
An Operational Semantics for Scheme

John D. Ramsdell*
The MITRE Corporation

A b s t r a c t

In the informal description of Scheme, the order of
evaluating the operands and the opera tor of each ap-
plication is unspecified. This paper presents an op-
erat ional semantics for Scheme which faithfully re-
flects this fact. Furthermore, when the semantics is
restricted so as to assume there is one unspecified
order used throughout a program, the semantics is
shown to be sound with respect to the denotat ional
semantics of Scheme.

1 I n t r o d u c t i o n

In the IEEE Standard [2], the formal semantics of
the Scheme p rogramming language is given in a de-
nota t ional style [6, 5], i.e., as a m a p f rom a p rogram
to its meaning. 1 A denotat ional semantics can make
certain proofs easier, such as proofs of propert ies of
programs involving fixed points.

There are propert ies of programs tha t are not eas-
ily proved with a denotat ional semantics, but which
are easily proved with an operat ional semantics. Fur-
thermore, an operat ional semantics can describe some
aspects of the language more smoothly than the de-
nota t ional semantics. For example, in Scheme, the
order of evaluat ing the operands and the opera tor
of each applicat ion is unspecified, yet the formal se-
mant ics suggests there is one unspecified order used

*This work was supported by RADC Labs.
Author's address: The MITRE Corporation, Burlington Road,
Bedford MA, 01730-0208.
(~1992 The MITRE Corporation. Permission to copy with-
out fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial
advantage, the MITRE copyright notice and the title of the
publication and its date appear, and notice in given that copy-
ing is by permission of the MITRE Corporation.

1The denotational version of the semantics was written
mostly by Will Clinger with the help of Jonathan Rees. It
was based on the semantics given by Steven Muchnik and Uwe
Plehan [4].

e expressions
l locations
i identifiers
v expressed values
s stores l --~ v
u environments i --~ £
k continuations
e constants
a answers
n natura l numbers
p permuta t ions n ~ n

Figure 1: Types

throughout a program.

W h a t follows is an operat ional semantics for the
Scheme p rogramming language. Modulo a few cave-
ats, each inference made within the operat ional se-
mantics has an analog in the denotat ional semantics.
For those who know little abou t the L a m b d a Cal-
culus and Scott domains, the operat ional semantics
provides an indirect way of reasoning within the de-
nota t ional semantics.

2 N o t a t i o n

The operat ional semantics for Scheme is specified by
rules given in the relational style of na tura l seman-
tics [3]. The types used in the natura l semantics are
in Figure 1. A type is a set of finite terms. Some of
the types are defined by the g r a m m a r given in Fig-
ure 2. The one for expressed values v is incomplete.

Stores, environments, and permuta t ions are finite
m a p s - - p a r t i a l functions with finite domains. The
te rm {z ~ y} is the finite m a p which only maps
z to y, i.e., its domain is the set {z}. The finite
m a p g augment f , wri t ten f + g, has a domain of

V-2.6

e ::= e I i l (e e*) I (Zambda (i*) e* e)
I (la=bda (i* . i) e* e) I (Z ~ b a a i e* e)

I (i:~ e e e) I(i~ e e) I (s e t ! i e).

v ::= symbols I characters I numbers I strings

I pair(t , t) I vector((t*)) I false I true
I null I undefined I unspecified
I dsr(g, (/*), (e*), e, u) I cnt(e, k)
I nclsr(t, (i*), i, (e*), e, u)

I cons I car I setcar I ~ c c I and others.

k ::= args((e*), u, k) I aug((v*),k) I perm(p,k)

I app(k) l b ind ((i*) , (e*) , e ,u , k)

J rest((/*), (v*), k) I seq((e*), e, u, k)

I switch(e, e, u, k) I test(e, u, k)

I assign(t, k) I halt.

Figure 2: Some terms

dom(f) U dom(g), and value

g(z) z E d o m (g)
(f + g)(z) = f (z) otherwise.

A sequence is a finite map whose domain is the
natural numbers less than the length of the sequence.
(vovz . . . v , - 1) is notation for

{0 ~ vo} + {1 ~ vz} + - " + { n - 1 ~ vn-z},
6 is a variable that ranges over sequences, and § is
the sequence concatenation operator. A permutation
is a sequence which is a one-to-one mapping to its
domain. Most other notation follows that of the de-
notational semantics for Scheme.

3 R u l e s

The semantics is defined in terms of two judgement
forms, s ,u , k l - e ~ a and 8,61- k ~ a. They are
patterned after the forms used to specify first-class
continuations in ML [1]. Intuitively, the first one as-
serts that given store s, environment u, and contin-
uation k, expression e evaluates to answer a. The

• second one asserts that given store s and a sequence
of values 6, continuation k computes answer a.

Every rule has the following form. The conclusion
...is a judgement, and the premise contains one judge-

ment and any number of conditions. A condition is a
formula which is not a judgement. Conditions convey
a restriction on the applicability of a rule. The form
of the rules imply derivations are linear.

Logical variables tha t are only in the premise of a
rule were introduced solely to make the rule intelli-
gible. The r ighbhand side of the equation defining
one of those variables could be substituted in place
of each occurrence of the variable it defines.

The storage allocator new must obey the axiom
new(s) ¢ dom(s). It is a partial function if storage is
finite.

3.1 C o n s t a n t
s, (const(c)) I- k ~ a (1)

s ,u , k h e=~a

The definition of const has been deliberately omitted.

3 .2 V a r i a b l e r e f e r e n c e
8(.(/)) # undefined
s, (s(u(i))) I- k ~ a

8, u, k k i=c.a
(2)

3 . 3 A p p l i c a t i o n

An inference using Rule 3 requires the selection of a
permutation of the appropriate length.

p = #(ee*) k' = perm(p, app(k))
8, 0 h args(permute(p -1, (ee*)), it, k') ~ a

(3)
s, u, k ~- (e e*) ~ a

permute(p, e~ = (~(p(O)) ~(p(1)) . . . e~p(#p - 1)))

8, 61- k =:.~. a (4)
s, 6 I- args(O , u, k) ~ a

s, u, aug(6, args(~, u, k)) I- e ~ a
(5) 8, 6 F args((e) § ~,., k) m .

s, 6§ (v) l- k ~ a (6) 8, (~) t- aug(6, k) ~ .
s, unpermute(p, v~ h k ~ a (7)

s, ~ I- perm(p, k) :::¢, a

unperrnute(p, ~ = (6(p(O)) 6(p(1)) . - . 6 (p (#p - 1)))

6 = # r s, 6 F- bind(i, ~', e, u, k) ~ a (s) 8, (ctsr(e, r, ¢, e, =)) § 6 F app(k) m a

#6_> # r
k' = bind(r§ (i), ~, e, u, k)

8, (null) t- rest(r, 6, k') m . (9)
s, (nclsr(t, ~, i, ~', e, u)) § ~ I- app(k) =¢, a

s, 6 h k=.~a

s, (cnt(£, k)) § ~' I- app(k') ~ a

s, 61- seq(g, e, u, k) ~ a
8, 0 F bind(O, r, e, ~,, k) ~ .

(10)

(11)

V-2.7

3.4

3.5

3.6

t = n e w (s) s l = s + { t ~ v }
s',~F bind(i~ ~',e,u + {i ~ t},k) ~ a
s, (v) ~ ~ I- bind((i) § ~, E', e, u, k) ~ a

~ = # r a, iv) ~- aug(a, k) m a
s, i v) I" rest(i~ ~, }) ~ a

#~_> #r
s, (cons, v, C) I- app(rest(~, ~, k)) ~ a

a, i C) I- rest(T, '~ § iv), k) ~ a

a , u , k ~- e :=~ a

a,~- seq(i), e, u, k) $ a

s, u, seq(~', e I, u, k) I- e ~ a

a , ~ - seq(/e) ; v, el, u, k) m a

A b s t r a c t i o n

t = new(s) 8' = 8 + { t ~-* unspecified }
s l, (clsr(t, (i *) , (e*), e, u)) I- k $ a
s, u, k I- (lambda (i*) e* e) ~ a

£ = new(s) a' = a + { t ~-~ unspecified}
at,/nclsr(t , / i *) , i, (e*), e, u)) I-- k ~ a
a, u, k I- (lambda (i* . i) e* e) :=~ a

s, u, k I- (lambda (. i) e* e) ~ a
8, u, k h (lambda i e* e) ~ a

Condit ional
s, u, switch(d, e l', u, k) I- e ~ a

a, u, k I- (i f e e' e") ~ a

v g ~ f a l s e a , u , k l - e ~ a
s, i v) h switch(e, e', u, k) ~ a

a, u, k I- e I ::¢, a

a, (false) I- switch(e, d , u, k) ~ a

a, u, tes t (d , u, k) I- e ~ a
a, u, k I- (i f e e l) ~ a

v ~ f a l s e s , u , k l - e ~ a
a, i v) ~- test(e, u, k) ~ a

s, (unspecified) h k ::¢, a

s,/false) I- test(e, u, k) =¢, a

A s s i g n m e n t

a, u, assign(u(i), k) ~ e ~ a
a, u,/c I- (set! i e) ~ a

s + {t ~ v}, (unspecified) k- k ~ a
a, (v) I- assign(t , k) ~ a

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

3 . 7 P r i m i t i v e s

t ---- new(s) 8 t ---- 8 -'1- {t ~ v}
l ' = n e w (a ') a l ' = a l + { ~ ' ~ v l}

s ll, (pair(t, t ')) b k =~ a

s, (cons, v, v') I- app(k) ~ a

a, is(0) F k m a
s, (car, pair(t, e)) I- app(k) ~ a

s + {t ~-~ v), /unspecified) I- k ~ a
a, (setcar, pair(t, •), v) F app(k) ~ a

t = new(s) s' = s + { t ~-~ unspecified }
a l, (v, cnt(t, k)) I- app(k) ~ a

(28)

(29)

(30)

(31) s, (cwcc, v) I- app(k) =~ a

4 P r o g r a m s

If e* is a program in which all variables are defined
before being referenced or assigned, s is an initial
store, and u an initial environment, then the program
computes store a' and values ~ if one can show

a l, ~ I- halt ~ a

a, u, halt I- e ~ a,

where e = ((lambda (i*) e'*) nndefined . . .) , i* is the
sequence of distinct variables defined in e*, d* is the
sequence of expressions obtained by replacing every
definition in e* by an assignment, and nndefined is
an expression that evaluates to undefined. A program
whose results depend on the selection of a particular
set of permutat ions in Rule 3 is invalid.

5 O p e r a t i o n a l S e m a n t i c s

An operational semantics uses an abstract machine to
define the semantics of a language. The terms of this
operationM semantics map identically from the natu-
rM semantics, and the machine states are in one of two
forms: e(e,u, k, a) or k(k, ~,a). When the abstract
machine is executing a program, there is the obvi-
ous correspondence between the states of the abstract
machine, and the steps of the program's derivation.
Allowed machine transitions correspond to inferences
in the natural semantics read backwards from conclu-
sion to premise.

The abstract machine so defined is nondeterminis-
tic. The choice points occur at transitions that cor-
respond to an instance of Rule 3.

V-2.8

6 S o u n d n e s s

The Scheme semantics as given is not sound with re-
spect to the denotational definition. The reason is the
natural semantics allows the evaluation order of dif-
ferent applications to differ within the same program.
In this section, assume that for each natural number,
there is one permutat ion of that length which is cho-
sen when using Rule 3. This is the same assumption
made in the denotational semantics.

The natural semantics of Scheme was designed to
allow a translation of each rule into a rule valid in
the denotational semantics. The translation allows
one to view the possible deductions in the natural
semantics as a subset of the possible deductions in
the denotational semantics.

Semantic functions assign meanings to terms in the
natural semantics. The signature of each semantic
function used is given in Figure 3 along with a par-
tial definition of some of the semantic functions. A
logical variable is translated by replacing it with a
variable from the domain corresponding to the logi-
cal variable's type.

For the purposes of the translation, it is convenient
to consider a modified set of rules. Observe there are
two kinds of conditions in the rules. Some define vari-
ables by equations. These can be eliminated by sub-
sti tution. The remaining conditions are of the form
f f = #~, # f f _> #~, v ~ undefined, or v ~ false. Each
rule has no more than one of these conditions. Let
r be the condition if it exists, otherwise false = false.
Let ~ => a be the judgement in the conclusion after
defined variables have been eliminated by substitu-
tion, and ~ ~ a be the major premise. All modified
rules have a simple form.

r E~ ::¢, a
~ : : ~ a

A modified rule is translated into a rule involving
equations.

n M = true j [~ q = A[a]

The definition of f f is given in Figure 3, the definition
of 7~ is obvious, and the definition of ,4 is arbitrary.
Each rule is justified by a valid equation.

(~ M ~ f l i P ' l , _L) = (n I r] ~ i f [E l , .L)

Since each inference must satisfy its rule's condition,
a derivation is justified by a single closed equation.

For example, the translation of the rule for con-
stants (Rule 1) is justified by the following valid equa-
tion.

g expression e -~ U --~ K ~ C
£ location £ --~ L
V expressed value v ~ E
V* value sequence v* -+ E*
S store s -+ S
U environment u ~ U
/U continuation k --~ K
.,4 answer a ~ A

y [s , . , k ~- el = cM(uM)(Jc ' [k]) (s [d)
y[s , <~*> ~- k] = tc '[kl(v*[~*])(sM)
v*[l = <>
v* [vv*] = (Vlvl) ~ v* [~*l
Vl¢lsr(£, (i*), (e*), e, u)] = (/:[g], a e*x) in E
V[cnt(t, k)] = (£[t~, ~e*~./U'[kle*) in E
VIeons] = (~, cons) in E

where o~ is as given in the initial store.
V[. . .] = and o thers . . .
IC'[a,gsC(e*), ~, k)] =

~,*. e* b*](u b,])(~e*. ~c'ik~(~* ~ ,'*))
/g'[aug((v*), k)] = single Ae. KY[k](V*iv*] §(e))
/C'[perm(p, k)] = Ae*. IC'[k](unpermute e*)
/C'[app(k)] =

Ae*. applicate(e* I 1)(6" t 1) (~ ' [k])
/C'[bind((i*), (e*), e, u, k)] =

,~*.
#e* = # i * --*

tievals(Ao~ * . (Ap. CIe *]p(g[e]p(IC'[k])))
(extends(U[u])i* a *))

wrong "wrong number of arguments"
/C'[rest((i*), (v*), k)] =

rest(#v* - # i*) (V* [v*])(/C'[k])
rest = Aw*x. single)re.

cons(a* 1 #~*,0
(rest(~- 1)(take~rst(#~* - a)~*)~)

KY[seq((e*), e, u, k)] =
x+*. CIe *](U[~])(e[e]CUM)(XT[k]))

/C'[switch(e, e', u, k)] =
single Ae. e = false ---* g[e'](lU[u])(IC'[k]),

eldCUM)C~'[kD
/C'[test(e, u, k)] =

s i n g l e , X + . + = f a U e ~ ~'[k](.nspeei+aed),
e[elCU[.])(g'[+])

g'[assign(g, k)] =
single Ae. assign(£[g D

(~'[k](.nspecified))
/g'[halt] = the initial continuation.

Figure 3: Semantic functions

V-2.9

The case of lambda expressions (Rule 17) shows
how memory allocation is handled.

£[(lambda (i*) e* e)]plc~r =
?g

<<new ~r, Ac*~....) in E)
(update(new o" I L) unspecified o')

The case of evaluating a sequence (Rule 16) is jus-
tiffed by using the semantic function for both expres-
sions and commands.

C[e e *]p(C[e3pt¢) = C[e]p(Ae*. Cie *]p(Eielpt¢))

A case in which the justification is not obvious
is the case of evaluating a sequence of expressions
in preparation for applying a function (Rules 4-6).
Their justification requires the definition of an auxil-
iary function.

.~'[e*]e*p~ = £*[e*]p(Ad*. ~(e* § d*))

Occurrences of g* [e I can be replaced by 5[el0 in the
denotational semantics.

The justification for Rules 5-6 comes from the use
of the following equation which has been derived from
the definition of .T.

Y b e*le*P'~ = e[dp(sing le ~ . y[e*](~* § (0)p~)

The justification for Rule 4 is also derived from the
definition of 5 .

~'[]~*p~ = ~ *

Another non-obvious case is the case of allocating
a list for rest arguments (Rules 13-14). Their justifi-
cations can be derived from the following three iden-
tities.

list(,* § e'*)~ = list d*(rest #e*e*~)
rest #e*(d* § e*)l¢ =

rest #c* c*(single he. ~(4" § (c)))
tievalsrest ¢c*v = rest v,*(tievals ~b)(nuil)

7 Conc lus ion

An operational semantics of Scheme has been defined
by describing an abstract machine. Its allowed transi-
tion sequences are specified by the set of derivations
in the natural semantics of Scheme. A translation
establishes that each derivation in Scheme's natural
semantics is justified by a valid equation in Scheme's
denotational semantics, when the natural semantics
is restricted so as to assume that throughout a pro-
gram, there is one unspecified order used to evaluate
applications.

A c k n o w l e d g e m e n t : Joshua Guttman, Leonard
Monk, and Vipin Swarup made many useful sugges-
tions.

References

[1] Bruce F. Duba, Robert Harper, and David Mac-
Queen. Typing first-class continuations in ML. In
Eighteenth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 163-173,
New York, NY, 1991. ACM Press.

[2] IEEE Std 1178-1990. IEEE Standard for the
Scheme Programming Language. Institute of Elec-
trical and Electronic Engineers, Inc., New York,
NY, 1991.

[3] Giles Kahn. Natural semantics. In F. J. Banden-
burg, G. Vidal-Naquet, and M. Wirsing, editors,
Fourth Annual Symposium on Theoretical Aspects
of Computer Science, volume 247 of Lecture Notes
in Computer Science, pages 22-39, Berlin, 1987.
Springer-Verlag.

[4] Steven S. Muehnik and Uwe Pleban. A semantic
comparison of Lisp and Scheme. In Conference
Record of the 1980 Lisp Conference, pages 54-64,
1980.

[5] David A. Schmidt. Denotational Semantics: A
Methodology for Language Development. Wm. C.
Brown, Dubuque, IO, 1986.

[6] Joseph E. Stoy. Denotational Semantics: The
Scott-Strachey Approach to Programming Lan-
guage Theory. MIT Press, Cambridge, MA, 1977.

Fundamental Rules of
Writing, Editing, and Publishing

I. Don't use no double negatives.
2. Make each pronoun agree with their antecedent.
3..loin clauses good, like a conjunction should.
4. About them sentence fragments.
5. When dangling, watch them participles.
6. Verbs has to agree their subjects.
7. Just between you and I, cease is important too.
8. Don't write run-on sentences they are hard to

read.
9. Don't use commas, which aren't necessary.
10. Try to not ever split infinitives.
! 1. Its important to use your apostrophe's correctly.
12. Proofread your writing to see if you any words

left out.
13. Correct spelling is absoluteley essential.
14. Don't abbr.
15. You've heard it a million times: avoid hyperbole.

V-2. i0

