On Listing List Prefixes

Olivier Danvy
DIKU - Computer Science Department, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen @, Denmark
danvy@diku.dk

March 27, 1989

Abstract

The Lisp Puzzles feature in Lisp Pointers, Vol-
ume 1, Number 6 proposed the following exer-
cise: given a list, compute the list of its pre-
fixes. Surprisingly, the solutions proposed in
later issues all used intermediary copies and/or
traversed the original list repeatedly. This note
presents a higher-order solution that does not
use copies and that traverses the original list
only once. Further, this solution can be simply
expressed by abstracting control procedurally.

Keywords
First-class procedures and continuations.

Introduction

Listing list suffixes is a simple exercise in Lisp
because it can he done by traversing the source
list once:!

(maplist (lambda (x) x) '(a b c d))
= ((abecd) (becd (cd) (d)

'Given the functional maplist of [5):

(define maplist
s [List(1) -> B) = List(2) -> List(B)
(lambda (f 1)
(if (aull? 1)
0
{cons (f 1) (maplist £ (cdr 1))))))

On the other hand, listing list prefixes:

(xpl (a b c d))
= ((a) (ab) (abec) (abecd))

is an interesting exercise because Lisp lists are
singly-linked. This means that the beginnings
of the source list cannot be shared, and thus
successive prefixes must be physically copied.
Using maplist requires reversing the list to
have it in the standard order, reversing all of its
prefixes and reversing the result. It seems that
xpl was made to be programmed in Scheme:

(define xpl
;3 List(4) -> List(List(4))
(lambda (1)
(reverse
(maplist reverse
(reverse 1)))))

This solution is a bit luxurious since it wastes
2 x length(l) cons-cells for reversing the argu-
ment and the result.

Since the tails of the prefixes cannot be
shared, it is logical to wonder whether their con-
struction could be shared. This note shows that.
such sharing is indeed possible.

1 How to solve it with
first-class procedures

The possibility of sharing the construction of
prefixes appears in the definitions of list copying

II-3/4.42



(define direct-copy
(lambda (1)
(if (null? 1)
Q)

; List(4) -> List(d)

(cons (car 1) (direct-copy (cdr 1))))))

(define other-copy
(letrec ((cps-copy
(lambda (1 c)
(if (null? 1)
(c ')

; List(4) -> List(4A)
+ List(A4) * [List(a) -> List(4)] -> List(4)

(cps-copy (cdr 1) (lambda (r)

(lambda (1)

(c (cons (car 1) )X

(cps-copy 1 (lambda (x) r)))))

Figure 1: Two implementations of list copying

shown in Figure 1. The first is in direct style
and the second in continuation-passing style.

The continuation of each recursive call ab-
stracts the copy of the list up to this program
point, i.e., the successive continuations abstract
the construction of the successive prefixes. Con-
sidering the list (a b ¢ d), the continuations at
each recursive call are extensionally equal to the
following procedures:

Py, = (lambda (r) 1)

P, = (lambda (r) (P; (cons ’a 1))
P, = (lambda (r) (P, (comns ’b r)))
P; = (lambda (r) (P, (cons ’‘c r)))
P, = (lambda (r) (P; (coms ’d r)))

This observation leads fairly naturally to the
definition of xpl given in Figure 2. The proce-
dure xpl-aux is defined locally in xpl. Superfi-
cially, it resembles the definition of cps-copy in
other-copy. The second argument of xpl-aux
performs the construction of the successive pre-
fixes of the list; it is applied at each recursive
call. In the base case, it is not applied; instead,
the empty list is returned. The prefixes are col-
lected in a list, in direct style.

Following the benchmarks in Lisp Puzzles, let
us count the calls to car, cdr, cons, and null?,
and the number of closures built with two (im-
mutable) free variables. For a list of 100 ele-
ments, the results are:

e 100 calls each to car and cdr because there
are 100 elements in the list;

e 5150 calls to cons because summing the
length of the prefixes yields

14+2+...4100 (100 x 101)/2

= 5050

and the result is the list of the 100 prefixes;

e 101 calls to null? because the list is tested
from its beginning to its end, and

e 100 closures because there are 100 prefixes
and each closure builds a prefix (by calling
all its predecessors).

Considering that all these closures are down-
ward funargs and thus are stack-allocatable,
this solution compares well with the bench-
marks given in Volume 2, Number 1 of Lisp

I1I-3/4.43



(define xpl

; List(4) -> List(List(l))

(letrec ((xpl-aux ; List(4) » [List(4) -> List(4)] -> List(List(4))

(lambda (1 c)
(it (null? 1)
()

(let ((a (car 1)))
(let ((k (lambda (r) (c (cons a r)))))
(cons (k ’()) (xpl-aux (cdr 1) k)))IN)N

(lambda (1)

(xpl-aux 1 (lambda (r) 1)))))

Figure 2: A continuation-composing implementation of xpl

Pointers. Each of those solutions makes at least
5150 calls to car, 5250 calls to cdr, 5250 calls to
cons, and 5352 calls to consp (Common Lisp’s
‘pair?, used instead of null?).

It is possible but beyond the scope of this note
to relate the present solution to the solution in
the introduction by program transformation.

Noting that this solution is almost in contin-
uation-passing style,2 we may wonder whether
there exists a solution in direct style given first-
class access to the continuation. The following
section investigates such a solution.

2 How to solve it with
first-class continuations

Actually, we cannot, by accessing the contin-
uation of each recursive call and applying it;
express the above solution in direct style. The
reason is that we never return from applying
a first-class continuation, since applying it dis-
cards the current continuation. The following
Scheme example illustrates this point:

(add1
(call-with-current-continunation
(lambda (k) (+ 39 (x 2)))))

evaluates to 3, not to 42, as it would if k only
abstracted the function computed by addi.

2« Almost” because continuations are not applied tail-
recursively but are composed instead.

The point is that a continuation abstracts all
the rest of the computation. To limit the ex-
tent of this abstraction, Matthias Felleisen in-
troduced prompts (3].

The idea of a prompt is to define a new con-
text of computation and to make a continua-
tion abstract this context and this context only.
A continuation is accessed with the operator
control, that has the same syntax as John
Reynolds’ escape operator. For example,

. (prompt
(add1
(control k (+ 39 (k 2)))))

actually evaluates to 39 + (1 + 2) = 42, and so
does

(prompt
(add1
(control k

(+ 19 (k (+ 19 (x 2N

since k abstracts the function computed by
addi in the context delimited by the prompt.
Note that the context abstracted by control
is also erased; that is, in contrast to Scheme's
call-with-current-continuation, that con-
text must be invoked explicitly. This explains
why these examples evaluate to 42 and not 43.

Using prompt and control, we can express
the solution of Section 1 in direct style, as shown
in Figure 3. This code can be implemented with
the same performance.

I1-3/4.44



(define xpl
(letrec ((xpl-aux
(lambda (1)
(if (null? 1)
(control ¢ ’())
(et ((a (car 1)))
(cons a

(control ¢

; List(4) -> List(List(4))
; List(4) -> List(List(4))

(cons (c '())
(prompt (c (xpl-aux (cdr 1))))))))))))

(lambda (1)
(prompt (xpl-aux 1)))))

Figure 3: A direct implementation of xpl, using prompt and control

The procedure xpl-aux is defined locally in
xpl and applied in a new context. It is in di-
rect style and accesses the current continuation.
In the base case, the continuation is captured
and not used (as in the solution of Section 1).
The construction of a new prefix is captured,
performed, and the computation continues in a
new context.

It is possible but beyond the scope of this note
to convert this procedure into continuation-
composing style. The result would be exactly
the procedure of Section 1.

3 Related work

Felleisen et al. have addressed how to abstract
control procedurally [3,4]. This work has been
pursued in two general directions: Dybvig and
Hieb investigated how to abstract control over
embedding contexts instead of merely up to the
last prompt {2); Danvy and Filinski have pro-
posed a framework where first-class continua-
tions can be given a static scope and accordingly
can be typed statically, and have described how
to convert expressions from direct style to con-
tinuation-composing style [1}.

4 Conclusions and issues

Listing successive prefixes of a list can be solved
by sharing their construction. This exercise
turns out to be a nice example where abstract-
ing control needs to be done with true proce-
dures that can be applied and be expected to
return a result. Abstracting control with pro-
cedures is not possible in traditional program-
ming languages: non-local exits in Lisp, first-
class continuations in Scheme, and exceptions
in ML all behave as imperative “black holes”.
The new issues offered by abstracting control
procedurally remain to be explored.

Acknowledgements

To Andrzej Filinski and Karoline Malmkjeer for
their interaction.

References

[1) Olivier Danvy, Andrzej Filinski: A4 Func-
tional Abstraction of Typed Contezts, DIKU
Report No 89/5, Computer Science Depart-
ment, University of Copenhagen, Copen-
hagen, Denmark (1989)

2] R. Kent Dybvig, Robert Hieb: Continu-
ations and Concurrency, Technical Report

I1-3/4.45



No 256, Computer Science Department,
Indiana University, Bloomington, Indiana
(July 1988)

(3] Matthias Felleisen: The Theory and Prac-
tice of First-Class Prompts, Proceedings
of the Fifteenth Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Pro-
gramming Languages pp. 180-190, San
Diego, California (January 1988)

(4] Matthias Felleisen, Mitchell Wand, Daniel
P. Friedman, Bruce F. Duba: Abstract
Continuations: a Mathematical Semantics
for Handling Full Functional Jumps, Pro-
ceedings of the 1988 ACM Conference on
Lisp and Functional Programming, Snow-
bird, Utah (July 1988)

[5] John McCarthy: Recursive Functions of
Symbolic Ezpressions and their Computa-
tion by Machine, Part I, CACM Vol. 3, No
3 pp. 184-195 (1960)

Appendix - How to solve it in
assembly language

We can expect control abstractions to be effi-
cient on a conventional architecture, since xpl
can be coded in a very compact way, in assem-
bly language. Consider the labelled sequence
of four instructions constructing the list (1 2 3
4) in the register A1, initialized with nil:3

label-4: A1 := cons(4, A1)
label-3: 41 := cons(3, 41)
label-2: 41 := comns(2, A1)
label-1: Al := cons(1, A1)
label-0:

Any call to one of the labels label-1, ...,
label-4 with the empty list in the register
A1 will return a prefix of the list (1 2 3 4).
Building the sequence of prefixes of this list is

3This idiom works as well with a stack-based expres-
sion machine.

solved with the following sequence of instruc-
tions, where the result is built in the register 40
and A1 is used as an auxiliary:

n

- label-0: A0 := coms(:1, AOQ)

A1 := nil

return
xpl-1234 40 := nil

A1 := nil

call label-4
call label-3
call label-2
jump label-1

which reflects precisely the computation of xpl
with control abstractions. The functions com-
puted by the calls to label-1, etc., are exten-
sionally equal to the continuations at each con-
struction point of copying the list (1 2 3 4).

I1I1-3/4.46



Some notes on Scheme for Common Lisp programmers

The code discussed in this issue’s column is written in Scheme, but should be readable
by most Common Lisp programmers. There are a few features of the Scheme language
that deserve explanation, though.

The Scheme form

(detine (name arg ...)
body ...)
is analogous to the Common Lisp form
(defun name (arg ...)
body ...)

Several functions exist in both Scheme and Common Lisp, but with different nanres. Of
particular interest for this issue is the Scheme function null?, which corresponds closely
to the Common Lisp functions null.

Scheme does not treat the names of functions differently from normal variables. It
thus does not need a facility akin to the function special form in Common Lisp. Where
a Common Lisp program might say

(mapcar #’(lambda (f) (funcall £ 2 3))
(list #'+ &> #°-))

the equivalent Scheme program is

(map (lambda (£) (f 2 3))
(1ist + = -))

Both programs yield the list (5 6 -1).

FORTUNES FROM THE MARCH X3J13 COMMON LISP LUNCH

Luck will visit youonthe nextrew D auvio /oo
moon.

Mzke serious gecisions in the last

[Barcy Harcocid few days of the month,

When things are hectic, it is best
to accentuate safety. g.q,up,fx? Zooggmole €

11-3/4.47





