A Package for Handling
Units of Measure in Lisp

Roman Cunis*
MAZ GmbH
Karnapp 20, D-2100 Hamburg 90

February 7, 1992

1 Introduction

The ability to handle units of measure in a programming environment to-
gether with numerical quantities in scientific and engineering programs helps
greatly in achieving computational safety as well as code and data readabil-
ity. It allows for dimensional analysis, thus safeguarding against erroneous
combination of values of different dimensionality, e.g. adding distances to
masses, or against scaling errors, e.g. assigning distances measured in inch
to variables supposed to hold centimeters. Associating values and variables
with units of measure explicitly clarifies code and data and—given a clever
compiler—allows for the above-mentioned dimensional analysis to be per-
formed at compile time. If extended to input and output of user data, it
might free the user from the burden to perform proper scaling himself when
entering data conforming to program-defined units of measure. And it might
allow for easy customization of output in order to present computational re-
sults to users familiar with different sets of units of measure, e.g. British and
American use of units versus metric units.

Since the late seventies several proposals have been made to incorpo-
rate units of measure as data attributes [Gehani 77, Karr&Loveman 78,

*The work reported here has been done during my affiliation with the Laboratory for
Al Dept. of Computer Science, University of Hamburg.

V-2021



Hilfinger 88], most of them in connection with Ada’s typing capabilities,
but none of them has it—as least to my knowledge—yet made it into Lisp.
All proposals that I know of ultimately strived to incorporate units of mea-
sure as declarative attributes to be utilized by the compiler in order to per-
form consistency checks, generate proper conversion code where necessary,
and “compile away” any computational overhead associated with handling
dimensional information at run-time.! On the other hand there are some
strong arguments in favour of actually incorporating units of measure infor-
mation with numeric data objects in a dynamic and interactive programming
environment like Lisp.

Section 2 discusses these arguments in some detail. Section 3 briefly de-
scribes the main features of a package for handling units of measure in Com-
monLisp, thereby focussing on an efficient representation of numbers with
dimensional attributes (henceforth called dim-numbers) in order to reduce
the computational overhead mentioned above as far as possible. Section 4
gives a short summary.

2 Explicit representation of dimensionality
information

The first argument in favour of explicit representation of dimensionality
within dim-number objects in Lisp draws on the Lisp specific tradition of
having all data-type information at the object itself rather than associating
it with variables intended to hold those objects. Because of this explicit unit
of measure representation is the natural way of integrating dim-numbers into
Lisp. Generic functions? might be written, that handle dim-numbers in gen-
eral without having to know anything about the concrete measures involved.
This allows for pattern matchers, constraint propagators, or other general
purpose inference mechanisms to handle dim-numbers as an additional data-

type.

l1However, to my knowledge none of them actually reached this goal. They all include
explicit dimensionality information in the number representation and perform consistency
checks at run-time only. [Hilfinger 88] discusses in some detail compiler modifications (in
Ada) that would be necessary to reach the ultimate goal.

2Not only in today’s CLOS-sense of the word but also in the traditional sense of gener-
icity in functions that process e.g. numbers or sequences.

V-2.22



The second argument is concerned with user comfort in handling dim-
numbers in the interactive environment of Lisp. By extending the explicit
dimensionality information to reader and printer syntax of Lisp, entering and
displaying of dim-numbers—in a format chosen by the user and not by the
programmer—can happen anywhere in the Lisp environment. This includes
inspectors, browsers and debuggers of a Lisp environment that have no prior
knowledge of their own about dim-number objects.

My third argument is in fact an extension of the second with respect to
a typical problem often found in AI systems: Building knowledge bases for
technical and engineering applications can greatly benefit from leaving to the
user the choice which units of measure to use. Because application knowledge
is often entered into a dynamic knowledge acquisition environment, again no
pre-compilation dimensionality information would be available in order to
handle units of measure statically.

3 Efficient representation of unit of measure
information

Having thus argued that keeping unit of measure information at numbers
explicitly is not only a deplorable burden but may actually have advantages
of its own, I will now turn to the representation of dim-numbers. This ought
to be as efficient as possible with respect to space and computational time.
Moreover, it ought to support easy consistency checks in additive and com-
parative operations as well as easy unit conversion in multiplicative opera-
tions.

All authors in the field agree that the representation that is best suited for
these tasks, is based on exponent vectors over elementary units of measure.
Elementary measures are e.g. length, time, and weight. These will be referred
to by their basic units of measure: e.g. m (meter), s (second), and g (gram).
(Scaled units like feet, hour, or pound are not relevant for consistency and
unit conversion and will be handled separately.)

More complex measures (like e.g. volume (m?), speed (2), or force (£3))
can be expressed as products of elementary measures taken to some power:
= mls7l¢% 22 = mls~?g'. Associating a unique vector index with
each elementary measure allows for representing every unit of measure as an

V-2.23



exponent vector: m is thus represented by [1 0 0], Z by [1 -1 0], and £
by [1 -2 1]. Commeasurability checks can thus be reduced to equality tests
between vectors; multiplication of dim-numbers is done by adding vectors,
and resulting vectors can immediately be reconverted to resulting units.

This is common usage among all approaches to dimensional analysis so
far. However, the vector representation has two disadvantages: First, vectors
consume space. Second, vectors have fixed length and can thus handle only
a fixed number of elementary measures.®> Our approach to unit of measure
representation reduces exponent vectors to a single rational number. The
central idea is to associate each elementary unit of measure with a prime
number instead of a vector index. Complex measures can the be represented
as ratios by multiplying these prime numbers according to the underlying ex-
ponent vectors. Associating m with 2, s with 3, and g with 5 the exemplarily
given units of measures for volume, speed, and force can then be identified
by ratios as follows: m® ~ 8, & ~ %, o~ 19—0. Handling of these ratios in
computations and comparisons is as easy as for vectors. Moreover, given the
ability of CommonLisp to handle ratios, computation is even faster and the
computational and spatial complexity of the representation is independent
of the number of elementary measures involved.

The rest is fairly straightforward. Scaling for numbers with scaled units
is done at input time, so that all dim-numbers are internally represented
with respect to their base units of measure. Thus, no burden is added to
any computation by using scaled units of measure. A special reader syn-
tax is provided that reads any number immediately followed (i.e. without
whitespace) by a defined unit specification as dim-number. (Thus 90min =
5400s = 1.5h = #<Dim-Number :value 5400.0 :ratio 3>.) Special print-
functions for dim-number objects support output of dim-numbers using any
desired unit and even fancy formatting like 1h:30min:0s for the example
given above. Moreover, decomposing a resulting unit-ratio into its constitut-
ing prime numbers allow it to be displayed even if an explicit unit definition
is missing: e.g. dividing a speed quantity by a time quantity will be displayed
as m/s2 even if acceleration is not a defined measure.

The following piece of code illustrates the definition syntax for measures
and units:

3This problem might easily be avoided in Lisp by using variable width vectors, padding
them with trailing zeros if necessary—and adding some complexity to the calculations.

vV-2.24



(defmeasure speed ; name of measure
"m/s" ; base unit
:units
("km/h" ; implicit unit definition
; will be automatically decomposed and
; scaled if km and h are known.
("mph" 1.6km/h) ; ezplicit unit definition
)
:output-format
(:unit "mph") ; all speed dim-numbers will be
; printed scaled to mph
; (unless ezplicitly converted)

4 Summary

Traditionally, packages for unit of measure handling have been developed
with the aim of performing dimensional analysis at compile-time in languages
like Ada. However, arguments have been given that representing dimension-
ality information explicitly with a numeric quantity (and thus supporting
dimensional analysis at run-time) is not only natural in an interactive envi-
ronment like Lisp but may actually have advantages of its own.

Units of measure are typically represented as exponent vectors over ele-
mentary units. Associating prime numbers with elementary units allows for
compact and efficient encoding of units of measures as ratios. Furthermore,
a CommonLisp package has been described that makes use of this repre-
sentation technique and integrates numbers with dimensionality information
smoothly into Lisp by providing suitable reader and printer extensions.

Acknowledgment

I owe special thanks to my colleague Thorsten von Stein at the University
of Hamburg who provided the original idea of replacing exponent vectors by
ratios constructed from prime numbers.

References

[Gehani 77) Gehani, N.: Units of Measure as a Data Attribute. Computing
Languages 2, 3(1977), 93-111.

[Hilfinger 88] Hilfinger, Paul N.: An Ada Package for Dimensional Analy-
sis. ACM Transactions on Programming Languages and Systems 10,
2(1988), 189-203.

[Karr&Loveman 78] Karr, M., and Loveman, D.B.: Incorporation of Units
into Programming Languages. Communications of the ACM 21,
5(1978), 385-391.

V-2.25



