
Eoops: An Object-Oriented Programming System for Emacs-Lisp

Chris Houser and Scott D. Kalter

chris@twinsun.com and sdk@twinsun.com

Twin Sun, Inc.
360 N. Sepulveda Blvd, Suite 2055
E1 Segundo, CA 90245-4462, USA

Background. Object-Oriented Programming (OOP)
is a technique of modularizing programs into classes
defining the structure and behavior of their instances
or objects, ooP encourages the construction of large
libraries of classes. The clients of a library use its
classes as abstract data types; the implementors of a
library use inheritance to factor and combine common
code in the implementation. Detailed discussions of
ooP and class libraries can be found in (Goldberg 83).

Abstract. Eoops (Emacs ooP System) implements a
Smalltalk-80-1ike language in GN, Emacs-Lisp (Lewis
90). Eoops is a simple but efficient compiler for a
class-based, single inheritance, object-oriented lan-
guage that uses explicit message passing for both
method invocation and state access.

This paper presents both a language description
and a complete annotated implementation of Eoops.
The reader of "The Eoops Language" section should
be familiar with ooP, and ideally with Smalltalk-80.
The reader of the "Implementation" section should
be familiar with Common Lisp. Understanding some
parts of the implementation requires knowledge of
Emacs-Lisp.

1 T h e Eoops L a n g u a g e

Eoops supplies macros to create new classes, instan-
tiate them, and send messages to instances. Eoops
defines, not a complete programming language, but
rather an object-oriented extension to a base lan-
guage, here Emacs-Lisp. Thus, a programmer uses
Eoops to specify classes and instances, but uses the
base language to specify control and environment.

1.1 Global Macros
Eoops exports the macros c l a s s , new, and $, which
may be used freely within Emacs-Lisp code. These
macros are described below.

(class class-name super (slot,) method*)
Defines a new class called class-name. The symbol

super names its superclass. Syntax:

slot ~ slot-name
I (slot-name documentation)

method --r ((selector parameter*) form*)

documentation ~ string
class-name ~ symbol

super ~ symbol
slot-name ~ symbol

selector ~ symbol
parameter ~ symbol

Each class introduces a namespace for slots and meth-
ods. Further, the names of classes form a namespace
distinct from Emacs-Lisp's value, function, and prop-
erty namespaces.

Example. A simple class of two-dimensional points:

(class point object (x y)
((pr in t) . . .)
((+ p) . . .))

This class, named poin t , is a subclass of the class
objec t , has two slots named x and y, and methods
(here with elided bodies) named p r in t and +.

Definitions of o o p terminology:
Class. A class describes the structure (slots) and

behavior (methods) of its instances. Each class is
related to another class called its superclass. The
inverse of the superclass relation is called subclass.
Other languages call superclasses parent or base
classes, and call subclasses child or derived classes.

Ancestors of a class. The ancestor relation is the
reflexive transitive closure of the superclass relation.
Thus, although a class cannot be its own superclass,
a class is its own ancestor.

Descendants of a class. The descendant relation is
the reflexive transitive closure of the subclass relation.

Class Tree. Since each class has a single superclass,
but can be the superclass of several other classes,
Eoops classes form a tree related by the superclass

LP5-3.25

relation. The root of this tree is the class object .
Inheritance. The structure and behavior of a class

is inherited by its subclasses. The subclass relation is
also called the inheritance or inherits relation.

Instance. An instance of a class contains all the
slots and methods defined in its class's ancestors.

Override. I f like-named methods are defined both
in a class c and in its descendant d, then d's defi-
nition overrides c 's definition. This is analogous to
variable scoping in blocks, if we view subclasses as
nested within their superclasses.

The only thing one can do with a class is to instan-
t iate it with the macro new:

(new class-name)
Creates and returns a new instance of the class

named by class-name.
This new instance has private storage for each of

its slots. An instance inherits its slots; it has a slot
for each slot specified in its class's ancestors. In other
languages, slots are called fields, da ta members, com-
ponents, or instance variables.

This new instance has behavior as specified by its
class's ancestors. An instance inherits its methods; it
has a method for each method specified in its class's
ancestors. In other languages, methods are called
function members or operations.

After creating the new instance, new sends it an
init message.

Example. Make p a new instance of the class point :

(setq p (new point))

The only things one can do with an instance are
(1) pass it to functions, and (2) send it messages with
the macro $:

($ receiver selector argument*)
Sends receiver, which must be a value returned by

new, the message consisting of selector and arguments.
This searches the ancestors of receiver's class, looking
for a method named by selector. When a matching
method is found, the evaluated arguments are bound
to the the method ' s parameters , and the method ' s
body is evaluated in this scope. The value of the ($
. . .) form is the value of the last form in the body.
I f no method matches, an error is signalled.

Example. Send p the message with selector p r i n t
and no arguments:

($ p print)

$ can be considered a generic func t ion- -a function
whose behavior is a function of both the selector and
the class of the receiver. $ selects and invokes an
appropriate method. Thus, methods describe the be-
havior of $ for a particular selector and class of in-
stances.

Slot Access. Besides the methods written by the
programmer, each class has methods created by the
Eoops compiler to read and write each slot. Sending
these messages is the only way to access slots. For
a slot named s, the reader method is named s; the
writer method is named s : .

Example. Access p 's slots:

($ p x) => nil ; p~s rid slot is initially NIL

($ p x: S) => S ; s e t i t t o S
($ p x) => 5 ; read the tx~ slot

The symbol $ looks like "s," which is mnemonic for
"send."

1 . 2 W i t h i n M e t h o d B o d i e s

Within method bodies, £oops allows reading the vari-
able se l f , using the macro @, and sending messages
to super. These are described below.

self
Inside a method ' s body, the symbol self is bound

to the receiver. The receiver is the object to which
a message was sent invoking the currently-executing
method. Methods can store s e l f in variables and pass
se l f to functions.

(~ selector argument.)
Sends a message to s e l f . This is just a shorthand

f o r ($ s e l f selector argument*).

($ super selector argument.)
Sends a message. Like ~, the receiver is s e l f , but

unlike c, the method is tha t used when sending a
message with the same selector to an instance of the
super-class of the class in which the currently execut-
ing method is defined.

This is used when a p rogrammer wants to make
a slight change to an inherited method for selector
s. The p r o g r a m m e r writes a new method for s, tha t
includes a call such as ($ super s) .

Example. subclass ' s i n i t method initializes
the slots declared by subclass, and then invokes
($ s u p e r i n i t) to ask superc lass to initialize the
slots declared by supercXass:
(class subclass superclass (slot)

((init)
(@ slot: 'initial-value)
($ super init))

...)

LP5-3.26

2 E x a m p l e

This example, adapted from (McCall 80), demon-
strates the syntax for Eoops' object-oriented features:

• class definition
• instantiating a class
• sending messages to self, super, and instances
• reading and writing slots using message passing
• subclassing with overriding and specialization

The class bank-account has superclass object , the sin-
gle slot balance, and methods to initialize, deposit,
and withdraw:

(class b a . u k - a c c o m t t object (balance)
((init)
(@ balance: 0))

((deposit : amount)
(@ balance: (+ (@ balance) amou_nt)))

((withdraw: amount)
(and (<= amount (e balance))

(@ deposit : (- a m o u n t)))))

The withdraw: method returns the new balance, or
n i l if the account had insufficient funds.

Create an instance of class bank-account, call it b,
and set its balance to $200:

(setq b (new bank-account))
($ b balance: 200) => 200

Exercise b by depositing and withdrawing:

($ b withdraw: 300) => nil
($ b deposit: 150) => 350
($ b withdraw: 300) => 50

Next, the class overdraft-account is like its superclass
bank-account, except that it adds the slot reserve,
and overrides the method withdraw:, reserve is
an account which is withdrawn from when the
o v e r d r a f t - a c c o u n t empties:

(class overdraft-account b a n k - a c c o l m t (reserve)
((withdras: amount)
(let ((m (rain amount (@ balamce))))

(and ($ (@ r e s e r v e) w i thd raw: (- amount m))
($ s u p e r w i t h d r a w : m)))))

(setq o (new overdraft-account))
($ o r e s e r v e : b)
($ o deposi t : 30) => 30

So now there's $30 in the overdraft account o, and
$50 in the reserve account b. Withdrawing $45 takes
$30 from o and the remaining $15 from b:

($ o withdraw: 45) => 0
($ o balance) ffi> 0

($ ($ o reserve) balance) => 35

3 Rat iona le

This section explains design decisions made in the
Eoops language and compares Eoops with other
object-oriented languages.

Goals. We designed the Eoops language with the
following (prioritized) goals:

• runs in a standard C.N, Emacs
• executes quickly
• coexists with Emacs-Lisp code
• does not slow code not using Eoops
• is easy to remember and use
• supports debugging
• loads compiled files quickly
• compiles quickly
• compiles automatically
• runs using little space

Eoops meets these goals.
Comparison. Eoops is much simpler than other

object-oriented languages embedded in Lisp. For ex-
ample, Flavors (Moon 86) and CLOS have many ad-
ditional features, such as generic functions, method
combination, multi-methods, and multiple inheri-
tance. Compared with Eoops, these languages are
certainly more powerful and can express some things
more concisely.

We chose Smalltalk-80's simpler model, rather than
CLOS' complex model. We feel that Smalltalk's model
is easier to understand, describe, and implement effi-
ciently.

Rationale. Here we explain why Eoops:
• accesses slots by message sends
• is based on classes
• supports only single inheritance
• uses explicit send syntax
• is compiled

Slot Access. Eoops accesses slots by message sends.
The Eoops compiler automatically generates meth-
ods to read and write slots. One advantage of this is
that the Eoops programmer does not need to know
the implementation of the instance's slots chosen by
the Eoops compiler. Another advantage is that the
caller can not distinguish between slot access and
method invocation. This hides the callee's implemen-
tation of a selector, allowing changes to the selec-
tor's implementation (among various methods, slots,
and even active values) without disturbing clients.
SELF (Chambers 91) first implemented slot-access-
by-method-passing. This equates client interfaces
and subclass interfaces (Snyder 86).

Classes. Eoops offers classes and instances, rather
than prototypes. Systems based on prototypes and
delegation (Lieberman 86), such as SELF (Chambers

LP5-3.2 7

91), can be simpler, more flexible, and more con-
cise. But to implement prototypes and delegation
as efficiently as classes and instances requires a so-
phisticated compiler. We were familiar with simple
implementation techniques. And classes have proved
sufficient in 12 years of Smalltalk-80 use.

Single Inheritance. Eoops offers only single inheri-
tance, rather than multiple inheritance. Multiple in-
heritance can provide greater expressive power, and is
easily implemented. Again, however, we were famil-
iar with simple implementation techniques and single
inheritance proved sufficient in 12 years of Smalltalk-
80 use. Smalltalk-80 offered optional multiple inher-
itance (Borning 82b) but it was seldom used. Ingalls
(Ingalls 86) describes a manual technique for simulat-
ing multi-methods.

Explicit Sends. Eoops requires explicit sends using
the $ macro, rather than generic functions. CLOS'
generic functions have many advantages because they
are functions:

• they can be manipulated by both metaprogram-
ming functions (e.g., doctmentation) and higher-order
functions (e.g., mapcax and some).

• they abstract the distinction between methods
and functions.

• they are terser ((f x) is shorter than ($ x f)) .
• they are more in the spirit of Lisp. CLOS' multi-

methods are a smooth generalization of Lisp's func-
tions.

• they are easy to implement.

However, Eoops uses explicit sends. If instead Eoops
used generic functions, then every call of a generic
function would incur overhead, even when the first
argument was not an instance. We wanted to avoid
penalizing non-Eoops code.

Compiled. Eoops was first implemented as an inter-
preter. Its performance was adequate, but we wanted
more speed. So we built a compiler, which now runs
our benchmarks ten times faster than the interpreter.
Eventually we discarded the interpreter.

The interpreter implemented classes and instances
as association lists, and looked up slots and methods
by linear search. Inheritance required a search up the
class tree.

The compiler implements classes and instances as
vectors, and looks up slots and methods in constant
time. Inheritance is compiled out, by copying a super-
class's slots and methods into its subclasses. Finally,
the compiler uses Emacs' byte-compiler to macro-
expand and compile method bodies.

4 Implementat ion

This section presents the annotated code 1 implement-
ing Eoops. The annotations obey two conventions:

Argument names are in italic.
Packages are simulated by prefixing symbols with

their file name and a colon. Eoops uses the three
packages eoops: , map:, and ce:.

Readers familiar with backquote mechanisms in
other Lisp dialects should note that the Emacs back-
quote syntax is different. Briefly, to translate between
Emacs and more standard dialects, use (' f) ---~ ' f ,
(, v) ~ ,v, and (,@ x) ~ ,~ x.

4 . 1 M a p s

The fioops compiler represents classes as records or
structures. These records, in turn, are implemented
as maps, which are implemented here.

Maps implement mutable functions. Maps are of-
ten used in specification languages and very-high-
level languages, such as VDL, Z, and Awk (where
they are called associative arrays). They can be used
as Smalltalk-fike dictionaries (arrays where the key
or index is generalized to an arbitrary object, rather
than a small natural number), or C-like structures
(mapping field names to field values).

Map operations construct maps, get the range, and
get or set individual images.

map:new returns a new map. We implement a map
as a pair, with head the symbol "map" and tail a Lisp
association list. Here, an association list is a possibly
empty list of lists, each with first element "argument"
and second element "image." Each argument and
image is an arbitrary Lisp object.

(defun map:new ()
(list ~map))

map:pairs returns the association list of map.

(defun map:pairs (map)
(cdr map))

map : 2rid is just like Common-Lisp's cad.r:

(defun map:2nd (list)
(car (cdr list)))

map:get returns the image of map at argument, or nil
if argument is not in the map's domain.
(defun map :get (map argument)

(map:2nd (asso¢ argument (map:pairs map))))

map:set updates the value of map at argument to be
image and returns the image.

(defun map:set (map argument image)
(let ((pair (asso¢ argument (map:pairs map))))

1 The source is copyrighted by Twin Sun Inc. See distribu-
tion for details.

LP5-3.28

(if pair
(setcar (cdr pair) image)

(setcdr map (cons (list argument image)
(map:pairs map)))))

image)

Finally, map:range returns the range of map, i.e., a
list of the map ' s images.

(defun map:range (map)
(mapcar ~map:2nd (map:pairs map)))

4 . 2 Util i t ies

Eoops uses three rather general utilities: symbol con-
catenation, a primitive L00P, and a destructuring LET.

coops : symbol-concat returns a symbol whose print-
string is the concatenation of the list of sym-
bols~strings.
(defun eoops:symbol-concat (&rest s)

(let ((string ~(lambda (x) (format "~,s" x))))
(intern (apply ~concat (mapcar string s)))))

c e : f o r binds variable to successive car 's of list and
evaluates body, returning the list of results. This
is just a convenient abbreviation of mapcar. The
' ce : ' prefix denotes our library of Common Emacs-
lisp functions and macros.

(defmacro ce:for (symbol list &rest body)
(t (mapcar '(lambda ((, symbol)) (s@ body))

(, list))))

c e : l e t is a destructuring let. (l e t bindings . body)
binds bindings, then evaluates forms in body, return-
ing the value of the last form. bindings is a list; each
element is either a symbol bound to nil or a list (pat-
tern value) binding the symbols in patiern to cor-
responding values. Each value can refer to symbols
already bound in bindings. For example:

(ce:let (((first second . tail) '(I 2 3 4)))
(list first second tail))

=> (I 2 (3 4)).

The implementat ion uses ce:bindings:
(defmacro ce:let (bindings &rest body)

(, (let* (, (ce:bindings bindings)) (,@ body))))

ce : b i n d i n g s , given pattern, returns a list of bindings.
pattern is a tree of symbols, ce : b i n d i n g s returns a list
((symbol access)*) where symbol occurs in the pattern
and access is an accessing expression of nested calls
to car and cdr.

(defun co :bindings (bindings)
(let ((s 'ce:let)

(b '(lambda (pattern path)
(cond
((null pattern)
nil)
((symbolp pattern)
(list (list pattern path)))

((consp pattern)

(append
(funcall b (car pattern)

(list 'car path))
(funca]_l b (cdr pattern)

(list 'cdr path))))))))
(apply

' app end
(ce:for bind bindings

(if (and (¢onsp bind) (consp (car bind)))
(cons (list s (nth I bind))

(funca]_l b (car bind) s))
(list bind))))))

4 . 3 E o o p s

£oops requires two Emacs-Lisp libraries: the Emacs
byte-code compiler bytecomp, and Emacs ' pseudo
backquote. Unfortunately, byteco~p neglects to
provide, so we must load it with l oad - l i b r a r y .

(provide 'eoops)
(load-l ibrary "byt stomp")
(require ~backquot e)

Eoops automatical ly recompiles object files when
their source files change. To do this, Eoops needs
to be able to find the source files. We assume that
all Eoops source files are in the directory named by
the variable coops :c lass -pa th . A class named foo is
defined in the file foo. e l in this directory.
(defvar coops:class-path "/local/emacs/elisp/classes")

All the classes are kept in a map bound to the global
variable eoops :c lasses . This maps f rom class names
to class records.

(defvar eoops: classes (map :new))

4 . 4 P u b l i c M a c r o s

Here are the macros to be used by the Eoops pro-
grammer.

To get the code to fit in this journM's two column
format, we have used several abbreviations. These
symbols are used throughout the code:

c class
p parent of class c
nc name of c
np name of p
s subclasses of class c
cv compiled class vector
pv compiled parent
:f compiled method (function)

T h e c l a s s macro creates a new class record, fills in
its fields, and then compiles the class. The class
record remembers the class's name, slots, methods,
and other information.

LP5-3.29

eoops: compile-class, below, implements inheri-
tance by copying information from superclasses to
subclasses. Thus, subclasses depend on their super-
classes; if the superclass changes, the subclass should
be recompiled. To implement this, each class remem-
bers it subclasses in the field called children.

(defmacro class (nc np slots /treat methods)
(let ((C (or (map:get coops:classes nc)

(map:new))))
(let* ((np (map:get c 'parent))

(p (map:get eoops:dasses rip))
(s (map:get p 'childre~l)))

(if p (map:set p 'childrem (delq nc s))))
(coops :require-class np)
(let* ((p (map:get eoops:classes np))

(s (map:get p 'children)))
(if p (map:set p 'childrem (cons nc s))))

(map:set c 'parent np)
(map:set c 'childrem (map:get c 'children))
(map:sot c 'slots s l o t s)
(map:set c 'name nc)
(map:set c 'compiled nil)
(if (stringp (car methods))

(setq methods (cdr methods)))
(map:set c 'methods methods)
(map:set coops:classes nc c)
(eoops:compile-class c)
(map:set c 'modtime

(eoops:class-mod-time nc 'obj)))
(l i s t 'quote nc))

The new macro just calls the function eoops :new after
quoting the class argument:

(defmacro new (nc)
(c (eoops:new (quote (, nc)))))

The e macro is just a shorthand:

(defmacro @ (&rest arguments)
(< ($ s e l f (,@ arguments))))

$ implements fast message passing. The $ macro im-
plements a part ial method-lookup at compile-time, by
precomputing the hash code for the selector. Then $
constructs code to dispatch on the class of the receiver
at run-time. There are three cases:

(1) In the general case, ($ r s . a) compiles to

(le t ((eoops:receiver r))
(funcall

(cdr (assq s (aref (aref eoops:receiver O)
h)))

coops:receiver . a))

where h is the hash code of the selector s. Instances
are represented as vectors, the first element of which
is their class. So (a re f coops : rece ive r 0) is the class
of the receiver. Compiled classes are represented as
vectors• The first two elements of these vectors give
the class's name and instance size• The remaining
elements implement a hash table, mapping selectors
to methods. (a re f . . . h) finds the selector's hash
bucket, (assq s . . .) finds the entry, and (cdr . . .)
finds the method. Finally, the method is funca l l ' ed

on the receiver and the arguments.
(2) In the special case where the receiver is a sym-

bol, evaluating it is cheap and can cause no side-
effects, so we can dispense with the l e t and compile
the simpler

(funcall (cdr (assq s (aref (aref r O) h))) r . a)

(3) In the special case where the receiver is the sym-
bol super, its class is known at compile-time. The
class is the value of the symbol coops :super-c lass ,
which is bound by eoops:compile-class and accessed
here via dynamic binding. The compiled code is com-
plex, since it looks up the class at run-time, so for a
class whose parent is named bar the run-time code is:

(let ((super (map :get (map :get eoops: classes
'bar)

' compiled)))
(funcall (cdr (assq s (aref super h)))

self
• a))

Notice that the receiver is self, but the method is
sought in the class bar which may have actually in-
herited the desired method from its ancestors.

The $ macro is implemented as:

(defmacro $ (receiver selector /treat ares)
(let ((h (coops:hash selector))

(S (l i s t 'quote se lector)))
(cond
((eq receiver 'super)
(c (let ((super

(map:get (map:get
seeps :classes
' (, eoops: super-class))

' compiled)))
(funcall (cdr (assq '(, selector)

(aref super (, h))))
self
(,@ ares)))))

((symbolp receiver)
(c (funcall

(cdr (assq (, s) (aref
(aref (, receiver) O)
(, h))))

(, receiver)
(,e ares))))

(t (' (l e t ((eool~:receiver (, receiver)))
($ coops :receiver

(, selector)
(,e arES))))))))

4.5 Compilation

Compilation of a class record is performed by
eoops:compile-class. The compilation of a class is
comprised of the following steps:

(1) Create a new class vector, c v .

(2) Store the name of the class, n c in c v .

(3) Store each user-defined method in c v . The func-
tion coops:store-method finds the correct hash posi-
tion and byte-compiles the method body. Note that

LP5-3.30

the class and selector names are prepended to the doc-
umentat ion string to make an emacs debugger stack
trace somewhat more readable.

(4) Create and store the methods for slot access.
(5) Write the class record to disk with the cv con-

taining only those methods defined by the class itself.
(6) Make a new cv that inherits behavior f rom pcv.
(7) Recompile any subclasses that have already

been loaded. This should only occur during class
development when a class with children is being
reloaded.

After compilation, a loadable version of the com-
piled class record exists on disk, the compiled class is
resident in memory, and the class's children, if any,
have been updated.

(defun eoops : compi l e - c l a s s (c)
(l e t * ((np (map:get c ~parent))

(p (map:get eoops:classes np))
(pCV (map:get p ' compi led))
(nc (map:get c 'name))
(cv (make-vector eoops :viable-size nil)))

(a s e t cv 0 no)
(l e t ((methods (map:get c ;methods))

(eoops : s u p e r - c l a s s np))
(ce : f o r method methods

(c e : l e t ((((s e l e c t o r . parms) . body) method)
(doc

(format "(7,s 7,s) " nc s e l e c t o r))
(body
(if (stringp (car body))

(cons (concat doc (c a r body))
(cdr body))

(cons doc body)))
(code

(c (lambda (, parms) (,@ b o d y)))))
(message '.'Compilii~ 7,s 7,s..." nc selector)
(eoops:store-method cv selector code))))

(let ((i (if pcv (aref pcv 1) I))
(slots (map:get c 'slots)))

(aset cv 1 (+ i (length slots)))
(ce:for slot slots

(if (consp slot) (setq slot (car slot)))
(eoops: store-method
cv slot (' (lambda () (aref self (, i)))))
(eoops: store-method
cv

(eoops:symbol-concat slot ":")
(' (lambda (v) (aset self (, i) v))))

(s e t q i (1+ i))))
(map:se t c 'compiled cv)
(eoops :write-class c)
(let ((pv (map:get p ~compiled)))

(map:set c 'compiled
(eoops: inherit-behavior pv cv)))

(mapcar ~ (lambda (ns) (eoops:compile-class
(map : get eoops :classes ns)))

(map:get c ~childre~t))))

4.6 N e w

eoops:new checks, at run-time, that the specified
class, nc, is loaded. I f it is not currently loaded,

coops :require-class is invoked to load it. Normally,
a class is repeatedly instantiated but only the first
invocation of eoops:new may require the expense of
loading the class. After the class record, c, is re-
trieved, the cv is retrieved, the instance vector is cre-
ated and initialized, an init message is sent to the
new instance, and finally the new initialized instance
is returned.

(defun eoops:new (nc)
(l e t * ((c (or (map:get c o o p s : c l a s s e s nc)

(progn (c o o p s : r e q u i r e - c l a s s nc)
(map : get eoops : classes nc))))

(cv (map:get c ~compiled))
(self (make-vector (aref cv I) nil)))

(aset self 0 cv)
($ self init)
self))

4.7 C l a s s V e c t o r s a n d H a s h i n g

The first two elements of a class vector are the class's
name and instance vector size. The rest of the class
vector elements implement a hash table for the meth-
ods for the selectors to which the class responds. The
size of the hash table is stored in the constant htable-
size. Therefore, the length of a class vector, viable-
size, is 2 + htable-size.

(defconet e o o p s : h t a b l e - s i z e 23)
(de fcons t e o o p s : v t a b l e - s i z e (+ 2 e o o p s : h t a b l e - s i z e))

c o o p s : h a s h returns a relatively unique integer for
symbol, between 2 and htable-size.

(deftm coops:hash (symbol)
(l e t * ((s (symbol-name symbol))

(i (length s))
(r 0))

(while (< 0 i)
(setq i (i- i))

(setq r (+ r r (aref s i))))
(+ 2 (7, (max r (- r)) soops:htable-size))))

coops : s t o r e - m e t h o d byte-compiles and stores method
in cv's hash bucket for selector.

(defun eoops:store-method (cv selector method)
(let* ((f (byte-compile-lambda

(coops : add-self method)))
(h (eoops:hash selector))
(bucket (aref cv h)))

(aset cv h
(eoops :update-cv-bucket bucket selector f))))

e o o p s : a d d - s e l f , given a l ambda expression f,
prepends the symbol s e l f to the arguments in f. This
is required since $ calls a method with the receiver as
an additional argument prepended to those specified
in a method definition.

(defun e o o p s : a d d - s e l f (f)
(ce:let (((lambda arguments . body) f))

(c (lambda (self (,@ arguments)) (,@ body)))))

LP5-3.31

eoops : iDherit-behavior copies the methods from the
parent-vector to the class-vector. Called when the
compiled code is loaded, this implements load-time
inheritance.

(defun eoops:inherit-behavior (pv cv)
(let ((ncv (make-vector eoops:vtable-size nil))

(i eoops:vtable-size))
(aset ncv 0 (aref cv 0))
(aset ncv I (aref cv I))
(while (< 2 i)

(setq i (I- i))
(if pv (aset ncv i (copy-alist (aref pv i))))
(ce:for entry (aref cv i)

(aset ncv i (eoops:update-cv-bucket
(aref ncv i)
(car entry)
(cdr entry)))))

ncv))

eoops:update-cv-bucket updates the hash table
bucket's alist to contain the lambda expression f for
index selector.

(defun eoops:update-cv-bucket (bucket selector f)
(let ((pair (assq selector bucket)))

(cond (pair (rplacd pair f) bucket)
(t (cons (cons selector f) bucket)))))

4.8 Storing and Loading Compiled
C l a s s e s o n D i s k

eoops : r equ i r e -c l a s s loads the specified class, nc,

when either the class has never been loaded or when
its sources, if availab~, are newer than the object file.

(defun eoops:require-class (nc)
(let* ((s-time (eoops:class-mod-time nc 'src))

(o-time (eoops:class-mod-time nc 'obj))
(. h i c h
(cond
((not nc) nil)
((and o - t ime s - t i m e

(eoops:time-newer o-time s-time))
' o b j)

((and o - t ime (not s - t i m e)) ' o b j)
(t 'src))))

(cond
((no t nc) t)
((and (map:get eoops:classes nc)

(eq which ' o b j))
t)
(t (eoops:load-file nc which)

(let* ((c (map:get eoops:classes nc))
(up (map:get c 'parent))
(p (map:get eoops:classes up))
(c-time (map:get c ~modtime))
(p-time (map:get p ~modtime)))

(if (and p (seeps:time-newer p-time c-time))
(eoops:load-file nc ~src)))))))

e o o p s : l o a d - f i l e loads the class, nc, f rom disk. type

indicates whether to load the . e l or the . e l c file.

(defun eoops:load-file (nc type)
(load-file (eoops:class-file-name nc type)))

eoops : load-c lass stores the class record c in
e oops : c l a s se s under the name nc. This function is
explicitly invoked in a class's object file. Loading a
class enforces that the parent is loaded. The parent 's
class vector is then copied and merged with the cur-
rent class's class vector by eoops : inher i t -behav io r .
This inheritance step is done at load t ime so that a
new object file need not be created and written for a
class when an ancestor is modified.

(defun e o o p s : l o a d - c l a s s (nc c)
(let ((up (map:get C ~parent)))

(eoops :require-class up)
(let* ((p (map:get eoops:classes up))

(pv (map:get p ~compiled))
(cv (map:get C ~compiled))
(s (map:get p ' c h i l d r e a t)))

(map:set eoops:classes nc c)
(map:se t c ;modtime

(eoops:class-mod-time nc ~obj))
(map:set c 'compiled

(eoops :inherit-behavior pv cv))
(if p (map:set p 'children (cons nc s))))))

eoops:write-class writes the compiled class c, whose
class name is nc, to the file n c . e l c in the directory
that is the value of eoops :c lass -pa th . The resulting
file, when loaded into Emacs, will install class c. Each
file contains only one class and each class has to be
in exactly one file. However, a file may include other
expressions. Therefore, eoops :wr i t e -c l a s s first byte-
compiles the source file and then replaces the i tem
corresponding to the class definition by the printed
representation of the class. Setting p r in t -dep th to nil
makes sure that the p r in l prints the complete class.
Since a class's children field is a list of its currently
loaded subclasses, this field is set to nil before print-
ing.

(defun eoops:write-class (c)
(let* ((standard-output

(get-buffer-create "*Compiled*"))
(print-depth nil)
(nc (map:get c 'name))
(src-name (seeps :class-file-name nc 'src))
(oh j-name (eoops: class-file-name nc ' obj))
(prefix

(format "(eoops:load-class ~s '" nc))
(suffix ")"))

(message "Writing class 7.s..." nc)
(byte-compile-file src-name)
(set-buffer standard-output)
(erase-buffer)
(insert-file obj-name)
(goto-char (point-max))
(re-search-backward "" (class ")
(delete-region (point)

(progn (forward-sexp) (point)))
(insert prefix)
(let ((s (map:get c ~children)))

(map:set c 'children nil)
(prinl c)
(map:set c 'children s)
(insert suffix))

LP5-3.32

(let ((make-backup-files nil))
(write-file obj-name))

(kill-buffer (current-buffer))
(message "Writing class ~s...done" no)))

eoops:class-file-name returns the full path name of
a file storing the class nc. type can either be 'src or
'obj .

(defun eoops:class-file-name (no type)
(format (cond ((eq type 'src) "~s/~s.el")

((eq type ~obj) "~s/~s.elc"))
eoops: class-path nc))

eoops:class-mod-time returns the last modification
time of the source or object file corresponding to the
class nc.
(defun eoops:class-mod-time (nc type)

(nth 5 (file-attributes
(eoops: class-file-name nc type))))

eoops :time-newer compares two time values returned
by eoops:class-mod-time and returns true if its first
argument is greater than its second.
(defun eoops:time-newer (ta tb)

(ce:let (((tal ta2) ta)
((t b l tb2) t b))

(or (> t a l t b l)
(and (= t a l t b l)

(> ta2 t b 2)))))

4.9 F u t u r e E n h a n c e m e n t s

This section describes future enhancements to the
Eoops environment.

Earlier versions of Eoops had support for docu-
mentation and debugging which was lost with the
removal of the Eoops interpreter. This could be re-
implemented in the new compiled-only environment.

eoops : c l a s s - p a t h should be a list of directories to
search for class files.

Eoops could compile even better code by inlining
method bodies. As this would eliminate all overhead
for message-passing and function-calling, Eoops code
could run faster than most hand-built Emacs-Lisp.

Message sends to known classes could be inlined.
This includes all sends to se l f and super; sends to
self typically comprise over 50% of the sends in an
application. Eoops could allow the programmer to
declare the types of slots and arguments; then the
compiler could inline sends to them. Eoops could use
type prediction or runtime compilation to inline all
sends. All of the above compilation techniques are
actually implemented in the SELF compiler (Cham-
bers 91).

5 Exper ience using Eoops

We built Eoops in order to implement a remote eval-
uation facility for Emacs. This facility allows multi-
ple Emacs processes to communicate by exchanging
s-expressions. We then used the remote evaluation fa-
cility to implement several small interactive collabo-
rative tools, including a mechanism for editing shared
text in Emacs. We have built 45 object classes, rep-
resenting about 2,600 lines of Eoops code.

6 How To Get It

You can FTP the latest copy of Eoops from
:ftp.cs.ucla.edu in the file pub/eoops .ta_r.Z.

7 References

(Borning 82a) Alan H Borning and Daniel H H In-
galls "A Type Declaration and Inference System for
Smalltalk," Ninth Symposium on Principals of Pro-
gramming Languages, 133-141, Albuquerque, NM,
1982.

(Borning 82b) Alan H Borning and Daniel H H In-
galls "Multiple Inheritance in Smalltalk-80," Pro-
ceedings at the National Conference on Artificial
Intelligence, 234-237, Pittsburgh, PA, 1982.

(Chambers 91) Craig Chambers and David Ungar
"Making Pure Object-Oriented Languages Practi-
cal," OOPSLA '9i, 1-16.

(Goldberg 83) Adele Goldberg and David Robson
Smalltalk-80: The Language and its Implementa-
tion, Addison-Wesley, Reading, MA, 1983.

(Ingalls 86) Daniel H H Ingalls "A Simple Technique
for Handling Multiple Polymorphism," OOPSLA
'86, 347-349.

(Lewis 90) Bil Lewis et al. The GNU Emaes Lisp Ref-
erence Manual, Free Software Foundation, Cam-
bridge, MA, 1990.

(Lieberman 86) Henry Lieberman "Using Prototypi-
cal Objects to Implement Shared Behavior in Ob-
ject Oriented Systems," OOPSLA '85, 214-223.

(McCall 80) Kim McCall "TinyTalk, a Subset of
Smalltalk-76 for 64KB Microcomputers," Sigsmall
Newsletter, September 1980.

(Moon 86) David A Moon "Object-Oriented Pro-
gramming with Flavors," OOPSLA '86, 1-8.

(Snyder 86) Alan Snyder "Encapsulation and In-
heritance in Object-Oriented Programming Lan-
guages," OOPSLA '86, 38-44.

LP5-3.33

