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1 I n t r o d u c t i o n  

This paper describes a set of Lisp macros that enable the use of "list compre- 
hensions" which are a very powerful notation that  provides a very compact 
expression of common list operations see [2] for a full discussion. List com- 
prehensions have been introduced by David Turner in KttC, where they were 
called ZF-expressions [7]. They have since been introduced in several other 
pure functional languages like SASL [8], Miranda 1 [5] and Haskell[3]. 

List comprehension are often associated with "pure" functional lan- 
guages but their principles are independant of the fact that  assignment is 
allowed in the language. Having used them quite extensively in Miranda, we 
realized how much they would be useful in Lisp also. After all, comprehen- 
sions are merely "syntactic sugar" over standard functional programs but 
they give an intuitive reading of common operations over lists. 

We first describe this notation in Miranda and then give the equivalent 
Lisp expression with our macros; we finally show the implementation of 
our macros which follow closely the derivation given by P. Wadler in [4, 
p127-138]. 

1 M i r a n d a  is a registered trademark of Research Software Ltd. 

• o /  1991 Guy Lapalme, Unlverslte de Montreal 
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2 D e s c r i p t i o n  of  list c o m p r e h e n s i o n s  in Miranda  

List comprehensions have the form: 

[ <expression> [ <qualifier1> , . . . ,  <qualifiers> ] 

where each qualifier is either a generator (of the form pat <- expr) or a filter 
(a Boolean expression). The syntax derives from analogy with common set 
notation. For example: 

{xlx e s;p(x)} 

defines the subset of S for which P holds. Similarly: 

[x lx<- s ,  px] 

defines the sublist of s for which p x is True. The scope of variables defined 
using generators extends from the generator itself to all qualifiers defined to 
the right of the generator, and to the main expression. 

For example, the following expression keeps all odd numbers of the list 
of numbers xs 

Ix [ x <-xs ; odd x] 

Generators can be nested as in 

[x+y I x <- xs; odd x; y <- ys; even y] 

which returns all possible sums for all odd numbers in xs with all even 

number of ys. The |ast generators change most rapidly and a later qualifier 
may refer to a variable defined in an earlier one. Thus this defines a simple 

but quite powerful list iteration mechanism; it is much simpler than most 

"loop" or "do" macros found in Common Lisp [6]; it is also more general 

than the "collect" macro given in [1, p 254-256]. It is in a way similar 
in spirit with the "Series Macro Package" of Waters [9] but considerably 
simpler (our macro is less than 20 lines of Lisp...). Of course, our model 
is much less powerful but is very useful anyhow. The limitations of the 
comprehension notation imply that the generated code is efficient without 
resorting to a program analysis like the one necessary in some cases for the 
series. 

The following Miranda functions show the power of expression of list 
expressions (and also of pattern matching in the function heads): 
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• function for quicksort: 

q_sort [] = [] 

q_sort (a:x) = q_sort [yly <- x; y<a] ++ [a] ++ q_sort[y]y <- x; 

which means: sorting the empty  list gives the empty  list; sort ing a 
list beginning with a followed by the list x is appending three lists: 
the first one is the result of sorting all elements of x smaller than  a, 
the  second only comprises the "pivot " a and the third is the result of 
sort ing all elements of  x greater  or equal to a. 

• function for finding all permuta t ions  of a list of elements 

perms [] = [[]] 

perms x = [a:p I a <- x ; p <- perms (x -- [a])] 

This is read as finding the permuta t ions  of the  empty  list is the  list 
of one empty  list; finding the permuta t ions  of list x is the  list of all 
elements a from x in front of all possible permuta t ions  of the  remaining 
elements of x. ( : is the "cons" opera tor  and - -  denotes list difference). 

3 Expressing comprehensions in Lisp 

Given these definitions, it is quite  easy but  tedious to t rans la te  them into 
Lisp .using cons ,  append,  map, r e m o v e - i f - n o t  . . .  bu t  we would like to obta in  
a sys temat ic  and efficient t ransla t ion from an equivalent Lisp expression 
bearing a much closer ressemblance to the original list comprehension.  

So we have defined read macros associated with the [ and ] characters  
tha t  build a call to another  macro defining the "real" Lisp expression. In 
Lisp, each expression is well delimited, so we omit  the " l "  and the " ; " .  
The first expression in a comprehension is the value of the expression to 
be evaluated and the following ones are qualifiers; a qualifier is a generator  
if it is a three element list whose second element is the <- symbol;  in this 
case the  first element of the list should be a variable. If a qualifier is not  a 
generator  then it is a filter tha t  either returns n i l  if it fails or not  n i l  if it 
succeeds. So the previous examples are t rans la ted  into Lisp in the following: 

[ x (x <- xs) (oddp x)] 

y >=a] 
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TQI [EI]-H-L ]~ 
(TEl E ]: TE l L]) 

TQI[EI B,Q]-~-L ]_-- 
/fTE[ B ] thenTQl[El QI-HL ] else TE ELI 

TQ[ [E]v<-L,,Q]-H-L2]--- 
letrec 

h = us -> case us of 
[] - >  

(v: us') ->  
i n ( a T E  l L1 ~) 

TE l L2 ] 
TQ[ [El Q] +r(hus') ] 

(rule A) 

(rule B) 

(rule C) 

Figure 1: Wadler's optimal translation rules for list comprehensions 

[(+ x y) (x <- xs) (y <- ys) (evenp y)]  

(defun qsor't  (ax) 
(and ax 

( l e t  ( (a  (car  ax)) 
(x (cdr  ax) ) )  

(append (qsort [y (y <- x) 
(list a) 
(qsort [y (y <- x) 

(< y a ) ] )  

(>= y a ) ] ) ) ) ) )  

(defun perms (x) 
(if (null x) '(()) 

[(cons a p) (a <- x) (p <- (perms (remove a x :count  1 ) ) ) ] ) )  

4 Translating into Lisp 

Wadler [4, p132-135] describes a series of transformations to translate list 
comprehensions into an "enriched" A-cMculus (i.e. A-cMculus with pattern 
matching, l e t  and l e t r e c )  and gives the following translation rules where 
T E  l e ] is the translation of expression e and TQI  c --H-1 ] is the translation 
of a comprehension e with partial result l. In Lisp, TE  l e ~ is merely the 
corresponding Lisp expression (as we use the backquote facility, we prefix 
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(defmacro comp ((e ~rest qs) 12) 
(if (null qs) '(cons ,e ,12) ; rule A 

(let ((ql (car qs)) 
(q ( cd r  q s ) ) )  

(if (not(eq (cadr ql) '<-)) ; a generator? 
'(if ,ql (comp (,e ,@q),12) ,12) ; rule B 

(let ((v (car ql)) ; rule C 
(ii (third ql)) 
(h (gentemp "H-")) 
(us (gentemp "US-")) 
( u s l  (gentemp " U S l - " ) ) )  

' ( l a b e l s  ( ( , h  ( , u s )  ; c o r r e s p o n d s  t o  a l e t r e c  
(if (null ,us) ,12 

( l e t  ( ( , v  ( c a r  , u s ) )  
( ,usl  (cdr ,us))) 

(comp (,e ,eq) (,h ,usl)))))) 
(,h ,li))))))) 

Figure 2: "Lisp macro" adapta t ion of Wadler's t ranslat ion rule 

e by a comma).  A comprehension is t ranslated by a macro with two pa- 
rameters: the first one comprises the the expression and the quMifiers; the 
second is the partial  result. This scheme is optimal in that  it performs the 
min imum number  of cons (i.e. exactly one for each element in the returned 
list). The macro is given in Figure 2 which is a straight t ranslat ion of the 
rules where T Q [  e ~ is converted to a recursive call to the macro. The read 
macros associated with the brackets are the following: 

(defun open-bracket (stream ch) 
(do ((i nil) 

(c (read stream t nil t)(read stream t nil t))) 
((eq c 'I] ]) '(comp ,(reverse I) ())) 

(push c i)) 
) 

(defun closing-bracket (stream ch) ' I] I) 

(eval-when (compile load eval) 
(set-macro-character #\[ #'open-bracket) 
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(set-macro-character #\] #'closing-bracket)) 

For example the translation of 

(oddp x)] [ x (x <- xs) 

is the following 

(LABELS ( (H-7 
(IF 

(us-7) 
(NULL US-7) NIL 
(LET ((X (CAR US-7)) 

(USI-7 (CDR US-7))) 
(IF (ODDP X) (CONS X (H-7 USI-7)) (H-7 USi-7)))))) 

(H-7 XS)) 

This is simply the definition and a cMl to an internM procedure that does 
a recursive w~k on the list keeping only the odd elements. We build the 
procedure "in place" in order to build the right lemcM environment for the 
mmn expression. This is not the translation that  would come to mind in the 
the first place but  its correctness is guaranteed by the series of transforma- 
tions proven in [4, p 132-135]. Now the definition of "perms" becomes after 
being fully expanded: 

(DEFUN PERMS (X) 
(IF (NULL X) '(NIL) 

(LABELS ((H-8 (US-8) 
(IF (NULL US-8) NIL 

(LET ((A (CAR US-8)) 
(USI-8 (CDR US-8))) 

(LABELS ((H-9 (US-9) 
(IF (NULL US-9) 

(H-8 X)))) 

(H-8 USi-8) 
(LET ((P (CAR US-9)) 

(usi-9 (CDR US-9))) 

(CONS (CONS A P) (H-9 USI-9: 
(H-9 (PERMS (REMOVE A X :COUNT I)))))))) 

5 E x t e n s i o n s  

We have shown a direct translation of list comprehensions but  it would be 
interesting to extend this work in some areas. In Common Lisp, lists are 
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a special case of sequences. So using ( e l t  1 x) instead of ( ca r  x) and 
(subseq 2 x) instead of (cdr  x) would result in a more general macro 
package capable of being applied to vectors, strings as well as lists. Unfor- 
tunately, subseq is specified as creating new instances of sequences at each 
call so in this case, the generated code would be less space efficient than in 
the case of list. 

In Miranda, list comprehensions are more general than what we de- 
scribed here: pattern matching (using constants and even repeated vari- 
ables) can be used in the left part of a generator, for example 

[y I (l,y) <-xys] 

returns the list of y in a list of 2-tuples such that  the first element is equal 
to 1. As pattern-matching is not included in Miranda (except in the "new" 
d e s t r u c t u r i n g - b i n d  macro) we decided not to add it for this case of list 
comprehension. As lazy evaluation is used in Miranda, infinite lists can be 
specified in a generator built by a recurrence equation; in Lisp, this is not 
the usual evaluation mode, so we do not translate these cases. 

Given these restrictions, we found this tool a very good and simple al- 
ternative to the loop/do/i terate/series macros for the simple but frequently 
occuring case of iterating over a list. 

6 C o n c l u s i o n  

We have given a direct translation of list comprehensions in Lisp, we ran 
some simple tests in Allegro Common Lisp on a Sparc Station and we found 
that the resulting expressions ran between 30% slower and 20% faster than 
a "hand coded" Lisp version using the same "functional" style. The same 
tests were also run by Jon L. White using the Lucid "Development Quality" 
and "Production Quality" compilers and found that,  in this case, most of the 
times the "comprehension" versions were faster than the "hand coded" ones. 
These translations are not the optima] ones because usually Lisp compilers 
generate much better code from looping constructs such as do or d o l i s t .  
The Series macros of Waters[9] strive to translate expressions having a func- 
tional style into true iterative style and in some cases they achieve a more 
efficient translation at the cost of a comprehensive program analysis; our 
macro is only a straight implementation of the translation rules given by 
Wadler which could possibly be augmented to generate looping constructs 
when feasible. But as they stand now, the mechanically translated versions 
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are never much slower than comprehensions so there is no real drawback in 
using them, but the rewards are great in terms of power of expression. 
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