lambda ()
(remove-if-stream
function (rest-stream stream))))
(remove-if-stream function
(rest-stream stream)))))
REMOVE-IF-STREAX

;7 Get the first 20 elements of the squares
;; of the numbers that are not even.
> (firstn-stream 20
(map-stream #’(lambda (x) (* x x))
(remove-if-stream #’evenp
(integers-from 0))))
(1 9 25 49 81 121 169 225 289 361 441 B29
625 729 841 961 1089 1225 1369 1521)
> (defun prime-sieve (stream)
"(let ((first-element (first-stream stream)))
(cons~-streax .
first-element
(prime-sieve
(remove-if-stream
#'(lambda (y) (2erop (mod y first-element)))
(rest-stream stream))))))
PRIKE-SIEVE
> (setq primes (prime-sieve (integersz-from 2)))
(2 #<Interpreted-Function ... CF7B46>)
> (firstn-stream 25 primes)

I11-3/4.38

(2357 11 13 17 19 23 29 31 37 41 43
47 B3 §9 61 67 71 73 79 83 89 97)

Used properly, closures are an important programming paradigm that can be
applied to a variety of problems.

Second Puzzle

The second puzzle looks like very simple since we know the value of each term of the application. But
now the current continuations are these of the evaluator while evaluating the functional and parametric
part of the application. Let us suppose that, as in Lisp, terms are evaluated from left to right. The
original form is k, (&, (call/ccy call/ccz) (call/ccs call/ccy)) where ky is Ad -y, (dr, (call/ccs
call/ccy)) and ky is Ae-y, (k1 €). The original form becomes g, (k1 k) that is to say i, (k2 », (call/ccs
call/ccy)) where k} is Ae -k, (k2 €). The new evaluation of the argument leads to i, (k2 k3) which in
turn will lead to ,,(kj k7) ... i.e. a tail recursive endless loop.

One may ponder wether the evaluation order has any influence on this computation. If terms are
evaluated now from right to left, the computation would now be ((call/ccy call/cca) &, (call/cc:
call/ccy)) where ks is Ae -z, (k, (call/ccy call/ccy) ¢) and where k; is A@ -, (¢ k2). The com-
putation is therefore ., (ki k2) i.e. (k2 k2) i.e. "0(“': (call/cc; call/ccy) ki) i.e. (k] k2) which
also loops endless. The only difference is that here only one continuation is built by cycle instead of
two if the previous evaluation order was followed. This order thus lessens garbage collection.

This result is due to the fact that ;(call/cc call/cc) gives the current continuation k to this
same continuation k and therefore creates a cycle (k k). This fact can be exploited for recursicn
without letrec. Consider for instance

(let ((fact nil)
(r 1))
(let ((n (call/cc call/cc)))
(if fact
(it (=nO)r
(begin (set! r (* n 1))
(fact (1- n))))
(begin (set! fact n)
(fact 10)))))
::: Returns 10!

References

[Danvy & Malmkjer] Olivier Danvy, Karoline Malmkjzer, Intensions and Eztensions in a Reflective
Tower, 1988 ACM Conference on Lisp and Functional Programming, pp 327-341, Snowbird,

Utah. . .)
CHRISTIAN QUEINNEC NITSAN SENIAK

I11-3/4.39

