
Syntactic Closures 

A Syntactic Closures Macro Facility 
by Chris Hanson 

9 November 1991 

This document describes syntactic closures, a low-level macro facility for the Scheme program- 

ming language. The facility is an alternative to the low-level macro facility described in the Re- 

vised'4 Report on Scheme. This document is an addendum to that report. 

The syntactic closures facility extends the BNF rule for <transformer spec> to allow a new 

keyword that  introduces a low-level macro transformer: 

<transformer spec> ~ ( t r a n s f o r m e r  <expression>) 

Additionally the following procedures are added: 

make-syntactic-closure 
capture-syntactic-environment 
identifier? 
identifier=? 

The description of the facility is divided into three parts. The first part defines basic terminology. 

The second part describes how macro transformers are defined. The third part describes the use 

of identifiers, which extend the syntactic closure mechanism to be compatible with s y n t a x - r u l e s .  

Terminology 

This section defines the concepts and data types used by the syntactic closures facility. 

Forms are the syntactic entities out of which programs are recursively constructed. A form is 

any expression, any definition, any syntactic keyword, or any syntactic closure. The variable 

name that  appears in a s e t  ! special form is also a form. Examples of forms: 

IV-4.9 



Revised '4  Scheme 

17 
#t  

c a r  

(+ X 4)  
( lambda (x) x) 
(define pi 3. 14159) 
if 
define 

An alias is an alternate name for a given symbol. It can appear anywhere in a form that  the 

symbol could be used, and when quoted it is replaced by the symbol; however, it does not 

satisfy the predicate symbol?.  Macro transformers rarely distinguish symbols from aliases, 

referring to both as identit~ers. 

A syntactic environment maps identifiers to their meanings. More precisely, it determines 

whether  an identifier is a syntactic keyword or a variable. If it is a keyword, the meaning is 

an interpretat ion for the form in which that  keyword appears. If it is a variable, the meaning 
identifies which binding of that  variable is referenced. In short, syntactic environments contain 

all of the contextual information necessary for interpreting the meaning of a particular form. 

A syntactic closure consists of a form, a syntactic environment,  and a list of identifiers. All 

identifiers in the form take their meaning from the syntactic environment,  except those in the 

given list. The identifiers in the list are to have their meanings determined later. 

A syntactic closure may be used in any context in which its form could have been used. Since 

a syntactic closure is also a form, it may not be used in contexts where a form would be illegal. 
For example, a form may not appear as a clause in the cond special form. 

A syntactic closure appearing in a quoted structure is replaced by its form. 

Transformer Definit ion 

This section describes the " t ransformer  special form and the procedures m a k e - s y n t a c t i c -  
closure and capture-syntactic-environment. 

t r a n s f o r m e r  expression 
Syntax: It is an error if this syntax occurs except as a <transformer spec>. 

syntax 

Semantics: The expression is evaluated in the standard transformer environment to 

yield a macro transformer as described below. This macro transformer is bound to a 
macro keyword by the special form in which the t r a n s f o r m e r  expression appears (for 
example, let-syntax). 

A macro transformer is a procedure that  takes two arguments,  a form and a syntactic 

environment,  and returns a new form. The first argument,  the input form, is the form 
in which the macro keyword occurred. The second argument,  the usage environment, 

IV-4. I0 



Syntactic Closures 

is the syntactic environment in which the input form occurred. The result of the 

transformer, the output form, is automatically closed in the transformer environment, 
which is the syntactic environment in which the t r a n s f o r m e r  expression occurred. 

For example, here is a definition of a push macro using s y n t a x - r u l e s :  

( d e f i n e - s y n t a x  push 
( s y n t a x - r u l e s  () 

( (push i tem l i s t )  
( s e t !  l i s t  (cons i tem l i s t ) ) ) ) )  

Here is an equivalent definition using t r ans fo rmer :  

( d e f i n e - s y n t a x  push 
( t r a n s f o r m e r  

(lambda (exp env) 
( l e t  ( ( i t e m  

( m a k e - s y n t a c t i c - c l o s u r e  env ' ( )  
(list 
(make-syntactic-closure env ~() 

'(set! ,list (cons ,item ,list)))))) 

(cadr  exp) ) )  

(caddr  e x p ) ) ) )  

In this example, the identifiers s e t !  and cons are closed in the transformer environ- 
ment, and thus will not be affected by the meanings of those identifiers in the usage 

environment env. 

Some macros may be non-hygienic by design. For example, the following defines a 
loop macro that implicitly binds e x i t  to an escape procedure. The binding of e x i t  is 
intended to capture free references to e x i t  in the body of the loop, so e x i t  must be 
left free when the body is closed: 

(define-syntax loop 
(transformer 
(lambda (exp env) 

( l e t  ((body (cdr  exp) ) )  
' (call-with-current-continuation 

(lambda (exit) 
( l e t  f () 

,@(map (lambda (exp) 
(make-syntactic-closure env ' (exit) 

exp) ) 
body) 

(f)))))))) 

IV-4.11 



Revised '4  Scheme 

To assign meanings to the identifiers in a form, use m a k e - s y n t a c t i c - c l o s u r e  to close the form 

in a syntactic environment.  

m a k e - s y n t a c t i c - c l o s u r e  environment free-names form procedure 

Environment must be a syntactic environment,  free-names must be a list of identifiers, 

and form must  be a form. m a k e - s y n t a c t  i c - c l o s u r e  constructs and returns a syntactic 

closure of form in environment, which can be used anywhere that  form could have been 

used. All the identifiers used in form, except those explicitly excepted by free-names, 
obtain their meanings from environment. 

Here is an example where free-names is something other than the empty  list. It is 

instructive to compare the use of free-names in this example with its use in the loop  

example above: the examples are similar except for the source of the identifier being 

left free. 

(define-syntax letl 
(transformer 
(lambda (exp env) 

(let ((id (cadr exp)) 
(init (caddr exp)) 
(exp (cadddr exp))) 

'((lambda (,id) 
,(make-syntactic-closure env 

,(make-syntactic-closure env 
(list id) exp)) 

'() init)))))) 

l e t l  is a simplified version of l e t  that  only binds a single identifier, and whose body 

consists of a single expression. When the body expression is syntactically closed in its 

original syntactic environment,  the identifier that  is to be bound by l e t  1 must be left 
free, so that  it can be properly captured by the lambda in the ou tput  form. 

To obtain a syntactic environment other than the usage environment,  use c a p t u r e - s y n t a c t i c -  
environment. 

c a p t u r e - s y n t a c t l c - e n v i r o n m e n t  procedure procedure 
c a p t u r e - s y n t a c t i c - e n v i r o n m e n t  returns a form that  will, when transformed, call 
procedure on the current syntactic environment.  Procedure should compute and return 

a new form to be transformed, in that  same syntactic environment,  in place of the form. 

An example will make this clear. Suppose we wanted to define a simple l o o p - u n t i l  
keyword equivalent to 

IV-4.12 



Syntactic Closures 

(define-syntax loop-until 
(syntax-rules () 

((loop-until id init test return step) 
(letrec ((loop 

(lambda (id) 
(if test return (loop step))))) 

(loop init))))) 

The following a t t empt  at defining l o o p - u n t i l  has a subtle bug: 

(define-syntax loop-until 
(transformer 
(lambda (exp env) 

(let ((id (cadr exp)) 
(init (caddr exp)) 
(test (cadddr exp)) 
(return (cadddr (cdr exp))) 
(step (cadddr (cddr exp))) 
(close 
(lambda (exp free) 

(make-syntactic-closure env free exp)))) 
'(letrec ((loop 

(lambda (,id) 
(if ,(close test (list id)) 

,(close return (list id)) 
(loop ,(close step (list id))))))) 

(loop ,(close init '()))))))) 

This definition appears to take all of the proper precautions to prevent unintended 

captures. It carefully closes the subexpressions in their original syntactic environment 
and it leaves the i d  identifier free in the t e s t ,  r e t u r n ,  and s t e p  expressions, so that  

it will be captured by the binding introduced by the lambda expression. Unfortunately 
it uses the identifiers i f  and loop  within that  lambda expression, so if the user of 
l o o p - u n t i l  just happens to use, say, i f  for the identifier, it will be inadvertently 

captured. 

The syntactic environment that  i f  and loop  want to be exposed to is the one just  out- 
side the lambda expression: before the user's identifier is added to the syntactic environ- 

ment,  but  after the identifier loop  has been added, c a p t u r e - s y n t a c t i c - e n v i r o n m e n t  

captures exactly that  environment as follows: 

IV-4.13 



Revised^4 Scheme 

(define-syntax loop-until 
(transformer 
(lambda (exp env) 

(let ((id (cadr exp)) 
(init (caddr exp)) 
(test (cadddr exp)) 
(return (cadddr (cdr exp))) 
(step (cadddr (cddr exp))) 
(close 
(lambda (exp free) 

(make-syntactic-closure env free exp)))) 
'(letrec ((loop 

,(capture-syntactic-environment 
(lambda (env) 

'(lambda (,id) 
(,(make-syntactic-closure env '() 
,(close test (list id)) 
,(close return (list id)) 
(,(make-syntactic-closure env '() 
,(close step (list id))))))))) 

(loop ,(close init '()))))))) 

' i f )  

'loop) 

In this case, having captured the desired syntactic environment,  it is convenient to 
construct  syntactic closures of the identifiers i f  and the loop  and use them in the 
body of the lambda. 

A common use of capture-syntactic-environment is to get the transformer environ- 
ment  of a macro transformer: 

(transformer 
(lambda (exp env) 

(capture-syntactic-environment 
(lambda (transformer-env) 

. . . ) ) ) )  

Identifiers 

This section describes the procedures that  create and manipulate  identifiers. Previous syntactic 

closure proposals did not have an identifier data  type- - they  just used symbols. The identifier data 
type extends the syntactic closures facility to be compatible with the high-level s y n t a x - r u l e s  
facility. 

As discussed earlier, an identifier is either a symbol or an alias. An alias is implemented as a 
syntactic closure whose form is an identifier: 

IV-4.14 



Syntactic Closures 

(make-syntactic-closure env '() 'a) ~ an alias 

Aliases are implemented as syntactic closures because they behave just  like syntactic closures most 

of the time. The difference is that  an alias may be bound to a new value (for example by lambda or 

l e t - s y n t a x ) ;  other syntactic closures may not be used this way. If an alias is bound,  then within 

the scope of that  binding it is looked up in the syntactic environment just  like any other identifier. 

Aliases are used in the implementat ion of the high-level facility s y n t a x - r u l e s .  A macro trans- 

former created by s y n t a x - r u l e s  uses a template  to generate its output  form, subst i tut ing subforms 
of the input  form into the template.  In a syntactic closures implementat ion,  all of the symbols in 
the template  are replaced by aliases closed in the transformer environment,  while the output  form 
itself is closed in the usage environment.  This guarantees that  the macro transformation is hygienic, 

without  requiring the transformer to know the syntactic roles of the subst i tuted input  subforms. 

i d e n t i f i e r ?  object 
Returns # t  if object is an identifier, otherwise returns #f.  Examples: 

procedure 

(identifier? 'a) ~ #t 
(identifier? (make-syntactic-closure env '() 

(identifier? "a") ~ #f 
(identifier? #\a) ~ #f 
(identifier? 97) ~ #f 
(identifier? #f) ~ #f 
(identifier? '(a)) ~ #f 
(identifier? '#(a)) ~ #f 

'a)) 

The predicate eq? is used to determine if two identifers are "the same". Thus eq? can be used 

to compare identifiers exactly as it would be used to compare symbols. Often, though,  it is useful to 
know whether  two identifiers "mean the same thing". For example, the cond macro uses the symbol 

e l s e  to identify the final clause in the conditional. A macro transformer for cond cannot just look 
for the symbol e l s e ,  because the cond form might be the output  of another macro transformer that  

replaced the symbol e l s e  with an alias. Instead the transformer must  look for an identifier that  
"means the same thing" in the usage environment as the symbol e l s e  means in the transformer 

environment.  

i d e n t i f i e r = ?  environment1 identit~erl envlronment2 identit~er2 procedure 

Environment1 and environment2 must be syntactic environments,  and identifier1 and 
identifier2 must be identifiers, i d e n t i f i e r = ?  returns # t  if the meaning of identifier1 

IV-4.15 



Revised^4 Scheme 

in environment1 is the same as that  of identifier2 in environment2, otherwise it returns 

#f.  Examples: 

(let-syntax 
((foo 

(transformer 
(lambda (form env) 

(capture-syntactic-environment 
(lambda (transformer-env) 

(identifier=? transformer-env 'x env 'x))))))) 
(list (foo) 

(let ((x a)) 
(foo)))) 

(let-syntax ((bar foo)) 
(let-syntax 

((foo 
(transformer 
(lambda (form env) 

(capture-syntactic-environment 
(lambda (transformer-env) 

(identifier=? transformer-env 'foo 
env ( cad r  f o r m ) ) ) ) ) ) ) )  

(list (foo foo) 
(foo bar)))) 

(#f #t) 

A c k n o w l e d g m e n t s  

The syntactic closures facility was invented by Alan Bawden and Jonathan  Rees. The use 

of aliases to implement  s y n t a x - r u l e s  was invented by Alan Bawden (who prefers to call them 
"synthetic names").  Much of this proposal is derived from an earlier proposal by Alan Bawden. 

From: bates@BBN.COM (Lyn Bates) 

Lisp in action is like a finely choreographed ballet. 
Ada in action is like a waltz of drugged elephants. 
C in action is like a sword dance on a freshly waxed floor. 

IV-4.16 




