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Abstract  

Lisp has become the language of choice for many applications such as artificial intelligence 
programs or symbol manipulation. The original implementation of Lisp 1.5 was a concise, elegant 
statement of the semantics of the language. Although production Lisp systems have undergone 
significant development and evolution since Lisp 1.5, including the development of sophisticated 
compilers, there have been few significant theoretical improvements in the implementations of these 
systems. Most improvements, such as arrays or shallow-binding, have been made more for the 
sake of speed than for the sake of storage. A notable exception to this is the technique of tail 
recursion, which can save more than just stack space. 

We believe that more can be done to reduce the storage requirements of Lisp programs. Although 
in many instances, the Lisp programmer can reduce the storage requirements of his program by 
deleting unneeded pointers as soon as possible, there is nothing he can do about systematic 
inefficiencies of the Lisp interpreter. This paper addresses itself to two sources of inefficiency in 
Lisp's variable binding mechanism--one of which is easy to detect--which prevent storage from 
being garbage collected long after its last reference. Implementations of Lisp which eliminate these 
situations should result in more economical execution for almost all Lisp programs which use a lot 
of storage, due to a lighter marking load on the garbage collector. 

In t roduc t ion  

Much work has been done to optimize the interpretation and compilation of Lisp programs. 
However, most of the work has involved the minimization of running time (exclusive of garbage 
collection time) and the minimization of the number of CONS'es. Let us define the running time of 
a Lisp program to be the execution time exclusive of garbage collection, garbage collect time to be 
the time spent garbage collecting, and running space to be the number of CONS'es. Each of these 
quantities refer to the amount of time or number of CONS'es since the program started. Let us 
define the net space at a point in a program to be the number of cells marked by the garbage 
collector if it were run at that point in the program. When discussing the total time or space taken 
by a Lisp program, we mean the running time, garbage collect time, or running space at the 
termination of the program; maximal net space will refer to the net space maximized over the life of 
the program, i.e., the "high water mark". 

This paper discusses ways to reduce the net space of a program and hence its maximal net space. 
This is important because the garbage collect mark phase time for a single garbage collection is 

l"Stale" was used in the original paper, but "dead" is more consistent with modem usage [Aho86]. 

2The date is correct; this manuscript was never published due to the pressure of the author's thesis work. The present 
version has been formatted and edited, but not revised, except where noted. 

3Author's current address: Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436, 
(818) 501-4956, FAX: (818) 986-1360. 
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proportional to the net space at that point in the program. Reducing the average net space of a 
program will reduce the total garbage collect time; reducing the maximal net space will allow larger 
programs to be nm in a limited address space. 

We assume a paradigm Lisp interpreter similar to that found in the appendix of  [McCarthy65] for 
the purposes of  discussion. This is because most Lisp interpreters are virtually isomorphic to this 
one (with the possible exception of shallow-binding, which does not affect our arguments), and this 
interpreter is already familiar to more people than any other. 

Environments and the Buried Binding Problem 
An environment is intuitively an object in which the value of a variable can be looked up. In order 
to be more  precise,  however ,  we must  enumerate  all the functions which can operate on 
environments.  The function ( lookup  x e) produces the current value of  the variable x in the 
environment e, if there is one, and UNDEFINED, otherwise. There is a unique environment,  called 
NULL-ENVIRONMENT, which produces UNDEFINED for every variable. New environments are 
created from old ones by the function (b ind  x j,, e) ,  which creates an environment e '  in which 
the variable x is bound to the value y and the values of all other variables are inherited from e. The 
value of  the variable x in an environment e can be changed to z by the function ( r e b i n d  x z e).  
r e b i n d  returns the "same" environment it was given, except that ( l o o k u p  x e) will now produce 
z instead of  whatever it produced before. (Models differ on whether rebinding a variable x in an 
environment  e can affect the value of x in any other environment or not.) Environments can be 
compared  by ( e q u a l  e l  e 2 ) ;  e l  and e2 are equal just  when ( e q  ( l o o k u p  x e I ) 
( l o o k u p  x e2) ) is t for all variables x. 

Implementing Environments--The Tree Representation 
A non-null environment e can be represented by a pair <bind[e], parent[e]>, called a node, where 
bind[e]=p is a binding post, i.e. a pair <variable[p], value[p]>, in which value[p] can be updated. 
The above structure is created by the function call (b ind  variable[e] value[e] parent[e]). (Here, 
variable, value, bind, and parent are meta functions for decomposing bindings and environments 
and are not available to the programmer.) 

lookup and r e b i n d  Can be defmed relatively easily: 

(lookup x e) = let e'=search[x, el in 
if e'=NULL-ENVIRONMENT then UNDEFINED 
else value [bind[e']] 

(rebind x z e) let e '=search [x, el in 
if e'=NULL-ENVIRONMENT then ERROR 
else value[bind[e']] :=z; 

e 

search[x, el = if e=NULL-ENVlRONMENT then e 
else if x=variable[bind[e]] then e 
else search[x, parent[ell 

If an environment e '  can be reached from an environment e by following a finite series of parent 
pointers, then we say that e '  is an ancestor of e and that e is a descendant of e '. We  make the 
reasonable assumption that the null environment is an ancestor of evelry environment (excepting the 
null environment,  itself). This constraint is automatically satisfied by any finite program, given 
only our primitives for interacting with environments.  With these assumptions,  a group of 
environments forms a tree having the null environment  as its root. The unique path from an 
environment to the root we will call its search path. 

We have defined the tree representation for environments; we now investigate its properties. First 
of all, l o o k u p  and r e b i n d  terminate for every environment due to the null-environment-ancestor 
condition. Secondly, lookup and r e b i n d  find only the first occurrence of  a variable in the search 
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path from a particular node; any other binding of that variable in an ancestor environment will not be 
seen. Therefore, the tree representation could lead to the "buried binding problem": a binding of a 
variable x in a node e cannot be referenced because 1) the only direct pointers to e are parent 
pointers from other environments; and 2) all paths of pointers to e from outside the environment 
tree go through environment nodes in which x is previously bound. Thus, s e a r c h  can never be 
called with the arguments [x, e]. 

Buried bindings can be a problem if space is at a premium because the garbage collector will refuse 
to collect the value of the buried variable even though it cannot be referenced by lookup or rebind. 
This is because the garbage collector cannot distinguish between environment and other structures 
and it must assume that the parent pointer chains can be followed. There are two possible solutions 
to this problem: modify the garbage collector, or change the representation. We will investigate 
both of these possibilities. 

A natural question arises before we delve into the details of possible modifications. Do buried 
bindings actually occur in real programming situations, such as in Lisp? The answer is paradoxical 
in that Lisp interpreters 4 which have been optimized in certain ways 5 exhibit more buried bindings 
than unoptimized interpreters! 

Modifying the Garbage Collector 
Suppose that we wish to modify the garbage collector to reclaim buried bindings. What must be 
changed? First, the buried bindings must be identified during the mark phase. Then, buried 
bindings must be deleted or spliced out of the environment dunng the collect phase. 

In order to identify buried bindings in the mark phase, the garbage collector must know when it is 
marking an environment node, and give it special treatment. Upon encountering an unmarked 
environment node e by chasing other than a parent  pointer, the garbage collector must first run 
along its parent path from the node to the root, accumulating a defined variable set for e which 
indicates which variables occur in the path. If the garbage collector tries to add a variable which is 
already in the defined variable set, it knows that the binding is buried as far as the environment e is 
concerned. However, it might be accessible through some other pointer. Therefore, the best thing 
the garbage collector can do is mark the bindings which are certainly accessible. If at the end of the 
mark phase of garbage collection, a binding is still not marked, it is either totally inaccessible 
(would not be marked by an unmodified garbage collector) or it represents a buried binding and 
should be reclaimed. 

In order to accumulate the defined variable set for an environment during the scanning of the parent 
path for an environment e, one bit per atom (variable) is allocated which is normally in the offstate. 
As each binding is encountered on the scan, the variable's bit is tested. If it is off, the variable is 
not yet in the set and must be added. The bit is set to on, that binding is marked as accessible, and 
its value is put onto the stack for further marking. If, on the other hand, the bit was on, then 
nothing is done to that binding. In either case, the scan then proceeds with the parent of the current 
node. When the root is reached, a variable's bit will be on if and only if it is in the defined variable 
set for e. However, since the bits must all be offbefore the next environment node is marked, we 
must make one more pass and turn all of the bits off. Finally, the environment node e itself is 
marked. 

This scheme is not as efficient as one might hope because environments close to the root will be 
scanned many times in the course of garbage collection, whereas in normal garbage collection, a cell 
can be marked (and its pointers followed) only once. It remains to be seen if more clever methods 
of garbage collection can solve this problem. 

4Interpreted code is easier to analyze for storage utilization, but compiled code has analogous problems. 

5E.g., through closure-sharing [Steele78]. 
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Buried bindings, once identified, can be either nullified or spliced out of the environment tree. 
Nullifying the binding at node e means simply calfing (rebind variable[e] n i l  e)  ; i.e., rebinding 
the variable at e to something harmless, so that the old value can be collected. This method does 
not require another phase in the garbage collector but does have the disadvantage that the storage 
used by the node e itself cannot be reclaimed. However, lookup could be modified to splice out 
nullified bindings whenever they are encountered, so that they can be picked up during the next 
garbage collection. Thus, this additional storage use is only temporary. 

Splicing. out buned bindings during the garbage collection in which they are identified might seem 
to requare another mark-type phase. However, Guy Steele [Steele76] has suggested a clever 
method whereby the buried bindings can be spliced out dunng the collect phase. Every marked 
environment node encountered is checked to see if its parent is unmarked. If it is, the parent pointer 
is reset to the parent's parent. That node itself is checked for a marking, and so on, until the parent 
pointer points to a marked environment or n i l .  The collector then goes onto the next node in 
address order. If the node is unmarked, it is put onto the free node list. This simple scheme will 
work, provided 0nly that the free list link cell is not the same a~ the parent Cell in the environment 
node. This is because nodes may be placed onto the free list before their parent pointers have been 
used and we wouldn't want the parent pointer to be clobbered prematurely. Since this state of 
affairs can easily be alrranged (e.g., link the free lists by CAR'S in our prototype), this method is 
very nearly as efficient as a normal collect phase. 

The Funct iona l  Representat ion  for an E n v i r o n m e n t  6 

The tree representation for environments can be thought of as a shared representation in the sense 
that a particular environment node stores only one binding; it gets all other bindings from another 
environment. Another possibility would be a non-shared representation, one in which each 
environment stores all the bindings defined for that environment. 

We now present such a non-shared environment representation which we call the functional 
representation. In this representation, an environment is simply a set of binding posts with no more 
than one binding post per variable. In other words, an environment is a set of ordered paks which 
forms a single-valued relation, i.e., a function. The definitions of each of the primitives dealing 
with environments is trivial. ( lookup x e) finds the binding post for x in e and returns the 
associated value, or UNDEFINED, if none exists. NULL-ENVIRONMENT is the empty set. 
( reb ind  x z e) finds the binding post for x in e and replaces the associated value with z. A big 
change between the representations is in bind.  (b ind x y e)  = e ' has two cases: 1) if x is 
undefined in e, then e '  is e u <x,y>; 2) if x is bound to w in e, then e '  is (e - <x,w>) u <x,y>. 
T h u s ,  bind preserves the functionality of environments. 

There are several possible implementations of the functional representation. The set of binding 
posts can be stored as a list, an array, or something more complex like a binary search tree or trie. 
It seems that all of these representations require O(ISI) time and space to perform bind, while for 
some of them, lookup or r e b i n d  can be done in time O(loglSI), where ISI is the cardinality of the 
set. For certain restricted sets of variables, the time for lookup is O(1), i.e., constant. This is to be 
contrasted with the tree representation, where b ind requires constant time and space, but lookup 
can require time much greater than O(ISI)! This is because some trees bind the same variable many 
times in a search path, which slows down accesses to other variables. 

This discussion must also be tempered by the knowledge that the tree representation can be 
augmented with value cells to give a shallow-binding representation [Baker76] which can reduce 
l o o k u p  time to a constant at the expense of yet another time--context switching time, which is 
constant for either the unadorned tree representation or the functional representation. We note that 
the tree representation has a buried binding problem if and only if the shallow-binding tree 
representation has it; therefore, we will not discuss shallow-binding any further. 

6A modern term for this representation is "acquaintance list/vector", after its use in Hewitt's Actor model [Hewitt77]. 
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The functional representation cannot exhibit the buried binding problem because any environment 
binds a variable to only one value. However, it has serious efficiency problems. First, it may not 
be any faster to access than the tree representation. Second, creating new environments is no longer 
a trivial operation, as it is in the tree representation. Finally, the storage for the sets themselves is 
not insignificant, and since it is not shared, as it is in the tree representation, it may take up more 
room in some cases than the tree representation. 

The $64,0007 question is: can a representation for environments be found which has good creation 
and access times and which solves the buried-binding problem? 

Hacking Environments 
Any solution to the buried binding problem depends upon the programmer adhering to certain 
constraints in accessing and modifying environments. For example, some "a-list" Lisp systems 
give the programmer access to the current environment and allow him to apply CDR to that 
environment to get its parent environment. This kind of hacking can expose buried bindings and 
prohibits any attempt at there elimination. 

To insure the inviolability of environments, we advocate the creation of a new Lisp datatype, the 
environment. The Lisp programmer would have access to environments only through the 
functions: null-environment, bind, rebind, and eval. (null-environment) would produce 
an environment with no bindings; (bind x y e) would produce a new environment which had the 
same bindings as e except that the atom x would be bound to y; ( rebind × z e) w o u l d  change the 
binding of x in the environment e to the value z using a side-effect, and would return the changed 
environment e; ( eva l  x) would evaluate the expression x in the current environment and 
(eval x e) would evaluate the expression x in the environment e. 

Dead s Bindings 
A binding of a variable to a value at a point in the interpretation of a program is said to be dead if it 
will never be referenced again, yet it would not be reclaimed by a normal garbage collection at that 
point. By this definition, we can see that buried bindings are also dead bindings. There are many 
other instances of dead bindings, however. 

A trivial example of a dead binding is that of a subroutine having one parameter which never 
references it. In this case, the binding of the parameter to the argument need never occur, since it 
would be immediately dead. A less trivial case would be a subroutine of one parameter, which 
parameter was used to determine one of a set of alternative bodies for that subroutine. If none of 
the alternative bodies referenced the parameter, the parameter binding would become dead 
immediately after the choice of alternatives had been made. Dead bindings tie up a lot of space by 
holding onto storage that could otherwise be reclaimed by the garbage collector. If the bindings 
were nullified or spliced out as soon as they were no longer needed, rather than at the end of 
interpretation of the form in which they were bound, the space savings could be significant. 

The primary producer of dead bindings, however, is the functional value or upward funarg. A 
functional value is a pair consisting of a lambda-expression and an environment. Functional values 
are created by evaluating a ( funct ion ... ) form in Lisp. The environment of the functional values 
is the environment at the time the form was evaluated. Intuitively, this environment is to be used 
for finding the values of the free variables in the lambda-expression. Usually, however, there are 
only a few free variables, whereas the environment structure can define a large number. 

The more trivial examples of dead bindings discussed earlier do not cause as much trouble as 
functional values because the binding usually becomes dead only a short time before it is released, 

7From a TV quiz show which was popular when circuits were still segregated. 

8"Stale" was the term which appeared in the original paper; "dead" is more consistent with modem usage [Aho86]. 
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at subroutine return time, when it can be garbage-collected. Functional values, on the other hand, 
can be created at large return-stack depths, yet can be passed back all the way to be invoked at a 
very shallow stack depth. In this way, extremely large environment structures can be in effect at 
ver.y shallow return point stack depths. In most cases, only a very small part of these large 
envxronment structures will ever be referenced. 

A worst-case situation for dead bindings produced by functional values can be imagined. It is well 
known that Lisp's CONS cells can be exactly simulated by functional values; actually doing so in 
Lisp 1.5 will cause any by the most trivial program to quickly run out of storage. This is not 
because the number of Lisp cells used to implement functional values is excessive; in fact, the 
simulation below requires just 7 CONS cells (in our paradigm interpreter, anyway) for one 
simulated CONS cell. What is wrong is that the functional values keep pointers not only to the 
simulated cell's CAR and CDR, but also to the value of every other variable which existed in the 
context in which the cell was created! It is this storage inefficiency caused by dead bindings rather 
than the constant factor inefficiency which makes functional values so useless in Lisp that some 
Lisp's do not even support them. 

(defun cons 
(function 
(lambda 

(cond 

(x y) 

(fn new me) 
((eq fn 'car) x) 
((eq fn 'cdr) y) 
((eq fn 'rplaca) (prog2 (setq x new) me)) 
((eq fn 'rplacd) (prog2 (setq y new) me)))))) 

(defun car (x) (x 'car nil x)) 

(defun cdr (x) (x 'cdr nil x)) 

(defun rplaca (x y) (x 'rplaca y x)) 

(defun rplacd (x y) (x 'rplacd y x)) 

Simulation of Lisp's CONS cell by a FUNARG 

The difficulty with dead bindings is in realizing when they have become dead. In lexically-scoped 
languages like Algol or PL/I, the free/bound status of a variable in an expression gives a good fail- 
safe method for proving that a variable binding is dead. If there are no more free occurrences of 
that variable in the rest of the expression being evaluated, any binding of that variable in the current 
environment is dead. On the other hand, a variable binding may be dead and yet the variable may 
still occur free in the expression--e.g., within a conditional arm that will not be executed. 

The whole concept of "free/bound" loses its meaning in a dynamically-scoped language like Lisp, 
because the scope of a variable binding changes with every different invocation of a subroutine. No 
purely syntactic test can determine whether a variable is in the scope of a binding or not. 

In general, the deadness of a binding at a point in the interpretation of an expression is undecidable, 
regardless of whether lexical or dynamic scoping is used. Therefore, heuristics have to be 
developed which eliminate as many dead bindings as possible (without, of course, eliminating non- 
dead ones !). 

Tail Reeursion 

Tail recursion is the name given to a programming technique which is used to reduce the size of the 
return-point stack and marginally decrease execution time in Lisp-type interpreters. Tail recursion 
works by noticing that the machine language sequence " p u s h  e ,  pc  a n d  j ump  t o  x; 
pop e, pc", where e is the current environment pointer and pc is the current program counter, can 
be replaced by the single instruction "jump to  x", for all programs which satisfy stack (LIFO) 
discipline. The idea is that if the last thing a subroutine A does is to call subroutine B, then simply 
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jumping to B will make B return directly to A's caller when it returns instead of back to A. Stack 
space is saved by not having to push the pair <A's environment, return address to A> onto the 
stack. 

The most dramatic use of tail recursion is in certain recursive programs which call themselves as the 
last part of their body. In this case, no return-point stack space is used at allmthe program iterates 
instead of recursing. 

Consider the following trivial Lisp 1.5 program: 

( (label 9 f 
( lambda 

(cond 
(x) 
( ( z e r o p  x) x) 
( t  ( f  ( s u b l  x ) ) ) ) ) )  

n) 

This program recursively decrements x from n to zero and returns the value 0. A tail-recursing 
interpreter would use only a bounded (independent of n) amount of return stack space in executing 
this program, because when f recurses, the value returned by the lower level will be that returned 
by the upper levels, so only one return address is ever pushed onto the stack. 

The size of the environment used in the interpretation is another matter. At the bottom level of the 
recursion, when x is equal to 0, the tree environment will have n and f bound and n+l bindings of 
x, each one burying the previous one. Thus, doing tail recursion does not save environment space, 
only return-point stack space. 

However, the tail-recursing interpreter has still helped us solve the problem of the extra dead 
bindings of x in the previous problem piling up. Whereas the normal interpreter would put pointers 
to all the intermediate environments onto the return-point stack, the tail-recursing interpreter builds 
the environment without keeping pointers to all the ancestor environments. In this way, the extra 
bindings of x are convened from being simply dead to being buried. Since buried bindings are 
easier to detect than other kinds of dead bindings, the technique of tail recursion has helped us make 
progress towards a solution in this case. 

In general, the techniques of tail-recursion and buried-binding reclamation, consistently applied, 
will allow "iterative style" programs to be interpreted with a bounded net use of storage. In other 
words, these techniques allow iterative-style programs to recurse to an unbounded depth while 
holding onto only a bounded number of free storage cells. (This statement is actually false as it 
stands, because a terminating program which runs for n steps must use O(log n) space. However 
we are assuming that data types like integers take only one free storage cellma good approximation 
for most Lisp programs.) 

It is well known that recursion is a stronger programming technique than iteration; any iterative 
program can be rewritten in a uniform way to use recursion instead, while the reverse is not true. 
However, we would like a stronger reducibility than simple expressibilitynwe would like to say 
that recursion requires no more than a constant factor more in running time or net space than 
iteration. This is why tail recursion and the elimination of buried bindings is so important; they 
allow us to claim this stronger reducibility. 

Tail recursion and dead binding elimination would allow a Lisp program which has been convened 
by Fischer's algorithm [Fischer72] to a continuation-passing style to use no more than a constant 
factor more maximal net space than the original program. This would strengthen the expressibility 

9In Common Lisp, this expression would be wntten as follows: 
(labels ((f (x) 

(cond ((zerop x) x) 
(t (f (i-x)))))) 

(f n) ) 
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equivalence that Fischer claims to a maximal net space as well as running time equivalence. It is not 
clear what would happen to garbage collect time. 

The EVAL Problem 

If the function eva l  is used with a single argument in Lisp 1.5, that argument is interpreted as an 
S-expression which is to be interpreted in the "current" environment. The value computed by this 
interpretation becomes the value of the application of eva1. The problem with this construct is that 
the S-expression can be created at run-time, thus eliminating the possibility of pre-computing its list 
of free variables. To be semantically correct, then, the interpreter must keep bindings for all 
variables which might be referenced in the argument to eva1. The number of different variables 
which might be needed is bounded by the number of different variables used in the program, 
assuming that eva1 is not being called from inside another eva l !  Buffed bindings can thus be 
deleted from the environment without harm, but no other binding can be proven dead a priori 
because it might possibly be referenced in an S-expression which will be eval'ed. 

eval  is not the only construct which prevents us from determining free variables and therefore dead 
bindings, apply  with two arguments, i.e., with an implied environment, has the same troubles. 
This is because (apply f a) is essentially the same as (eval (cons f a) ). However, there is 
one more construct which can cause the problem. This is the implied e v a l  that takes place when 
the CAR of a form cannot be recognized as either a primitive function, a lambda-expression, a label- 
expression, or a closure. In these cases, (f al  a2 ... a n )  reduces to ( ( e v a l  f )  al a2 ... a n )  • 

Here, the expression f can compute a lambda-expression having any free variables, whatsoever. 

Lexical versus Dynamic Seoping of Variables 
In a lexically-scoped language, the depth (height?) of the environment tree is bounded by the depth 
of lexical nesting of the program text. Hence, the buried binding problem in these languages cannot 
grow to the vast proportions that can be achieved in dynamically-scopezl languages. In particular, 
the variables from one invocation of a recursive routine do not stack on top of one another, burying 
their" previous incarnations, but stack "beside" one another. Therefore, if the intermediate 
environments are not pointed to by the return-point stack, they can be reclaimed by a normal 
garbage collection. As a result, tail recursion in lexically-scoped languages is enough to allow 
bounded storage interpretation of iterative style programs without requiring a reclamation scheme 
for buried bindings. 

We do not know the reasons why the architects of Lisp chose dynamic rather than lexical variable 
scoping. If it was to save time or the storage required to hold the environment needed for functional 
arguments or values, these small savings are gained at the likely expense of many dead bindings 
and the large time lost in tracing over them at garbage collect time. 

The side-stacking feature, together with the ease of identifying free variables, would seem to make 
lexically-scoped languages far superior to dynarnically-scoped languages. There are several 
advantages of dynamic scoping which have been overlooked, however. Dynamic scoping allows 
an extremely flexible coupling of independent modules at execution time. Flipping the coin over, 
lexical scoping ignores the problems of hooking together independent modules. The simplest 
lexical scoping model assumes one large, complete program text; linking is required to resolve 
external names of multiple modules before execution can proceed. The problem of correctly 
associating mutually recursive functions is not straight-forward in these languages. These 
requirements lead to a read-resolve-evaluate-print style of interpretation rather than Lisp's read- 
evaluate-print style. 

The resolution phase is not a problem in systems with a clean break between program text and data. 
However, many artificial intelligence programs attach pieces of program to data and these pieces are 
dynamically linked together at run time by Lisp's dynamic variable scoping. 

Thus, for systems requiring the utmost in linking flexibility, dynamic scoping can be very valuable. 
It is for these systems that solutions to the dead binding problem are important. 
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XLisp - -  leXically scoped Lisp 
For people who like this sort of thing, 
This is the sort of  thing they will like. 

We would like to describe a variant of Lisp which is as close to Lisp 1.5 as possible for a lexically- 
scoped language. In other words, it makes the smallest deviation from Lisp 1.5 while being 
lexically-scoped. 
People may complain that dynamic scoping is an inherent quality of Lisp; that Lisp wouldn't be 
Lisp without it. We believe that the essential qualities of Lisp are its trivial syntax, its 
S-expressions formed from CONS cells, its garbage collector, its atoms and property lists, and its 
representation of programs as S-expressions. A language with all of these features would be more 
Lisp-like than a language with only dynamic scoping (e.g., APL). 

You may have thought that we would proceed to describe yet another language, complete with an 
exhaustive listings of functions, etc. However, that is not necessary--it has already been done. 
For XLisp is just our name for Scheme [Sussman75] ! 10 

Future Work 
The buried binding problem is a precisely defined problem for which an elegant representation 
and/or garbage collector can probably be devised. 

The general dead binding problem will require a formalism to state more precisely the timing and 
mechanism of the binding of variables and their reclamation. What Reynolds did for the order of 
interpretation issue using continuations [Reynolds72] needs to be done for the precise timing of 
binding and reclamation. Either a new formalism for specifying bindings, or a stronger 
interpretation on previous formalisms, must be used to pin down more precisely the semantics of 
the meta-circular interpreter of Lisp. Once this is done, the language will be strong enough to 
distinguish between classical and tail-recursing interpreters; between interpreters with dead binding 
problems and those without. When the language is strong enough to state the problem, solutions 
will not be far away. 11 
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llSteele was aware of this paper when he wrote his Master's Thesis [Steele78]; indeed, he made valuable suggestions 
for its improvement [Steele76]. Nevertheless, Steele's closure-sharing analysis [Steele78,p.60-63] often creates buried 
bindings where none existed before; if the goal of minimum "maximal net space" is desired, closure-sharing can be a 
"pessimization" rather than an optimization. 
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