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Now that Lisp Pointers is being sponsored by 
SIGPLAN, it seems worthwhile to repeat the 
charter of this department .  The (algorithms) 
department  consists of articles that  fit into one 
or more of three broad categories: 

Annota ted  implementations of interesting 
and relevant algorithms; they should make 
particularly good or novel use of the unique 
features of the Lisp family of program- 
ruing languages (e.g., closures, continua- 
tions, code as data,  polymorphism),  

Annota ted  implementations of algorithms 
whose subject mat te r  is the Lisp family of 
languages (e.g., code analysis tools, itera- 
tion facilities, generic arithmetic), and 

Discussion of performance issues, bench- 
marking, or implementation experiences for 
interesting algorithms written in or about  
the Lisp fanfily of languages. 

So far, ( a l g o r i t h m s )  has included articles on 
the o x t o n d - s y n t a x  macro definition facility, an 
elegant hidden-line elimination program, Com- 
mon Lisp s o t f  methods,  and a higher-order 
programndng solution to the infamous xp l  puz- 

zle. Of these, two were written by me and two 
by contributing authors. 

If you've been hacking on an interesting piece 
of code that ufight fit intu the ( a l g o r i t h m s )  
department ,  please send me a note at one of 
the addresses above. If I agree that tile code is 
appropriate,  then either ,you or I (or the two of 
us working together) will put an article about  it 
in this space. Don't  be shy, send me your ideas! 

One of the most well-known and widely- 
used pieces of Corrmaon Lisp code is Gregor 
Kiczales' portable implementat ion of the Com- 
mon Lisp Object System, PCL. 1 Among the 
many interesting algorithms and implementa- 
tion tricks employed in that  code is a very gen- 
eral program-analysis tool known as the "code 
walker". Though it is distributed along with 
PCL, the walker is a separate utility, and the 
subject of this issue's colunm. Gregor's walker 
is based, in part,  on earlier code-analysis tools 
writ ten by Larry Masinter, David Moon and 
Gary Drescher. 

t The name PCL originally stood for "Portable Com- 
monLoops', one of the precursors to CLOS. 
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The code walker is perhaps best understood 
in comparison to the Common Lisp function 
mapcar. Mapcar takes a function and a fist as 
arguments and returns a list of the results of 
applying that function to the elements of the 
input fs t .  The nice thing about  mapcar is that 
it abstracts away all of the details of visiting 
each element of the input fist and constructing 
the result list. 

The main entry point into the code-walker, a 
function named walk-form, is quite similar. It 
takes a function (called the walk funct ion)  and 
a Common Lisp expression as arguments and 
returns a new expression whose subexpressions 
are the results of applying the walk function to 
each of the subexpressions of the input expres- 
sion. That  is, the walker recursively visits all 
of the subexpressions in a piece of code, apply- 
ing the walk function to each of them, and puts 
the results of the walk function back together 
into new expressions. The nice thing about  the 
walker is that  it abstracts  away the complex de- 
tails of Common Lisp expression syntax and se- 
mantics and the reconstruction of the resulting 
expression. 

For example, suppose that the walk function 
mapped every variable reference into the string 
"Foo", but  left other expressions alone. Then 
the walker would transform 

(let ((x (list y))) 
(tagbody 
top 

(setq x (cons ' x  x ) )  
(if (< (length x) 8) 

(go t o p ) ) )  
(print x) )  

into the new expression 

(let ((x (list "Foo"))) 
(tagbody 
top 

( s e t q  x (cons  'x  " F o o " ) )  
( i f  (< ( l o n g t h  "Foo")  8) 

(go t o p ) ) )  
( p r i n t  " F o o " ) )  

Note that  it didn't change every symbol into the 
string "Foo", just  the ones that  were variable 
references. 

This is a nice abstract  model of what the 
walker does, but  some questions arise to muddy 
the water a bit. First, there is the question of 
just  what constitutes a "subexpression".  Con- 
sider this expression: 

(let ((x 17)) 
(setq z (cons 1 2)) 
((lambda (y) (funcall f g)) 

# ' f o o ) )  

I think it is easy to agree on most cases; cer- 
tainly 17, (cons  1 2), and the entire l o t -  
expression itself should be considered subex- 
pressions. Similarly, it is pret ty  clear that  the 
syntactic keywords l o t  and s e t q  are not subex- 
pressions by themselves. 

Some other cases are less clear-cut, though. 
What  about  the binding uses of x and y? In the 
walker, these are not considered subexpressions 
because no evaluation takes place when the in- 
terpreter encounters them; binding occurrences 
serve only to estabhsh meanings for identifiers 
as opposed to making use of those meanings. 

On the other hand, the use of z in the so tq-  
expression is considered a subexpression bv the 
walker, albeit in a different sense than, say, the 
use of f. 

Finally, what about  those forms in functional 
context: cons,  f u n c a l l ,  foo,  and the lambda- 
expression? Certainly they involve some evalu- 
ation, but  once again in a different sense than 
other subexpressions. 

The walker handles the variety of kinds of 
subexpressions by passing a "context" argument 
to the walk function along with each subex- 
pression, noting whether it appeared in : ova l ,  
: so t ,  or : call position. 

There is a more significant difference, though, 
between the hsts manipulated by mapcar and 
the expressions given to walk- form.  The ele- 
ments of a hst are completely separate; while 
they may share structure,  elements are not 
nested within each other. Thus, if the input 
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function has no side-effects, it does not mat ter  
in what order mapcar examines the elements. 
This is not the case for Common Lisp expres- 
sions, the subexpressions of which are frequently 
and necessarily nested. There are two interest- 
ing orders in which walk-form nfight apply the 
walk function to the subexpressions. 

The walk function might be applied to each 
expression before any of its subexpressions. Let 
E be the original expression and let E '  be the 
result of applying the walk function to E. Since 
the walker is supposed to return the results of 
applying the walk function to every expression, 
it must traverse the subexpressions of E',  not 
the original, E. 

For example, suppose that  E was ( c a r  x) 
and E '  was (+ a b).  If the walker were to apply 
the walk function to ca r  and x, what could it 
do with the results? It should instead walk +, 
a, and b; it is easy to see how to combine those 
results to return them. 

Alternatively, the walk function might be ap- 
plied to each expression only after visiting each 
of its subexpressions. As in the other case, we 
need a way for all of the results of the walk 
function to have some effect on the final result 
of the walk. 

Suppose that  the walk function maps the ex- 
pressions E1 and E2 into E~ and EL, and maps 
cons into l i s t  when it appears in : c a l l  po- 
sition. If the walker is presented with the ex- 
pression (cons E1 E2) it must first visit cons,  
E1 and E2. Having done so, it would be useless 
to apply the walk function to (cons  E1 E2). 
Instead, of course, it must be applied to ( l i s t  

EL). 
Neither of these orders is obviously best for all 

possible uses of a code walker. As it turns out, 
the first order is most convenient for the uses 
Gregor had in nfind when he wrote the walker, 
so that  is the one implemented. At the end 
of the article, we examine a possible change, 
suggested by Gregor, that  enables both  orders 
(and, indeed, any combination of the two) in a 
simple and natural  fashion. 

Speaking of possible uses for a walker, it be- 
hooves me to show you one or two. Before doing 
so, though, we need some more of the details of 
the walker's contract. 

The function wa lk - fo rm takes three argu- 
ments: a Common Lisp expression to walk, an 
environment (such as is provided by an ~ en v i -  
ronment argument to a macro expander),  and 
the wall< function itself; it returns the new ex- 
pression resulting from the walk. The environ- 
ment argmnent is necessary so that  the walker 
can correctly recognize and expand any macros 
it might encounter. 

The walk function takes three arguments: the 
current expression in the walk, the evaluation 
context of that  expression (one of : eva l ,  : s e t ,  
or : c a l l ) ,  and the environment of the expres- 
sion. The environment is provided so that  the 
walk function can discover certain facts about 
the bindings around the expression. We'll come 
back to this possibility later. The walk function 
should return two values: the new expression 
and a flag indicating whether or not the walker 
should continue walking this expression. If the 
flag is true, the walker will not continue; this 
makes the usual case a bit more concise since 
the walk function can simply return the new 
expression, letting the flag default to n i l .  

The first example is a simpleminded (and not 
quite correct) macro implementat ion of a new 
special form, planned for inclusion in the ANSI 
Conunon Lisp s tandard when it appears. The 
form is called s y m b o l - m a c r o l o t  and has the fol- 

lowing syntax: 

(symbol-macrolet ((name form)  
. . . )  

body ) 

The idea is that the symbol name should be 
replaced by the expression form wherever it is 
referenced within body; you can think of it as 
a kind of "inline" definition of a new lexical 
variable name. If  name appears in an assign- 
ment  expression, ( s e t q  name ezpr),  that  ex- 
pression should be interpreted as ( s e r f  form 
expr).  A similar t ransformation should be 
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(defmacro symbol-macrolet (bindings abody body aenvironment env) 
(walk-form '(progn ,@body) env 

#'(lambda (form context env) 
(sm-walk-fn form context env bindings)))) 

(defun  sm-walk-fn  (form contex¢ env b i n d i n g s )  
(cond ( (no t  (eq con t ex t  ' : o v a l ) )  

form) 
((symbolp form) 
(let ((entry (assoc form bindings))) 

(if entry 
(cadr entry) 
fo rm) ) )  

( (a tom form) 
form) 
((member (car form) '(sotq serf)) 
(lot ((kind (car form))) 

(labels ((scan-pairs (tail) 
(if (null tail) 

nil 
(let ((entry (assoc (car tail) bindings))) 

(list* 
(if entry 

(progn (setq kind 'serf) 
(cadr entry)) 

(car tail)) 
(cadr tail) 
(scan-pairs (cddr tail))))))) 

(let ((new-tail (scan-pairs (cdr form)))) 
(cons kind now-tail))))) 

((eq (car form) 'multiple-value-sotq) 
(lot* ((vars (cadr form)) 

(gensyms (mapcar #'(lambda (i) 
(declare (ignore i)) 
(gensym)) 

v a t s ) ) )  
' ( m u l t i p l e - v a l u e - b i n d  ,gensyms 

, ( c a d d r  form) 
,@(mapcar #'(lambda (v g) '(serf ,v ,g)) 

vars 
gensyms)))) 

(¢ form))) 

Figure 1: A simpleminded macro implementation of symbol -macro lo t .  
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(defmacro symbol-macrolet (bindings Ebody body &environment env) 
(let ((bindings (mapcar 

#'(lambda (binding) 
(list (car binding) 

(cadr binding) 
(variable-binding env (car binding)))) 

bindings))) 
(walk-form '(progn ,@body) env 

#'(lambda (form context env) 
(sm-walk-fn form context env bindings))))) 

Figure 2: A more correct implementation of symbol -macro le t .  

made if it appears in a m u l t i p l e - v a l u e - s e t q  
form. The implementation appears in Figure t. 

This code is pret ty straightforward; the walk 
function only transforms expressions in : o v a l  
context, and not all of those. It simply tests 
for the ones it affects and returns the others 
unchanged. There are a few problems with this 
code however: 

• The f o r m  should only be substi tuted for 
name  over the scope of a normal lexical 
binding. Thus 

(symbol-macrolot ((x (car y ) ) )  
(list x 

(let ((x (1+ x))) 
x)))  

should be equivalent to 

(progn  
( l i s z  ( c a r  y) 

( l o t  ( (x  (1+ ( c a r  y ) ) ) )  

x)))  

but this code would return 

(progn 
( l i s t  ( c a r  y) 

( l e t  ( (x  (1+ ( c a r  y ) ) ) )  
( c a r  y ) ) ) )  

• If tile (',onmton Lisp implementation ex- 
pands uses of m u l Z i p l e - v a l u e - b i n d  into 

a use of m u l ~ i p l e - v a l u e - s e t q ,  this code 
will loop forever, walking and rewalking the 
same expression. This doesn't  seem very 
likely, however. 

• According to the official specification of 
symbol-macrole% the environment used 
for macro expansion inside the body of the 
form is supposed to contain the bindings 
of the new symbol macros, so that  other 
macros used in the body can correctly ex- 

pand them. 

Solving the last two problems is beyond the 
scope of this article, but the first one is more 
relevant; this kind of issue is the reason that  
the environment is passed to the walk function. 

We would like to be able to tell if one of 
the names in the s y m b o l - m a c r o l e t  form is re- 
bound during the walk and then avoid any sub- 
stitutions inside that  new binding. The walker 
provides a utility function, v a r i a b l e - b i n d i n g ,  
that  takes an environment and a symbol and 
returns a representation of the binding of that  
symbol in that environment. Nothing is guar- 
anteed about  the representation except that  it 
is different from the representation of any other 
bindings of that  variable. 

Figure 2 shows a new definition of symbol-  
m a c r o l e t  which uses this facility to help fix 
the problem described earlier. The function 
sm-walk - fn  must also change, of course, but 
the differences are small. In both places where 
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(defmacro  w i t h - c o n s C a n t - f o l d i n g  (abody body aenvironmen~ env) 
(wa lk - fo rm ' ( p r o g n  ,©body) env 

# ' ( l a m b d a  (form concexz env) 
( i f  (and (eq c o n t e x t  ' : o v a l )  

(consp form) 
(member (car form) ' (+  - * /)) 
(every #'conscantp (cdr form))) 

(eval form) 
form)))) 

Figure 3: A naive implementation of with-consZan~-folding. 

( i f  e n t r y  . . . )  is tested, the predicate should 
change to 

(and e n t r y  
(eq ( cadd r  e n t r y )  

( v a r i a b l e - b i n d i n g  env f o r m ) ) )  

We thus arrange to perform the substitution 
only when the name is in the same binding con- 
tour as the s y m b o l - m a c r o l e t  form, fixing the 
bug. 

Let's move on to another example. Con- 
sider a macro named w i C h - c o n s c a n t - f o l d i n g  
whose meaning is the same as progn except that  
arithmetic subexpressions involving constants 
are evaluated at expansion time. Thus, 

(wizh-constanZ-folding 
( s e t q  x (+ 2 (* 3 4 ) ) )  
( /  ( -  y (* 24 7))  

( ,  60 60 ) ) )  

should expand into 

(progn (setq x 14) 
( /  (- y 168) 3600)) 

One might have a use for such a macro in some 
particularly lazy implementation of Common 
Lisp. For simplicity, we assume that  the macro 
only affects calls to the four functions used in 
the example. 

At first sight, it rtfight appear that  the walker 
cannot be used for this purpose because of the 
order in which it walks subexpressions. A naive 

implementation,  shown in Figure 3, indeed fails 
to produce the desired expansion. The example 

above expands into 

(progn ( s e t q  x (+ 2 12))  
( /  (- y 168) 3600)) 

in which the expression in the setq is not fully 
folded. The problem is, when the walk function 
is apphed to the form (+ 2 (* 3 4 ) ) ,  not all 
of the arguments are constants yet, so nothing 
gets folded. The walk function never gets to 
look at the form after the arguments have been 
walked and so never performs the second level 

of folding. 
We can, however, fix the problem even in the 

current walker. The trick is to have the walk 
function do its own recursive walk of the argu- 
ments before deciding whether or not to fold. 

Of course, the easiest way to do the recursive 
walk is simply to call wa lk- fo rm again. This so- 
lution is in Figure 4. Note that ,  for efficiency's 
sake, the walk function in this implementation 
returns a second value of z whenever it has al- 
ready walked the arguments. Walking the ar- 
guments again wouldn't hurt, but it won't  help 
either. 

Now that  we have a feel for how one aright 
use the walker, let's move on to consider its im- 

plementation. 
The walker examines the form recursively, 

keeping track of the appropriate environment 
and evaluation context. This recursive function 
is walk-form-internal, which walk-form calls 
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(defmacro with-constant-folding (&body body &environment env) 
(labels ((each-form (form context env) 

(if (and (eq context ':eval) 
(consp form) 

(member (car form) '(+ - * /))) 

(let* ((arEs (mapcar #'(lambda (expr) 

(walk-form expr env #'each-form)) 
(car form))) 

(new-form (cons (car form) args))) 

(values (if (every #'constantp ares) 
(eval new-form) 
new-form) 

t)) 

(values form nil)))) 
(walk-form C(progn ,@body) env #'each-form))) 

Figure 4: A better implementat ion of w i t h - c o n s t a n t - f o l d i n g .  

(defun walk-form-internal (form context env walk-fn) 

(multiple-value-bind (new-form walk-no-more?) 

(funcall walk-fn form context env) 
(cond (walk-no-more? new-form) 

((not (eq form new-form)) 

(walk-form-internal new-form context env walk-fn)) 
((atom new-form) 
new-form) 
(t 

;; Walk the subexpressions of new-form 
. . . ) ) ) )  

Figure 5: The easy part  of walk-form-internaL 

immediately, establishing : e v a l  as the initial 
context: 

(de fun  wa lk - fo rm (form env w a l k - f n )  
(walk-form-internal 

form ' :eval env walk-fn)) 

The first part of walk-form-internal is pretty 

straightforward and appears in Figure 5. If the 
walk function somehow did not return the form 
it was given, the walker starts over again with 
the new form. This allows the walk function to 
perform its mapping in convenient cases; when 

one case reduces to the input of another,  the 
walk function can simply return the new form, 
knowing that  it will get another look at the re- 
sult. 

There are many ways one could imagine for 
finding the subexpressions of a given form. In 
particular, the simplest way might be to ca se  
on the ca r  of the form and invoke a special- 
form-specific walking routine. 

The problem is that  this leads to a lot of fairly 
tedious code, since there are many similarities 
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(dofino-walkor-tomplate function 
(dofino-walker-tomplate go 
(dofino-walkor-tomplato throw 

(dofino-walkor-tomplato sotq 
(dofino-walkor-tomplato block 
(dofino-walkor-tomplato progv 

(dofino-walkor-tomplato if 
(dofino-walkor-tompla¢o t agbody  
( d o f i n o - w a l k o r - t o m p l a t o  l o t  

(nil :call)) 
(nix nil)) 
(nil :oval :oval)) 

(nil :repeat (:sot :oval))) 
(nil nil :repeat (:oval))) 
(nil :oval :oval :repeat (:oval))) 

walk-if) 
walk-tagbody) 
walk-lot) 

Figure 6: The walker templates for some of the special forms. 

in the syntax of the various Common Lisp ex- 
pressions. Instead, the walker employs a simple 
but reasonably powerful language of w a l k e r  t e m -  

p la tes ,  patterns that  can describe the syntax of * 
most special forms. 

A walker template acts as a kind of road map 
to a particular kind of expression. For each sub- 
form, it specifies the evaluation context of that  
sub-form, or n i l  if the sub-form is not  evalu- 
ated. For example, Figure 6 shows the template 
definitions for some of the Common Lisp special 
forms. The n i l  at the front of several of these 
represents the fact that  the syntactic keywords 
at the front of each of these forms (i.e., the sym- 
bols f u n c t i o n ,  so tq ,  etc.) are not themselves 

evaluated. 

The syntax of several of the special forms al- 
low certain kinds of sub-forms can be repeated 
arbitrarily many times. To handle this, walker 
templates may contain the construction 

: ropoa¢ (template t e m p l a t e  . . .  ) 

meaning that  the sequence of templates in 
the parentheses may be repeated zero or more 
times. Of course, only one : r o p o a t  is allowed 
at each level of parenthesis nesting; if there were 
more, it wouldn't  be clear when to stop repeat- 
ing the first one and go on to the next. 

As expressive as this template language is, it 
is insufficient to describe a few of the Common 

Lisp special forms. There are three kinds of 
forms not handled this way: 

The last sub-form of if and roturn-from 
expressions is optional. One could imagine 
adding a : o p t i o n a l  construct to the tem- 
plate language to handle these two cases, 
but it is probably easier to handle them 
specially. Neither form is very complicated, 
after all. 

The t agbody  special form has a very id- 
iosyncratic syntax, definitely easier to han- 
dle in a special way. 

While inside the various binding forms, 
such as l o t ,  lambda, m a c r o l o t ,  and l a -  
b e l s ,  the walker must arrange to augment  
the syntactic environment that  is passed to 
the walk function; the environment must  
reflect the fact that  new bindings of one 
kind or another are in effect. 

For these special forms that  are undescribable 
in the template language (there are only ten of 
them, out of the original 24), the code specifies 
a form-specific walker function. 

We can now unders tand the rest of walk-  
form-intornal, whose complete definition ap- 
pears in Figure 7. 

G o t - w a l k o r - t o m p l a ¢ o  takes the c a r  of a ~ 
form and returns the appropriate template,  or 
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(dofun walk-form-internal (form context onv walk-fn aaux template fn) 
(mulziple-value-bind (new-form walk-no-more?) 

(funcall walk-fn form context env) 
(cond (walk-no-more? new-form) 

( ( n o t  (eq form new-form)) 
(walk-form-internal now-form context onv walk-fn)) 

((a%om now-form) 
now-form) 

((sotq template (got-walker-template (car now-form))) 
(if (symbolp %omplato) 

(funcall %ompla%o now-form context onv walk-fn) 
(walk-template now-form template env walk-fn))) 

(% 

(multiple-value-bind (exp-form expanded?) 

(macroexpand-i now-form onv) 
(if expanded? 

(walk-form-internal oxp-form context onv walk-fn) 

(walk-template now-form '(:call :repeat (:oval)) 
onv walk-fn))))))) 

Figure 7: All of the function w a l k - f o r m - i n t e r n a l .  

nil if none was defined. If the argument 
is a lambda-expression, it returns the tem- 
plate ( : c a l l  : r o p o a t (  : o v a l ) ) ,  representing 
a function call. Walk- tompla to  is the walker 
function that  interprets the template language; 
we'll consider it in a moment. 

If  an expression has no template, the walker 
checks to see if it is a call to a macro; if so, the 
process starts over again with the expansion. 

Finally, for normal function calls, the walker 
calls wa lk - t omp la to  with the form and an ap- 
propriate template. 

The code for walk-tompla%o is very nice; it 
appears in Figure 8. The simple recursive struc- 
ture of the template language is reflected in the 
very simple structure of its interpreter. Note 
how the final clause of the cond reconstructs 
the results of the various sub-walks in a concise 
way. 

The only non-trivial part of the template in- 
terpreter is the handling of the : ropoaz  con- 
struct. We must allow for the possibility that  
there will be template pieces following a repe- 

tition, so the tail of the form that  must  match  
those pieces is computed and passed along to 
w a l k - r e p e a t - t e m p l a t e ,  an auxilliary function 
of the interpreter. The interpreter checks at 
each step to see if it has reached this "stop- 
form"; if so, it abandons the repetit ion and re- 
turns to normal processing. 

W a l k - r e p e a t - t e m p l a t e  is responsible for it- 
erating through the repetition for as long as nec- 
essary. To do so, it keeps track of the template 
pieces yet to be used in the current i teration 
(the "repeat- template")  as well as the template 
as a whole. When the repeat- template runs 
out, a new iteration is begun if appropriate,  the 
repeat-template being reinitialized from the full 
template. 

I think this template mechanism is the most 
elegant part of the whole walker implementa- 
tion. 

Given the template walker as a model, it is 
easy to see how to write the special-purpose 
walker functions for the if, return-from, and 
tagbody special forms. Of considerably more 
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(defun walk-template (form template env walk-fn) 
(cond ((atom template) 

(ecase template 
((nil) form) 
((:eval :set :call) 
(walk-form-internal form template env walk-fn)))) 

((eq (car template) ':repeat) 
(walk-repeat-template form (cdr template) '() 

(nthcdr (- (length form) 
(length (cddr template))) 

form) 
env 
walk-fn)) 

((atom form) 
(error "While walking template:'Z" 

The template "S is longer than the form "S." 
template form)) 

(t 
(cons (walk-template (car form) (car template) env walk-fn) 

(walk-template (cdr form) (cdr template) env walk-fn))))) 

(defun walk-repeat-template (form template repeat-template 
stop-form env walk-fn) 

(cond ((null form) 
(if (and (null repeat-template) 

(null stop-form)) 
,() 

(error "While handling :ropoat:'Z" 
The form is shorter than the template."))) 

((eq form stop-form) 
(if (null repeat-template) 

(walk-template form (cdr template) env walk-fn) 
(error "While handling :repeat:'Z" 

Ran into stop while still in repeat template."))) 
((null repeat-template) 
(walk-repeat-template form template (car template) 

stop-form env walk-fn)) 
(t 
(cons (walk-repeat-template (car form) template 

(car repeat-template) env walk-fn) 
(walk-repeat-template (cdr form) template 

(cdr repeat-template) env walk-fn))))) 

Figure 8: The functions walk-template and walk-repeag-templat~ 
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( d e f v a r  *wa lke r -da t a -name*  (gensym))  

(de fun  e n v - w a l k e r - d a t a  (env) 

( l e t  ( ( f n  ( m a c r o - f u n c ¢ i o n  *wa lke r -da t a -name*  e n v ) ) )  
(and fn  ( f u n c a l l  f n  ' ( )  e n v ) ) ) )  

(de fun  a u g m e n t - w a l k e r - e n v i r o n m e n t  (env a r e s t  k e y - a r g s  

~key macro v a r i a b l e )  
( l e t *  ( ( o l d - d a t a  ( e n v - w a l k e r - d a c a  env))  

(new-daCa (append v a r i a b l e  ( c a r  o l d - d a t a ) ) ) )  
( a p p l y  # 'augmen¢-envi ronmen¢ env 

:macro (cons (list *walker-data-name* 

#'(lambda (form env) new-data)) 
macro) 

key-args))) 

(defun variable-binding (env var) 
(member var (env-walker-daCa env))) 

Figure 9: Environment-hacking trickery. 

interest are the walk functions for forms that  
affect the environment. I'll take the function 
handling l e t  forms as a representative exam- 
pie; the others are more-or-less straightforward 

derivatives. First, though, there is the mat ter  
of environments. 

Code walkers and other programs that  ma- 
nipulate syntactic environments cannot be writ- 
ten portably i n  the current definition of Com- 
mon Lisp. This is because no procedures are 
provided for interrogating environments or for 
constructing new ones. In fact, all one can 
do with an environment is pass it to either 
macroexpand-1 or macroexpand. This situa- 
tion is quite different in the new s tandard being 
developed by the ANSI committee X3J13. 2 

In the new standard,  a number of functions 
have been extended to accept an optional en- 
vironment argument,  macro - func ' e ion  being a 
notable example. In addition, a suite of new 
functions have been defined for interrogating 

2No ANSI s t a n d a r d  has  yet been  publ i shed ,  so all 
de ta i l s  descr ibed here are sub jec t  to change  before the  
draf t  s t a n d a r d  appears .  

and constructing environments. For the pur- 
poses of this article, only one of these new func- 
tions is necessary. 

The function augmen t -env i ronmen t  takes an 
existing environment and a number of keyword 
arguments and returns a new enviromnent lay- 
ering the information given in the keyword ar- 
guments on top of the given environment. The 
three key words we'll need here are : v a r i a b l e ,  

: d e c l a r e ,  and :macro; their associated argu- 
ments are as follows: 

: v a r i a b l e  A fist of symbols to be considered 
as bound variables in the new environment. 
All of the bindings are considered to be 
lexical except those with a corresponding 
s p e c i a l  proclamation recorded in the en- 
vironment or a s p e c i a l  declaration given 
with the : d e c l a r e  keyword. 

: d e c l a r e  A list of decl-specs, the items that  
can appear in the d e c l a r e  special form. 

:macro A list of lists, each of which has two 
elements: a symbol naming a macro and 
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(defun walk-let (form context env walk-fn) 
(multiple-value-bind (remaining-body decl-specs) 

(parse-declarations (cddr form)) 
(let* ((bindings (cadr form)) 

(bindings-env (augment-environment env :declare decl-specs)) 
(walked-bindings 

(mapcar #'(lambda (binding) 
(if (symbolp binding) 

binding 
(cons (car binding) 

(walk-form-internal (cadr binding) 
':eval 
bindings-env 
walk-fn)))) 

bindings)) 
(names (mapcar #'(lambda (binding) 

(if (symbolp binding) 
binding 
(car binding))) 

bindings))) 
(body-env (augment-walker-environment bindings-env 

:declare decl-specs 
:variable names)) 

(walked-body (walk-template remaining-body '(:repeat (:eval)) 
body-env walk-fn)) 

'(let ,walked-bindings 
(declare ,@decl-specs) 
,@walked-body)))) 

Figure 10: The special-purpose walker function for let-expressions.  

an associated expansion function. 

Functions have also been defined allowing 
programs to discover information about  vari- 
able, function, and macro bindings, as well as 
the declarations in force, all in any given envi- 
ronment. Thus, tile walker goes to some trouble 
to ensure that  the environments passed to the 
Walk function reflect the correct syntactic con- 
text of the current form. W~lk functions can 
then base their actions on the contents of the 
environment. 

Unfortunately,  the v a r i a b l e - b i n d i n g  func- 
tion used in the walk function given earlier for 

s y m b o l - m a c r o l e t  cannot be written in terms of 
the new facilities in the standard.  The walker 
must therefore implement that  functionality it- 
self. All that 's  needed is a unique value associ- 
ated with every variable binding. The walker, 
though some subtle trickery, stores a fist of the 
currently-bound variables in all of the environ- 
ments it manipulates; the cons-cell whose ca r  
contains a given variable is the unique value for 
that  binding. The code implementing the trick- 
ery is in Figure 9. 

The idea involves defining a macro in each 
environment with a "secret" gensym-ed name, 
stored in *wa lke r -da ta -name* .  The expansion 
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(defunparse-declarations (body &optional doe-string-allowed?) 
(labels ((scan (body decl-specs doe-string) 

(let ((form (car body))) 
(cond ((and (stringp form) 

doe-string-allowed? 
(null doe-string) 
(not (null (cdr body)))) 

(scan (cdr body) decl-specs form)) 
((and (consp form) 

(eq (car form) 'declare)) 
(scan (cdr body) 

(append (cdr form) decl-specs) 
doe-string)) 

(t 

(values body decl-specs doe-string)))))) 
(scan body ' ( )  '()))) 

Figure  11: The  he lper  func t ion  parse-declarations. 

funct ion  for this secret mac ro  ignores its argu- 

ments  a nd  re turns  a piece of  "walker da t a " ;  in 
this case, the da t a  is the list of  bound-var iab le  

names.  Given an env i ronment ,  the funct ion  

o n v - w a l k e r - d a t a  re tu rns  this piece of  d a t a  by 

looking up the macro - func t ion  for the secret  

n a m e  and  then  invoking it on some a rguments .  

The function augment-walker-environment 
is layered on top of augment-environment; it 
adds any newly-bound variables to the list in the 
walker da t a  and  redefines the secret macro  in 
addi t ion  to any o ther  new macros.  The  new se- 

cret macro  defini t ion will au tomat i ca l ly  shadow 

the old one, jus t  as we desire. 

Given this machinery ,  we can finally under-  

s t and  the specia l -purpose  walker for  l e t -  ex- 
pressions; it appears  in Figure  10. The  func t ion  

parse-declarations takes the body of a let- 
or lambda-form and splits it up into declara- 
tions, documen ta t i on - s t r i ng  (if one is allowed) 

and  the b o d y  itself. The  code for it is s imple a 

and  appears  in Figure  11. Because of  the (some- 
what  un fo r tuna t e )  semant ics  of C o m m o n  Lisp 

3The code is made even simpler by the fact that, 
in the new standard, macros may not expand into 
declarations. 

dec lara t ions ,  the b inding-express ions  of  a l e t  

mus t  be walked in an e n v i r o m n e n t  in which 

those  dec lara t ions  are in effect; b i n d i n g s - o n v  is 

t h a t  env i ronment .  A second new e n v i r o n m e n t ,  

wi th  b o t h  declara t ions  an d  the  new variable 

bindings,  is cons t ruc ted  to walk to body.  Walk-  

l o t  r e tu rns  a r econs t ruc t ed  l o t - e x p r e s s i o n ,  in- 

co rpo ra t ing  the results of  all the  walking.  

As a final point  concern ing  the  walker,  I want 

to go back to the issue of  the o rde r  in which a 

given express ion  is walked. As we saw much  ear- 

lier, there  are good uses for b o t h  orders  (pa ren t  

before  chi ldren and  vice-versa)  bu t  the  walker 

cu r ren t ly  provides  on ly  one. Dur ing  our  conver-  
sat ions on the  walker while I was wri t ing this ar- 

ticle, Gregor  came up wi th  an  in te res t ing  change  
t h a t  would no t  only allow b o t h  orders ,  b u t  an  

a r b i t r a r y  m i x t u r e  of  the two. 

Under  the new idea, the  in te r face  of  walk 

func t ions  would change slightly. Along with tile 

fo rm,  con tex t ,  and  e n v i r o n m e n t ,  walk func t ions  

would receive a " c o n t i n u a t i o n "  a r g u m e n t .  T h e  

con t inua t ion ,  when passed an  express ion ,  would 
recurs ively  walk all of  the  i m m e d i a t e  subexpres -  
sions of  t ha t  form,  r e tu rn ing  the  r econs t ruc t ed  
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(defmacro with-constant-folding (abody body &environment env) 
(walk-form '(progn ,@body) env 

#'(lambda (form context env continuation) 
(lot ((walked-form (funcall continuation form))) 

(if (and (eq context ':oval) 
(consp walked-form) 
(member (car walked-form) '(+ - * /)) 
(every #'constanzp (cdr walked-form))) 

(oval walked-form) 
walked-form))))) 

Figure 12: Implementing w i th -  c o n s t a n t - f o l d i n g  for a continuation-passing walker. 

result. Also, walk functions would no longer re- 
turn a second value indicating whether or not 
to continue walking; if more walking should be 
done, the walk function would have to call the 
continuation argument. 

In this way, walk functions have complete 
control over the order in which subexpressions 
are walked; it is completely determined by 
when, whether, and even how often the continu- 
ation argument is invoked. Figure 12 shows how 
the correct implementation of with-constant- 
f o l d i n g  could be written for sucil a walker. 
Note that  the recursive calls to wa lk - fo rm are 
gone; the code more closely resembles the sim- 
plicity of the old, naive implementation. 

You might find it interesting to try your hand 
at changing the walker to work in this new 
way; I think that wa lk - fo rm and w a l k - f o r m -  
i n t e r n a l  are the only functions needing mod- 
ification. I 'm given to understand that this 
change will probably be working its way into 
the distributed code sometime in the near fu- 
ture. 

find yourself wishing you had the walker to help 
out; fortunately, it's freely available. 

If you'd like to get a copy of the PCL 
code walker, or even the entire PCL system, 
send either electronic mail to "CommonLoops-  
Coordinator.pa@Xerox.Com" or normal mail to 

CommonLoops Coordinator 
Xerox PARC 
3333 Coyote Hill Rd. 
Pale Alto, CA 94304 

They can send you information on tile options 
available to you for receiving the code. 

Next issue, the ( a l g o r i t h m s )  depar tment  
will cover one of the largest clients of the code 
walker: a clever implementation by Bill van 
Melle of an elegant and powerful iteration facil- 
ity. If you've got an idea for a article in this de- 
partment  for issues after that,  please send them 
along. 

That  just  about  covers the most important  
ideas in the walker. It 's an interesting tool 
that can serve as the basis for a wide variety of 
other code-analysis applications. The next time 
you're writing a hairy macro, you may very well 
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