
A Syntactic Approach to

Fixed Point Computation on Finite Domains

Tyng–Ruey Chuang and Benjamin Goldberg

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University*

Abstract

We propose a syntactic approach to performing fixed

point computation on finite domains. Finding fixed

points in finite domains for monotonic functions is an es-

sential task when calculating abstract semantics of func-

tional programs. Previous methods for fixed point finding

have been mainly based on semantic approaches which

may be very inefficient even for simple programs.

We outline the development of a syntactic approach,

and show that the syntactic approach is sound and com-

plete with respect to semantics. A few examples are pro-

vided to illustrate this syntactic approach.

1 Motivation and Introduction

Finding fixed points for monotonic functions over finite

domains is an important task in abstract interpretation.

In abstract interpretation, a standard (or non-standard)

semantics of a functional program is abstracted to a

monotonic function over finite domains, and, if the pro-

gram contains recursive definitions, fixed point finding is

used to calculate the abstract semantics of the program.

Much work had been performed to devise elegant and

effective methods to calculate fixed points on finite do-

mains. Most notable is the frontier method developed by

*The authors’ address: 251 Mercer Street, New York, NY 10012,
U.S.A. E–mail: chuang@cs.nyu.edu, goldberg@cs.nyu. edu. Thk re-
search has been supported, in part, by the National Science Foun-

dation (# CCF1-8909634) and DARPA (DARPA/ONR #Nooo14-
91-J1472).

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee
and/or cpeoific permission.

1992 ACM LISP & F. P.-6 I92ICA

a 1992 ACM O-89791 -483 -X1921000610 109... $I.5O

Clack & Peyton Jones [3,10], Martin & Hankin [9], and

Hunt & Hankin [5,6]. Young [12] also discusses related

issues.

Let us briefly describe how the frontier representation

of a function works. Take a function’s strictness prop-
erty as an example. A function’s strictness property is

usually described by a monotonic function f from a finite
argument domain D to the two element domain 2, with

O ~z 1. A maximal–O–frontier representation of a func-

tion ~ is the smallest subset F. of D such that for any

element d in D, if d is weaker than any element in Fo, then

the result of applying ~ to d is O. A similar minimal–l–

frontier can also be defined which works equally well.

When f is recursively defined, f is evaluated as the

least fixed point of a functional F from domain D ~ 2

to D -2, where D -2 is the monotonic function space

from D to 2. The least fixed point of F is approximated

by a sequence starting from the least element in domain

D -2, lD+ z, which has the maximal–O–frontier repre-

sentation {TD }. At each iteration of the approximation,

the new frontier is found by moving down from the old

one. When the frontier does not change between succes-

sive iterations, then the fixed point has been found.

The frontier method is attractive in several ways. The

represent ation is economical in space, hence makes easy

the equality testing between two successive functions in

the approximation sequence. It also allows fast function

application. (We simply check whether the argument

is weaker than any of the elements in the maximal–O–

frontier. If it is, then the result is O; otherwise 1.)

Though elegant, there are several drawbacks in the

frontier method. First, the frontier representations do

not compose easily. Suppose that we have the frontier

representations of functions f and g, what is the fron-

tier representation of the functional composition f o g? It

seems that we do not have much choice but to calculate

it from scratch. A functional program is very likely to be

built up from smaller functional components by using the

mechanism of abstraction, application, and composition.

But the frontier method does not provide such building

109

mechanism, unless, of course, when functions are fully

applied to their arguments.

Secondly, the frontier method is carried out mainly on

the semantic domains of a program; the method pays

little attention to the program text itself. This may cause

great inefficiency. Consider a function f, which is defined

as the least fixed point of the following functional F,

Fa)f. ~Zo. ~zl~xzo U(f U(f Xoxl . ..~lo).

where Xo, zl, ..., Zlo c .2, and u is the (infix) least upper

bound function. By symbolic evaluation, we have

as the least fixed point. The process begins with the

weakest approximation ~ = A ZO , J Z1 A Zlo .0, and

takes only two iterations. By the above result, we also

know that (the curried version of) .f has maximal-O-

frontier {(O,l,l,l,l,l,l,l,l,l,l)}.

But how would the frontier method reach this result?

The frontier method will approximate the maximal-O-

frontier from the very bottom of the domain 211 -+

2. It is not difficult to see that the frontier method

will have to make, step by step, 210 approximations

to reach this maximal-O-frontier, which is right in the

middle of every ascending chain from the least ele-

ment Azo. Azl. . . . A ZIO .0 (whose maximal–O–frontier

is {(1,1,1,1,1,1,1,1,1,1,1)}) to the greatest element

Azll. Aml, . . . A ZIO .1 (whose maximal-O-frontier is {})

in domain 211 -+ 2. In such “badly behaved” cases,

the frontier method is very inefficient compared to the

symbolic evaluation method. This phenomenon has been

observed by Clack & Peyton Jones [3,10]. Hunt & Han-

kin [5,6] further suggest that higher–order functional pro-

grams are often badly behaved.

In this paper, we will develop a syntactic method suit-

able for symbolic calculation of fixed points on finite do-

mains. This method uses a simply–typed A–calculus aug-

mented with four predefine constants — O, 1, ~, and U
— and their associated reduction rules. At first thought,

one might doubt whether such a task may be accom-

plished [3]. There are several reasons for the difficulty.

First, there is no fixed point term in the simply–typed A–

calculus! That is, there is no such term Y c AtO+OJ+~,

where u is a type and A(O+UJ+O is the set of lambda

terms whose type is (a -+ u) -+ a, such that for any

term F c Aqyw, YF i, &.onvertible to J’(YX’). Also, it

has been shown that there exists no “parallel or” term

U E A.z+(.z+2) such that (U 1 M) ~-reduces to 1,

(U L1 1) ~-reduces to 1, and (U O O) /!-reduces to O

for all term M E AZ (see Girard, Taylor & Lafont [4],

for example). However, this “parallel or” operation is

frequently used in abstract interpretation.

However, these problems can be solved if the types in

the language A only denote finite domains with suitable

algebraic structures, and, in addition to the D rule, alge-

braic reduction rules for those finite domains are allowed

in the calculus. We will show that, in a slightly restricted

sense, there is a fixed point term Y 6 A(O+O)+O such

that it can be shown, in a syntactic way, that YF is se-

mantically equivalent to F(YF) for any term F in a sub–

language of A.-+O. In fact, this synt attic method can be

shown to be both sound and complete with respect to

semantic methods, where the frontier method is one of

them.

What are the advantages of using a syntactic method

over a semantic method for computing fixed points on

finite domains? One advantage is that the syntactic
method may be more efficient than the semantic one, as

illustrated by the above example. Another advantage is

that we have a more uniform way to calculate the (op-

erational) semantics of a functional program, whether it

is the standard semantics or an abstract semantics, since

these calculations differ only in how the reductions are

performed. This is in contrast to the frontier method of

computing a program’s abstract semantics, in which the

method used is totally different from the syntactic calcu-

lus (such as the A–calculus) used to compute a program’s

standard semantics.

This paper will mainly address fixed point finding in the

monotonic function spaces generated by the basic domain

2. We will later show how to relax this restriction and

make the method applicable to basic domains other than

2.

2 The Language A and Its Prop-

ert ies

In this section we define a typed language A and the asso-

ciated reduction rules. Most of the definition is standard

or intuitive.

Definition 2.1 The set 17 of type expressions is induc-

tively defined as follows.

Definition 2.2 The language A, along with the sub–

language A. for each type m c I’, k indu.fiiv.ly defined

as follows.

● xc E A., where X. is a variable of type U,

● (MN) GA, if ME AO+7 and NE A.,

● (Az. M)c A
O+T ifx EA. and M~A7,

● O,le A2, and

● (M flN), (M UN) EA2if M, NEA2.

110

❑

Type .2 is the ground type of language A. Language A

can be viewed as the set of the simply–typed ~–terms con-

structed from the ground type 2 and the four predefine

constants: O, 1 c AZ, and n, u E A2+2+2. The type

constructor + is right associative. That is, al + U2 -+

. . . + on is a shorthand for (al ~ (02 + (. . . + u.))). r

can also be defined inductively by the following: 2 c I’,

andul*u2 *... -un-2E1’ifu1, u2, ...gn~r.
We also take the liberty to omit some parentheses in a A

term if it is clear to do so, All type expressions in I’ and

all terms in A are understood to be of finite length.

The following two definitions give the interpretation of

types in I’ and terms in A.

Definition 2.3

. Type 2 denotes the domain D2 = {O, 1}, with the

ordering O ~2 1, and

● Type u - r denotes the domam DO*T = {~ljisa

total, monotonic function from domain Do to domain

D,}, with the ordering ~ go+, g iff ($ z) ~, (g z)

for all z E Do.
•1

It can be shown that for each type u c I’, domain Do

is a finite and distributive lattice.

Definition 2.4 Let environment p be a total function

from typed variable names to UOEr Do. Let [M]p be the

interpretation of a term M E A under the environment p,

and

●

●

●

●

●

be defined aa follows:

[Za]p = (p %),

[(MN)]p = ([M]p) ([N]p),

[(~ z . M)]p = ~ y . ([M](p[z * y])),

[O]p= o,
[11P = 1, and

[(M n N)]p = ([M]p) n ([N]p),
[(M u N)]p = ([M]p) U ([N]p).

•1

Note that we use the same symbol to denote both a

syntactic phrase and its semantic meaning (for example,

the symbol O in [O]p = O). We assume that this will not

cause confusion. Also, when the context is clear, we often

drop the subscript u in ~. and often use a type expression

a to denote its semantic domain Dm. If a term M ~ A is

closed, then its interpretation is simply written as [M],

without referring to any environment, since environments

do not affect the interpretation of M.
We now describe how to perform syntactic calculations

in A. First we define a binary relation < (pronounced

“syntactically weaker”) between A terms. It is intended

that, for M, N c A, if M ~ N then [M]p ~ [N]p for all

environments p.

Definition 2.5 A binary relation 7? on language A is

compatible if the following inference rules are valid for all

F, G, HCAandall L, M, NEA2.

● (application)

Fli?G F7?G

(FH) ‘R (GH) (HF) 7? (HG)

● (abstraction)

F7?G

● (n)

M’RN M’RN

(L flM)X(Lfl N) (M fl.L)7Z(Nfl L)

● (u)

M7?N M7?N

(Lu M)7Z(LUN) (Mu L)7?(NUL)
•J

Definition 2.6 The relation < on language A is the com-

patible, reflexive, and transitive relation induced by the

following axioms for all terms L, M, N c AZ.

●(M flN)~M, M3(M UN),

●M~(Mil M), (Mu M)~M,

●(M flN)~(Nfl M), (M UN)<(NU M),

. (Ln(iwniv)) 5 ((LnM)n N),

((Ln M)n N) 5 (Ln(Mn N)),
(Lu(Mu N)) s ((LuM)u N),

((LuM)u N) < (Lu(MUN)).
•1

By using the definition of compatibility in defining the

relation <, we see that < is well–defined for all A terms,

not just for AZ terms. Note that the definition of < con-

tains some redundancy. For example, not all of the four

associativity axioms are needed once we have the com-

mutativity axioms. We include them for clarity, however.

Note that it is easy to check whether two A terms sat-

isfy the < relationship or not. Based on ~, we define the

following reduction rules for A.

111

Definition 2.7 The reduction relations /3, il, U, and d
on language A are defined as follows.

9P= {((A z.M)N, ikf[x := N]) I M,N E A},
● n = {(Mn N, M)[M, N~Ak,, M~N}u

{(Mn N, N)l M, NE A2, NfM},
● u = {(Mu N, M)l M, NGA,, N~M}u

{(MU N, N)l M, NC A2, M< N}, and

● d = {(Ln(iwu N), (Ln M)u(Ln N))l
L, M, NE A2}U

{((MU N)n L,(Mn L) U(Nn L))l

L, A4, NE A*}.

❑

Let T be a reduction relation on A. We use +, to

denote the compatible closure of T, and use ~~ to de-

note the reflexive and transitive closure of -r. We also

use rs to denote the reduction relation r U s. The nota-

tions + and +* are, respectively, shorthands for +pn~d

and ‘;iwd The standard definitions of r -redex and

T –normal form are used. (See Barendregt [2] for more

details.) We will use normal form as an abbreviation

for ~ n Ud–normal form. Also, that a term M c A is

strongly formalizable means that M is @ n Ud–strongly

formalizable; i.e., there is no infinite /3 n Ud–reduction

sequence starting with M.

Proposition 2.8 Every term M c A is strongly formal-

izable. •1

PROOF OUTLINE. That simply–typed A–calculus is

strongly formalizable is well known, and, for example,

is well presented in [4]. We show here how to use this re-

sult and to extend it to give a strong normalization proof

for A.

We notice that the language A does not introduce new

types other than those already expressible in the simply–

typed A–calculus. But it does introduce new terms and

new reduction rules for terms of type 2. It suffices to show

that all the newly introduced terms are strongly formal-

izable to complete the proof. There are four classes of new

terms: O, 1, (M17N), and (M UN), where M,N E Az. It

is clear that both O and 1 are strongly formalizable. It

remains to show that (M n N) and (M U N) are strongly

formalizable if both M and N are strongly formalizable.

We define v(M) to be the bound of the number of steps

needed to reduce M to a normal form. If M is strongly

formalizable, then v(M) is finite. Also define I(M) to be

the length of the term M. There are four possible ways

how a term (M U N) can be one–step–reduced: it can

either be reduced to M if N ~ M, to N if M ~ N, to

(M’ UN) if A4 + k?’, or to (Mu N’) if N + IV’. Using

induction on v(M) +v(N), itcan be shown that (MU N)
is strongly formalizable if both M and N are.

The case for (M n N) is slightly more complicated.

There are six cases in which (M n N) can be one–step–

reduced: it can either be reduced to M if M < N, to N if

N< M,to(M’n N)if M+. M’, to(Mn N’) if N+ N’,

to ((M n N’) u (M17 N“)) if N E (N’ u N“), or to ((M’ rl

N) U (M” n N)) if M s (M’ U M“). Then using induction

on v(M) + v(N), and, for the induction base and each

induction hypothesis, using a second induction on 1((A4 n
N)), we show that (M n N) is strongly formalizable. This

double induction is necessary because in the latest two

cases, we may have v(M) + v(N’) = v(M) + v(N) (or

v(M)+ v(N”) = v(M)+ v(N), or v(M’)+v(N) = v(M)+

v(N), or v(M”) + v(N) = v(M) + v(N)). But we have

/((M n N’)) < I((M n N)) and the second induction on

on /((M n N)) establishes the result. o
Note that -+” is not Church–Rosser. For ex-

ample, by a one–step n–reduction, we have both

~x. ~y. (zlly)and ~z. ~y. (ynz)as normal forms of

Ar. Jy. ((xriy) rl(ytlz)), because both (xriy)<(yn

Z) and (yn~) < (zn y). But Ax. Ay. (z fly) and

A z. A y. (y n x) cannot be reduced further to a com-

mon term. We could introduce reduction rules aiming

for commutativity and associativity to make the calculus

Church-Rosser (see Appendix A), but then we lose strong

normalizability. However, we will see that not all is lost.

The following proposition shows that the normal forms

of a A term might be related to one another by the <

relation. Let us write M z N if M, N c A, M S N, and

N~M.

Proposition 2.9 Let M ~ A. If both M’ and M“ are

normal forms of M, then M’ = M“. •1

PROOF OUTLINE. See Appendix A. o

Corollary 2.10 Let M, N 6 A and M 5 N. H M* is a

normal form of M and N* is a normal form of N, then

M*-J N”. ❑

PROOF OUTLINE. For each M’ such that M - M’, there

is a N’ such that, N -“ N’ and M’ ~ N’; and vice versa.

By Proposition 2.9, the proof then follows. o

Proposition 2.11 (Soundness) Let L, M, N c A.

Then,

1. M ~ N implies [M]p G [N]p, and

2. L +“ M implies [L]p = [M]p

for all environment p. ❑

PROOF OUTLINE. By the definition of < and -+*. O

Proposition 2.12 (Incompleteness) There exist nor-

mal forms M, N E A such that [M]p ~ [N]p for all

environment p, but M s N is not provable. ❑

112

As an example of incompleteness, let us consider the

following two A(z+.2J+z+z terms,

It can be shown that [M] = [IV], but neither M ~ N

nor N < M is provable. Since /3 n Uo?-reduction is in-

complete with respect to the semantics of the language

A, A is not considered to be an ideal representation for

the elements in domain (JO=r Do.

3 The Language AO and Its Prop-

erties

We define a restricted language AO of A, with the intention

to make @ n Ud–reduction complete with respect to the

semantic interpretation of language AO. Often a term Tin

A is written as AF. M (that is, AzlJxn .M), where

M is not of the form A y. N. We call Z the vector of T

and M the matrix of T.

Definition 3.13 The sub–language AO of A is induc-

tively defined as follows.

● 0,1 CA$; and

. AZ. N ~ A~l.+,,,+0n+2 if

— I consists of variables of types al, an, and

N contains no free variable other than those

from i?,

– N G A2 and it is in minimal disjunctive normal

form, and

— each atomic term in N is either O, 1, or an appli-

cation of the form (zi el . . . em), where variable

xiisini ?andisoftype ui=ril *.. . +Ti+

2, and term e~ E A~,k for each 1< k < m.’”

❑

Suppose that we have commutativity and associativity

reduction rules for n (the conjunctive operator) and u

(the disjunctive operator). We say a term N is in mmtmal

dis~unctive normal form if N s Uiel nj~J, Ni,j for some

index sets 1 and J;c I, Ni,j is not a conjunction nor a

disjunction of other sub–terms, and N cannot be further

reduced by the flu rules. We call the term Ni,j an atomic

term. Note that, by the definition of AO, each term in AO

is closed and in @ n Ud normal form. Also, it can been

shown by induction that, for each given type IJ E I’, there

are only finite number of A: terms.

Example 3.14 Assume that variable f has type 2-2

and variable z has type 2. Then the following are the

only 10 terms in A/2+2)+(2+2) (ignoring the variations

introduced by commutativity and associativity):

But the following 5 terms are not in A~2+2)+(2+2):

Af. f, Af. Az. fz, Af. Ax. f(f o),

That is because the first term’s matrix is not of type 2,

the arguments in the second’s and the third’s function

applications are not in language A~, and the matrices of

last two are not in the minimal disjunctive normal forms.

c!

In addition to the soundness property inherited from

language A, we also have the following nice results for

language AO.

Proposition 3.15 Let M, N c AO. Then the normal

forms for (MN), (A z. M), (M n N), and (Mu N) are all

in AO. ❑

Proposition 3.16 (Definability) For every element

f E Do there is a term F E A: such that [F’] = ~.

❑

PROOF OUTLINE. We perform an induction based on

the structure of the type expression u. The proposition

is true for the base case a = 2. If c = r + y, then, by

the inductive hypotheses, all elements in domains D, and

D7 are definable in languages A: and A;, respectively.

It remains to be proved that all elements in DO can be

defined in language A;.

The step function stepa,b in domain D,+7, where a E

D, and b E D7, is defined by

Stepa b x = if a G7 a? then b eke &.

Furthermore, an element f E DO can be expressed as

the least upper bound of a set of step functions in Do.

That is, f = U,eI stepa,,b, for some index set 1. This

construction is standard and can be found, for example,

in Plotkin [11]. Since D~ and D7 are finite, the index set

I is finite.

Lettyper=rl -+... Tn+2andtype-y=yl -

. . . ym -+ 2. Then the step function can be defined equiv-

alently as

Stepa,bx ~1% =

if ((ay~ ...yn)~z(xy~ . ..yn)

forally16D7,,..., ynEDTn)

then (b Z1 . . . zm) else O,

113

where Z1 c D71, z~ G DTm. This is the same as 1 illustrates the ordering of the 10 elements in domain

stepa, b X Z1 . . . Zm =

(fl{(~yl . ..yn)la yyn=l}) n(b)21b.21...2m).

By inductive hypotheses, all elements in domains

D ,1,..., D.n, D,, and D?, are definable. Hence, the

above step function can be defined in language A; as a

normal form of the following term

Aa. A’zl)izm.

(n(a~, ~n)=, (X Y1 . . . Yn)) n (B Z1 . . . Zm))

where Yi E A!, with [Yi] = yi, and B G A; with [B] = b.

Since ~ can be expressed as UjGI $’tepa,,b,, and each

of the function steps, ,b, can be defined by a A; term

AX. AZI A Zm . Mi, f can be defined by the following

term F,

FRLC. AZl AU MLUML

iEI

Normal forms of F are in language A: ~ v

Example 3.17 There is a function y in domain

q(2+2)+(242))+(2+2) such that for all elements z in

domain D(2+2)+(2+2), (y z) is the least fixed point of ~.

Can we find a term Y in language A~(2+2)+(2+2))+ (2+2)

such that [Y] = y?

Before start calculating Y, let us first draw a dia-

gram of domain D(q+z)+(q+q). The diagram in Figure

q2+2)+(2+9. The functionalities of the 10 elements

are also described as maps from domain D2+ q to D2 + q.

Note that in describing the maps, we confuse the syn-

tactical lambda notations to the semantic elements they

denote. For example, A z .0 is meant to be the element

in domain D2+2 which always return O when applied, it

is not meant to be a term in the language A}+ z.
It is not difficult to see that the least fixed point func-

tion y can be expressed as

By a little calculation and simplification, we can obtain

the following fixed point term Y,

where variable g is of type (2 --T 2) + (.2 -+ 2) and z is

of type 2.

(AQ a side note, the 10 elements in domain

q2+2)+(2+2) happen to be defined in Example 3.14 by

the 10 A~2+2)+(2+2) terms.) n

Proposition 3.18 (Completeness) Let M, N c AO.

Then, [M] ~ [N] implies M ~ N. ❑

PROOF OUTLINE. The idea is to show that if M < N is

not provable, then [itf] ~ [N], which is a contradiction.

114

Suppose that terms M and N are of type u = UI -+

. . . - on * ,!?. Write M as A~.(Uicl flj~J, Mi,j) and N

as ~ E, (Uk~K fl/eLk Nk,l), where F is a vector of variables

whose types are al, Un.

We prove the proposition by a structural induction on

type u. The base case is u = 2, in which the proposition

is true. We want to show that the proposition is true for

type u=ul -.. . + an -+ 2, given it is true for types

Ul,un.

Since M ~ N is not provable, there exists an index

i E 1 such that for all indexes k G K, (l’lj~~,Mj) S

(fl~e~, N~,/) is not provable. Based on the conjunctive

term flj ~J, Mi,j, we will construct an environment p such

that [Ui~I flj~~,Mi,j]~ = 1 but [U~~K fl?a+Nk,& = O.
That is, [M] ~ [N]. This will complete the proof.

Given i, we now describe how to construct such an

environment p. Let Xh be a bound variable in i?. Suppose

xh is of type 2 and Mi,j Z xh for some j ~ Ji, then ~h

is mapped to 1 in environment p. If xh never occurs in

the conjunctive term flj ~J, M~,j, then xh is mapped to O.

If variable $h is of type ah = rh, _ . . . rh~ + ,2, then

define a set P by

and map xh to the following function in p,

Ayl Ayhm.

2f(p~(?Jl, . . . , Yhm) for some p E P) then 1 else O

If xh never occurs in the conjunctive term flj EJ, Mi,j,

then Xh is mapped to function ~ yl ~ yhn .0.

It is easy to see that [nj gJ, Mi,jJJp = 1. This also

gives us [UieI flj CJ, Mi,j]p = 1. It remains to show that

[UkcK fll~L,Nk,l]P = 0. Since for all indexes k c K,

(njcJ,Mi,j) 5 (fl?eLk N~,/) is not provable, then, for
each fixed k c K, there exists an index 1 E Lk such

that for all indexes j E Ji, Mi,j ~ Nk,1 is not prov-

able. If Nk,l ~ xh, where xh in ~ and of type 2, then

xh must not occur in the conjunctive term flj ~J, Mi,j.

By the construction of the environment p, Xh is mapped

to O. Hence, [flleL, N~,~]p = O. The only other case

iS Nk, / K oh ehl . . . eh~, where ~h is of type uh =

~hl - . ..Thm + 2 and eh, E +?,, ,.. .,ehm E A~~m.

If Xh never occurs in flj ~J, Mi,j, then by the definition

of p, [Nk,~]p = O. Otherwise, we must have some Mi,j s

xhfh, . . . fh~, where fh, E A~b, ,..., fh~ ~ A~~~, but

nOt all Of fhl ~ ehl, fh~ < e~~ are provable. By

inductive hypothesis, we have [fh,] ~ [ehl], or or

[fhm] ~ [ehm]. Then, by the construction of environment

p, we also have [Nk,l]p = O. That is, [fl/cLk Nk,/]p = O

in case when Nk,l is a function application. Since, in all

cases, [flle~k Nk,l]p = O for any fixed k 6 ff, we have

[U~cK flle~, ‘k,lj~ = 0. This comPletes the Proof. O

Example 3.19 Suppose we have the following two

A/(2+2)+(2+2))+(2+2) terms, Y and Z, defined by

YE Ag. Az. ((g(Ax. o)l)nr)u
((g(~x. o)l)n(g(~z. r)o)),

z = Ag.Ax. ((g(Az. z)l)ni?) u(g(Az. o) o).

It can be checked that neither Y < Z nor Z < Y is

provable. Therefore, we should be able to find elements

g, g’ E D(z+zJ+[2+2) and X,X’ ● D2 such that

[YJJgz=l but [Z]gz=O) and

[Y] g’ z’= O but [2] g’ z’= 1.

This will show that [Y] ~ [2] nor [Z] ~ [Y].

The conjunctive term (g (A z . O) 1) n (g (Ax. x) O) in

Y’s matrix cannot be proved to be syntactically weaker

than either one of the two conjunctive terms in Z’s ma-

trix. It follows that we can choose

g= Af. Ax.

if(Ax. O,l)~(f, z)or(Ax. x,O)G (f, x)

then 1 else O,

x = o,

to make [Y] g x = 1 and [Z] g z = O. Likewise, the

witness of the unprovability of Z < Y is the conjunctive

term (g (J x . z) 1) n x in Z’s matrix. Hence we choose

to make [Y] g’ z’ = O and [Z] g’ z’ = 1. •1

Corollary 3.20 Let M, N E AO. Then, M E N implies

[M] = [N], and [M] = [N] implies M R N. ❑

Proposition 3.21 Let a E I’. Then there is a term Y E

A&+ol+g such that for all terms F E A~+O,

1. [YF] = fix [F], where fix is the least fixed point

function; and

2. if M is a normal form of (YF) and N is a normal

form of (F(YF)), then M R N.

❑

PROOF OUTLINE.

1. By Proposition 3,16.

2. By Proposition 2.11, Corollary 3.20, and the above.

o

The above properties of language AO enable us to syn-

tactically calculate the least fixed point of a term M c AO.

In fact, there are two ways to do this. That first method

115

uses Propositions 3.16 and 3.21 to find the fixed point

term Y c A~O+O)+a for the given type u e 17, and then

calculate a normal form for (Y M). The normal forms for

(YM) are the least fixed point of M. These terms are

equivalent under the relation R.

The second method uses an approximation sequence

starting with BO E A$, where ~Bc] = _LO. The iteration

successively calculates a term Nt~J 6 A}, where N(o) =

B. and N(k+lj is a normal form of (MN(kl), until it finds

N(~+l) < N(i). Term N(i) is then the least fixed point of

M. Th~ iteration is ensured to be terminated because,

for a given type a c 17, there are only finite number of A:

terms.

Example 3.22 Suppose we want to calculate the least

fixed point of the following A~2+ ~)+(z+ ~, term M, de-

fined as
.

MR~~.~Z.(~O)U((~l)rIZ).

By using Proposition 3.16, we can find a least fixed

term Y c A~(z+21+(2+2))+(9+2). For example,

Y= Ag. Ax.

point

((9(Ax. o)l)n2) u((9(A2. o)l)n(9(A2.2) o)),

as defined in Example 3.17 is such a fixed point term.

Furthermore, (YM) has ~ z .0 as a normal form. There-

fore, ~ x .0 is the least fixed point of M.

Or we can use a fixed point approximation sequence

starting with A z .0. Since (M (A z . O)) +’ A z .0, we

have A ~ .0 as the least fixed point of M. ❑

Note that the above results only apply to language AO.

For a closed term M in language A but not in language

AO, we must first translate M into a semantically equiv-

alent term M’ G AO. There is a systematic way to do

the translation. The translation is based on the idea that

a term (MN) E A can be rewritten into a semantically

equivalent term which includes M and N, but does not

have M applied to N. The translation proceeds until all

the functional applications in a term satisfy the require-

ments of AO (i. e., application (MN) must have M as a

bound variable and N as a AO term). /3 n Ud–reduction

is also performed during the translation process to make

sure that the final result is a AO term.

Example 3.23 Suppose we have a A(2+2+Z)+(Z...+2+2)

term M, defined as

MsAf. Az. Ay. (fx)y.

We want to translate M into a A~2+2+2)+[2+2+2j term.

First, we observe that the infix operator for function ap-

plication, ., of type (2 -+ 2) _ (2 a 2), can be defined

‘n A&+2)+(2+2) as

●~Ah. A~. (ho) u((hl)n 2).

We then translate M as the following,

The last term is in language AO.

4 Remarks

❑

We would like to make several remarks regarding the fea-

sibility of using the outlined syntactic approach to com-

pute least fixed points. One of the questions comes from

the observation that, for a closed term M c A, a seman-

tically equivalent term M’ c AO seems to be much longer

than M, which makes the syntactic method unattractive.

Furthermore, in general, how do we translate an abstract

semantics of a functional program into language A, espe-

cially when the ground type is not 2.

To answer the first question, we now define a language

Al. Language Al is a superset of AO, looks more like usual

functional languages, and often provides shorter terms

than those in AO.

Definition 4.24 The sub–language Al of A is induc-

tively defined as follows.

. O,l~A~; and

● A?. N ~ A~l+ .+o~+z if

— i consists of variables of types al, an, and

N contains no free variable other than those

from i,

– N 6 AZ and it is in minimal disjunctive normal

form, and

— each atomic term in N is either O, 1, or an appli-

cation of the form (zi el . . . em), where variable

xiisin Zandis of type ui=r~l+...-+ri~+

2, and term ek is either a variable from ~ or is

,,, for each 1< k < m.in Al

❑

The only difference between Al and AO is that the

atomic terms in Al are allowed to have function applica-

tions whose arguments are bound variables. In doing so,

we lose the completeness property. For example, the two

terms~~.~z.jzand~$.~z. (~O)l..l ((jl)nz) arein

Al and are semantically equivalent, but cannot be shown

116

to be syntactically equivalent under the ~ relation. How-

ever, the two methods described in Section 3 for comput-

ing fixed points still work. That is, the fixed point term

Y E A:g+o)+o works both for terms in language A~+m

and A~+o. And the approximation-sequence method is

guaranteed to be converging because, for a given type

u E I’, there are only a finite number of terms in A;.

Example 4.25 The term F E A f . A z . f z is in

A:z+z)+(z+z). By using the fixed point term Y defined

in Example 3.22, we have A x .0 as a normal form of (YF),

and thus as a least fixed point of F. The approximation

method also finds A z .0 as the least fixed point.

Another interesting example can be found in [3]. It is

a A((2+2J+2J+((2+2)+2) term Ii, defined as

where variable ~ is of type (2 + 2) + 2 and g of type

2 + .2. If we naively perform an approximation sequence

starting with B G A g .0, we will have

(HB) +“ Ag. g(l,

(H(HB)) +“ Ag . g (g 0),

(H(H(HB))) -+* AIJ .IJ (g (g o)),
. . .

which does not reach a limit under relation <. However,

if I-1 is translated (as described in Example 3.23) into a

semantically equivalent A/(2+2 ~+21+[(2+2)+21 term

~l=~f.~g.(go)u((91)n(f9))

The approximation sequence will reach A g . g O as the

least fixed point of HI. ❑

Is it difficult to translate from a typed functional pro-

gram (or the abstract semantics of the program) to a

semantic equivalent Al term? The translation will be

straightforward if we can encode the basic semantic do-

mains used in the functional programming language into

domains Da, a E I’. Usually, this is rather easy for an

abstract semantics because their basic domains are finite.

For example, a three element domain 3 = {a, b, c}, with

ordering a E b ~ c can be embedded in domain D2+ z

with a,b, andc defined asa = Ax .0, b = Ax .x, and

c = ~ ~ .1. The boolean domain Bool = {O, t, f}, with or-

dering O C tand O ~ ~ but neither ~ ~ t nor t~ f,can be

encoded & language A~+2d2 by O ~ ~x .A y.x n y, t s

Ax. Ay. x, and t ~ Ax. Ay. y. Also, by 7 equality

(i. e., M so A z . Mz), higher-order functions can be

easily encoded in Al. For example, the strictness prop-

erty for higher–order if functional, which is in domain

D2+0-+n_+0 with type u = rl -+ T2 + . . . ~ Tn + 2, can

be defined as

tf=Ap. Af. Ag. Axl. Ax2. . .. Axn.

(pn(fxl x2... Zn)) u (pn(9 X1 X2 . . . Xn)),

which is in language A~+O+O+O.

Regarding the complexity of the proposed syntac-

tic method, is it better than simply using the frontier

method? We believe it is better, especially if we use the

approximation method on language Al. We observe that

a functional program often has simple textual structure.

That is, function applications in typical functional pro-

grams usually have bound variables as arguments. This

makes the translation from a functional program into a

Al term easy, and the length of the resulted Al term com-

parable to the length of the original program. The time

spent in the ~ relationship testing between two successive

approximation is then comparable to the cases in the fron-

tier method. However, an approximation sequence in the

syntactic method usually leads to a limit more quickly

than an approximation in the frontier method, because

the former utilizes the textual information from the pro-

gram, while the latter blindly searches along the chains in

the semantic domains. Of course, in the worst cases, the

syntactic method will, just as the frontier method, require

exponential running time (with respect to the program

length).

On the other hand, there remains several engineering

issues to be explored to better utilize the outlined syn-

tactical approach. For example, we can define a repre-

sentation for terms in language AO (and Al) such that

the provability of < relationship between them can be

checked easier. A lexicographic encoding of AO terms ac-

cording to the sequence of their bound variables comes to

mind naturally. We can also develop safe approximation

schemes based on the proposed syntactical method. The

approximation scheme will calculate less accurate fixed

points, but do it faster. For example, a reduction rule

like

(M n N) -+naPProx M,

when N ~ M is not provable, can be used to speed up

the approximation sequence to get a less accurate fixed

point.

5 Conclusion and Comparison to

Other Works

We have shown how to develop a syntactic approach to

fixed point computation on finite domains. The syntac-

tic method is sound and complete with with respect to

the semantics of fixed point computation on finite do-

mains, and bears close relationship to the simply–typed

A–calculus.

117

It is interesting to compare the development here with References
the the work of Abramsky [1] and Jensen [7,8]. Their work

also provides a junction between semantics and logics for
[1]

functional programming languages. Their work is mostly

concerned with the dual relationship between domain the-

ory and its axiomatic logics; ours is concerned with fixed [2]

points on finite domains and their corresponding calcu-

lus. While their work usually provides a decidable theory

without giving an explicit proof strategy, the augmented,

simply–typed A–calculus in our approach provides a sim- [3]

ple way to compute the desired results.

A Outline of Some Proofs

We need some technical definitions and lemmas in order [4]

to show that Proposition 2.9 is true. We define two new

reduction relations: c (for commutativity) and a (for as-

sociativity). [5]

Definition A.26 The reduction relations c and a on

language A are defined as follows.

● e = {(MnN, N’n M)l M, NE AA}u
{(Mu N, NUA4)]J4,NEA 2}, and

[6]

● a= {(Ln(Mn N), (Ln M)n N)l L, M, NgA2}

u {((LnM)n N, Ln(Mn AJ))l-L, M,N EAZ}

U {(LU(MUN), (L UM)UN)IL, M,N GA2} [71

U {((LUi14)U JV, LU(iWUJV))l~, JW, ~ eA2}
❑

It is clear that neither c nor a is strongly normalizing.

Lemma A.27
[8]

1. tl u dca is Church–Rosser; and

2. -+; and +~udca commute.

❑ [9]

By the above results, we know that ~ n Udca is

Church–Rosser. The following lemma is easy but very

useful for our goal.

Lemma A.28 Let M c A. If M k in @ n Ud–normal

form and M +=0 M’, then M’ is in ~ n Ud-normal form [IO]

and M E M’. ❑

Now we can show the following result.

Proposition A.29 Let M c A. If both M’ and M“ are

~ n Ud-normal forms of M, then M’ H M“.
❑ [11]

PROOF OUTLINE. Since P n Udca is Church-Rosser, [12]

there is a N E A such that M’ ~~nudca N and
&f!l ~:nudca N. In fact, by Lemma A.28, we have

M’ --+~a N and M“ +-* ~a N. Since relation ~ is reflexive

and symmetrical, it follows that Al’ E M“. o

Samson Abramsky. Domain theory in logical form. An-

nals of Pure and Applied Logic, 51(1–2):1–77, March

1991.

Hendrik Pieter Barendregt. The Lambda Calculus: Its

Syntax and Semantics, volume 103 of Studies in Logic and

the Foundations of Mathematics. North–Holland, revised

edition, 1984.

Chris Clack and Simon L. Peyton Jones. Strictness anal-

ysis — a practical approach. In Jean-Pierre Jouannaud,

editor, Functional Programming Languages and Com-

puter Architecture, pages 35–49. Nancy, France, Septem-

ber 1985. Lecture Notes in Computer Science, Volume

201, Springer–Verlag.

Jean-Yves Glrard, Paul Taylor, and Yves Lafont. Proofs

and Types, volume 7 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 1989.

Sebastian Hunt. Frontiers and open sets in abstract

interpretation. In Functional Programming Languages

and Computer Architecture, pages 1–1 1. Imperizd Col-

lege, London, U. K., September 1989. A.C.M./Addison-

Wesley.

Sebastian Hunt and Chris Hankin. Fixed points and fron-

tiers: a new perspective. Journal of Functional Program-

ming, 1(1):91–120, January 1991.

Thomas P. Jensen. Abstract interpretation vs. type in-

ference: A topological perspective. In Simon L. Peyton

Jones, Graham Hutton, and Caresten Kehler Hoist, ed-

itors, Functional Programming, Glasgow 1990: Proceed-

ings of the 199o Glasgow Workshop, pages 141–145. Ul-

lapool, Scotland, U. K., August 1990. Springer-Verlag.

Thomas P. Jensen. Strictness analysis in logicaf form. In

John Hughes, editor, Functional Programming Languages

and Computer Architecture, pages 352–366. Cambridge,

Massachusetts, U. S.A., August 1991. Lecture Notes in

Computer Science, Volume 523, Springer–Verlag.

Chris Martin and Chris Hankin. Finding fixed points

in finite lattices. In Gilles Kahn, editor, Functional

Programming Languages and Computer Architecture,

pages 426–445. Portland, Oregon, U. S. A., September

1987. Lecture Notes in Computer Science, Volume 274,

Springer–Verlag.

Simon L. Peyton Jones and Chris Clack. Finding fix-

points in abstract interpretation. In Samson Abram-

sky and Chris Hankin, editors, Abstract Interpretation of

Declarative Languages, chapter 11, pages 246–265. Ellis

Horwood, 1987.

G. D. Plotkin. LCF considered as a programming lan-

guage. Theoretical Computer Science, 5:223-255, 1977.

Jonathan Hood Young. The Theory and Practice of Se-

mant~c Program Analysis for Higher–Order Functional

Programming Languages. PhD thesis, Department of

Computer Science, Yale University, May 1989.

118

