
U s i n g , t h i s - m e t h o d * to
P l a n and E x e c u t e Tasks in CLOS

Martin Boyer
Robotics Laboratory

Hydro-Qu6bec Research Institute
1800 mont6e Ste-Julie

Varennes, QC, Canada, J3X 1S1
mboyer@ireq-robot.hydro.qc.ca

Laeeque K. Daneshmend, Vincent Hayward
McGill Research Center for Intelligent Machines

McGill University
3480 University Street

Montreal, QC, Canada, H3A 2A7
laeeque@McRCIM.McGill.CA

1 I n t r o d u c t i o n
Advanced supervised/autonomous robotic sys-
tems may be characterized as large and long
lived software environments, distributed over
a large number of mechanical and computer
subsystems. Appropriate hierarchical repre-
sentations of such robotic systems are desir-
able, to facilitate system specification, imple-
mentation, and evolution. In the end product,
this includes planning and programming of
robotic tasks and recovery procedures, when
tasks fail.

Strictly hierarchical designs of robotic sys-
tems, which rigidly enforce simple inheritance,

have been notoriously unsuccessful in the past.
Since the operation of such a system may be
viewed from so many differing perspectives,
simple inheritance is much too restrictive a
representation tool. In this paper, we start
by contrasting the traditional class hierarchies
with the requirements of robot task planning
and execution. A novel object-oriented design
methodology is formulated, which satisfies the
requirements of designing and implementing
complex robotic systems. A short example of
the results of this methodology is presented,
followed by suggestions for future work.

2 T h e M e t h o d H i e r a r c h i e s
Traditionally, software objects are used to
model physical entities, where slot values rep-
resent states or properties of objects. Meth-
ods are then applied to one or more objects

to change states and properties. Is it possible
and sensible, on the other hand, to represent
processes as objects? Imagine a machine shop,

LP 5-3.3

R e a s o n i n g a b o u t M e t h o d s : P l a n n i n g Using * t h i s - m e t h o d * . . .

and a production engineer who wants to orga-
nize and schedule the production of several,
different, series of parts. There are common
operations, such as cutting, drilling, debur-
ring, and measuring, which are independent
of the shape and purpose of the manufactured
part. During production line planning and de-
sign, the actual steps and methods required
to accomplish the common operations are less
important than the prerequisites and results
of the operations. More relevant are the raw
materials, a smooth flow of operations, and
the final product. The machinists can worry
about manipulating the individual parts.

Using this model, the first task is not to
model and represent the physical objects by
C L O S objects, but rather to represent the
operations as objects! Operations can have
states and characteristics stored in slots. Cut-
ting, for instance, requires a detailed drawing.
Measurements must be done under supervi-
sion of the QA engineer. Machining may re-
quire special skills and tools for harder mate-
rials or better precision 1. Again, to the peo-
ple planning the operations, allocation of re-
sources and flow of operations is more impor-
tant than the actual low-level manipulations.

2.1 Reasoning about Methods: Planning

From this point of view, planning is seen as
reasoning about processes, or methods. Fur-
ther, error recovery can be thought of as local
planning. In other words, to prepare a task
or recover from execution errors requires some
amount of reasoning about the actions that
compose the task or the plan. It soon becomes
imperative to organize the actions to be able
to find common points between some actions,
as one of the ways to reduce the resources re-
quired to describe those actions.

Some criteria must also be chosen to char-
acterize the actions; to provide parameters to
compare and "commonize" the actions and to
provide "substance" for the planner and er-
ror recovery. Once common points have been

identified, actions can be placed in a hierar-
chy in which complex actions, for instance,
inherit characteristics from simpler, low-level,
actions. The actions can thus be characterized
and classified with respect to several parame-
ters. This sort of characterization is essential
in order to work out generalized planning and
recovery strategies.

Among these characteristics are precondi-
tions and post-conditions, which describe the
state of the world prior and after execution of
an action, but also the complexity of the ac-
tion, how the action was defined, under what
type of control, etc. All these parameters are
intended to be used at planning time to help
generating and validating a plan and at ex-

XWhile the skills and tools can be modeled as characteristics of the object, greater precision is largely due to
the process.

LP5-3.4

Using *this-method*... R e p r e s e n t i n g Act ions in CLOS

ecution time to assist the operator, by pro-
viding explanation of the intent of the plan
and preventing conceptual errors during inter-
active use of actions (e.g. when the operator
has manual control over the system). Further,
these parameters can be used to reason about
actions and infer more preconditions and fail-
ure modes. Some useful parameters are:

• Types of actions:
Initialization, Decision, Sensing, Motion,
Organizational Change.

• Complexity Levels:
Atomic, Low, Medium, High, Plan.

• Confidence Level:
Simple, Routine, Frequent, Verified, Com-
plex, New, Gamble.

• Source:
Predefined, Run-time, Random.

• Control:
Autonomous, Shared, Filtered-operator,
Direct-operator, Physics.

• Actors:
Manipulator, Tools, Sensors, Operator.

• Objects:
Insulators, Crossarms, Nuts and bolts.

2.2 Representing Actions in CLOS

Using frames to describe actions at planning
and recovery time, the above parameters be-
come slot names in the action frames, allowing

the corresponding slot values. Described as a
CLOS class, the actions take this form:

(defclass plannable-action-mixin
()

;; These slots hold everything required to use an action in a plan.
;; Note that some slots are "advertised" as read-only;
;; the corresponding slot-values are set at compile time.

((type

(complexity

(confidence

(source

(control

: reader ac t ion- type
: i n i t a r g : type) ;computation/energy t r a n s f e r
:accessor act ion-complexi ty
:initarg :complexity) ;atomic/plan
:accessor action-confidence-level

:initarg :confidence-level) ;routine/unverified
:accessor action-source
:initarg :source) ;predefined/random
:accessor action-control
:initarg :control) ;autonomous/human control

(preconds :accessor precondi t ions

LP5-3 • 5

Representing Actions in CLOS Using *this-method*...

(postconds

:initarg :preconditions
:initform ())
:accessor postconditions
:initarg :postconditions
:initform ())

The slots in this class have a one to one cor-
respondence with the action parameters de-
scribed earlier, except for the Actor and Ob-
jects parameters which are best determined
at run time, when the action is actually per-

formed.

A trivial example, defining the move class
of actions, its generic function and a spe-
cialized method, can roughly be expressed in
C L O S code as follows:

(defclass move
(motion) ;MOTION itself inherits from

; standard-methodand plannable-action-mixin

()

(:default-initargs
:complexity
:confidence-level
:source

:control
)

'low

'frequent
'run-time
'autonomous)

(defgener ic move (objec t d e s t i n a t i o n)
(:method-c lass 'move))

(defmethod move ((ob jec t heavy-object)
d e s t i n a t i o n)

(. . .)) ; take spec ia l p recaut ions when moving a heavy objec t

(let ((method *))
(serf (action-complexity method)
(serf (action-control method)

'medium)
' shared))

LP5-3.6

Using *this-method*... C o m b i n i n g the Two Hierarchies

3 C o m b i n i n g the Two Hierarchies

There are a multiplicity of software design
methodologies which have been developed
over the years. They are typified by focusing
on one or another aspect of the overall soft-
ware design problem. Hence, such methodolo-
gies are only effective in situations where other
aspects of the design problem are so trivial
that they can be handled in an ad hoc man-
ner [San89].

The standard methodology for object-
oriented design is to identify the relevant phys-
ical objects and map them into object classes,
and then to specify the details of each ob-
ject, including the methods associated with
it. However, this methodology does not ad-
dress the asynchronous, distributed, concur-
rent, nature of the problem.

In contrast, conventional "structured de-
velopment", based on a top-down philosophy,
maps physical operations to communicating
concurrent computational processes. This de-
composition is useful for coping with distri-
bution and concurrency, but does not have
the power of the object-oriented approach in
terms of software modularity and reconfigura-
bility.

Hence a fusion of the two approaches seems
appropriate [Ja189]: to our knowledge, no such
methodology has been postulated elsewhere.
A standard hierarchical object-oriented design
(or HOOD) design methodology, as applied to
complex robotic systems, was developed pre-
viously at McGill [HDFB88] [HDF+90]. The
HOOD paradigm supports a taxonomy of ob-
jects, but not does not cater for a taxonomy of

the operations which act upon those objects.
If we extend the HOOD paradigm by specify-
ing that:

• operations on objects have an associated
data type

• operation types inherit attributes from op-
eration supertypes

we arrive at the Dual-Hierarchical Object-
Oriented Design (DHOOD) paradigm. The
DHOOD methodology utilizes the two tax-
onomies in the following manner:

1. Identify Physical Objects and Attributes
2. Map physical Objects to software object

classes
3. Identify Physical Processes/Operations on

Objects
4. Map Physical Processes to software pro-

cesses
5. Associate software processes with software

objects
6. Establish interface to objects
7. Implement operations (methods) on ob-

jects
8. Refine objects if they are too complex to

implement, and repeat procedure starting
from step 3; else terminate refinement.

Relating this approach to the design prob-
lem at hand, the following design methodology
results:

i Formulate execution taxonomy: physical
objects and their relations

LP5-3.7

A S a m p l e I m p l e m e n t a t i o n Using * th is -method*. . .

ii Define methods for objects in execution
taxonomy: correspond to physical opera-
tions

iii Formulate planning taxonomy: classifica-
tion of methods in execution taxonomy

iv Define methods for objects in planning tax-
onomy: correspond to recovery plans for

relevant methods
v Refine objects in execution taxonomy, if

necessary, and repeat from step ii.

This methodology also resolves the problem
of relating the two taxonomies in a consistent
manner, provided that the above design pro-
cedure is followed.

3.1 Overloading M e t h o d s to Descr ibe and Speci fy Act ions

C L O S has been said to be self-contained;
only a few basic classes and objects are cre-
ated beforehand and the rest of C L O S is de-
fined in terms of these basic elements. One
of the benefits of this is the fact that meth-
ods are also objects (instances of the class
s tandard-method) and hence can be manip-
ulated within the C L O S framework. Thus,
the same paradigm and tools can be used to
perform run-time execution and off-line plan-

ning and reasoning. Further, COMMON LISP
supports facets [CW85]; a single symbol can
refer to multiple concepts and, in this partic-
ular case, to both an executable function and
to a class of such functions. In practice, one
can use the same "name" to execute a piece of
code and to reason about this code. Accord-
ingly, the action parameters turn out to be
slots in method objects, as stated previously.

4 A Sample Implementat ion
This section outlines the VICTORIA DAY
P C L source code modifications that were re-
quired to implement the connection between
run-time code and planning strategies. These
modifications are in no way complete and cer-
tainly not efficient, but rather, as we say, a

Note that the current method ob-

ject can also be obtained by a call to
(compu te - app l i c ab l e -me thods g e n e r i c - f u n c t i o n
a r g l i s t) but this form has the significant
drawback that it is slow; it recomputes the
method from scratch, which seems unfortu-
nate.

Rather, the concept is to create a special
variable, * th i s -me thod* , and bind this vari-

2hack: 1. n. Originally a quick job that produces what is needed, but not well. The Jargon File, (~)Eric S.
Raymond

LP5-3 • 8

Using *this-method*... A T e s t Case: T e l e r o b o t i c s

able to the method object as it is being exe-
cuted. This requires changes to the method
function constructor to declare the variable
as s p e c i a l (which makes it dynamic [Ste84,
p. 157]), and simply bind it to the "current"
method. In essence, the executable code re-
tains a pointer to its definition. The way
it is done makes the variable *this-method*
available in every method in the world with-
out having to declare the method combination
type or the class of the generic function (this
is good since these capabilities were not avail-
able in VICTORIA DAY PCL). As far as we
could determine, the variable is correct under
these conditions:

1. Using standard method combination
2. Not using :be fo re , : a f t e r , or :around

methods

Two functions need to be modi-
fied: make-effect ive-method-funct ion and
add- lexical-funct ions-t o-method-I ambda.
Both functions must extract and store the cur-
rent method from the argument list. Addi-
tionally, the former must be modified so that
the body of the method function holds (in

next-methods) the list of the applicable
methods, instead of a list of applicable method
functions. That is, the following calls:

(l e t ((nex t -me thod- func t ions
(mapcar #'method-funct ion

(caddr fo rm))))

(let ((*next-methods*
next-method-functions))

are replaced by:

(let ((*next-methods*
(caddr form))

And then, in add-lexical-functions-
to-method-lambda, this call:

(apply .next-method. cnta-args)

is replaced by:

(l e t ((*this-method*
• next-method•))

(apply (method-function
• next-method.)

cnm-args)

5 A T e s t C a s e : T e l e r o b o t i c s
Consider a system consisting of a robot, an op-
erator, and the various interfaces to allow the
operator to control the manipulator directly
or issue complex commands from a certain dis-
tance from the work area. In particular, this
system is to be used to maintain live electric

distribution equipment, as described in [Gir88]
and [BDHF91].

The hierarchies of objects and actions for
this task are depicted in figures 1 and 2.

This work has also been taken further in
[PBDgl] to include, for instance, trajectory

LP5-3.9

Conclusion Using *this-method*...

I Objects I

I IS°ns°rsI IH rdw r°l i igh volt gol

I m nua l
f cutter

powered I

t winch ~ wire gauge

saw I.- force

l ootactingl Inon cootactl

f laser
camera

EM field

fastener conductor

:r:\ot Un:::::
phase A
phase B
phase C

Figure 1: The Objects Hierarchy

control. Another test case is described in [HDFB88].

6 C o n c l u s i o n
We have shown how processes can be modeled
as CLOS objects, with slots holding proper-
ties, such as preconditions, essential for plan-
ning systems. Physical objects, on the other
hand, have always been represented as CLOS
objects, as is traditional is object-oriented pro-
gramming languages.

We have also shown that it is relatively
simple to implement an extension to CLOS

to give access to the definition of a method
from its executable component 3. Indeed, cer-
tain implementations of COMMON LISP al-
ready provide such an extension, albeit not
documented and not complete 4. Further, we
stated which properties of the LISP language
are useful or even essential to the integration
of the two hierarchies that are formed by the
objects and the actions in a task.

3Strictly speaking, the executable part is in the generic function.
4LUCID's wizard, doc file, in the 4.0 release, hints that apply-method could be used.

LP5-3.10

Using * th is -method*. . . C o n c l u s i o n

A c t i o n s

,~i~iz~t~o~ I I ~o~oo I I Son~i~ II~otio~ II O~oi~ioo~ ~h~o~e I

!
- l oca te ~--- a p p r o a c h c o u p l e - t o

::: al i : nc - -

- s e l e c t

a u t h o r i z e

- p o w e r - u p

- power-of f

- - s t a r t

- - s t op

- - conf igure

- - s e t - s t a t e

c l e a r - p a t h - p

I
g e t - t r a j e c t o r y

acqu i r e I

I r e t r i eve - -

a c q u i r e - t o o l
s tow

u n s t o w
dr ive

lock " -
t r ave r se

u n l o c k m

Figure 2: The Actions Hierarchy

Obviously, there are other ways to con-
nect the two hierarchies (such as a separate
set of objects for the representation of ac-
tions), but an integration of both, in the
same programming environment, has tremen-
dous advantages in terms of programmer pro-
ductivity and self-documentation. If, then,
C L O S is to be used as a basis for an inte-
grated planning/execution system (an integra-

tion required for on-line error detection and
recovery), there m u s t be a relatively stan-
dard and painless way to access a method
description from the executable code. In
clear, we need a stable, documented, and sim-
ple implementation of * th i s -me thod* , where
* t h i s - m e t h o d * is defined, in the body of a
method function, as the method itself.

LP5-3 • ii

R E F E R E N C E S Using *this-method*...

R e f e r e n c e s

[BDHF91]

[cws5]

[Gir881

[HDF+90]

[HDFB88]

[Ja189]

[PBD91]

Martin Boyer, Laeeque Khan Daneshmend, Vincent Hayward, and Andr6 Foisy. An
object-oriented paradigm for the design and implementation of robot planning and
programming systems. In International Conference on Robotics and Automation,
pages 204-209, Sacramento, CA, April 1991. IEEE.

L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys, 17(4):471-522, December 1985.

Pierre Girard. La robotique en distribution. Technical report No. IREQ-4167C,
Institut de recherche d'Hydro-Qudbec, Varennes, QC, Canada, April 1988.

Vincent Hayward, Laeeque Khan Daneshmend, Andr4 Foisy, Martin Boyer, L. P.
Demers, R. Ravindran, and T. Ng. The evolutionary design of MCPL, the mo-
bile servicing station (MSS) command and programming language. In International
Workshop on Intelligent Robots and Systems: Toward A New Frontier of Applica-
tions, Tsuchiura, Ibaraki, Japan, July 1990. IEEE. 1990.

Vincent Hayward, Laeeque Khan Daneshmend, Andr4 Foisy, and Martin Boyer. Final
report on the technology development for the MSS command and programming lan-
guage (MCPL). Technical Report prepared under subcontract No. 79145TF, McGill
Research Centre for Intelligent Machines, McGill University, May 1988.

P. Jalote. Functional refinement and nested objects for object-oriented design. IEEE
Transactions on Software Engineering, 15(3):264-270, March 1989.

Michel Pelletier, Martin Boyer, and Laeeque Khan Daneshmend. A taxonomy for
objects and actions in intelligent control of telerobots. In Canadian Conference on
Electrical and Computer Engineering, pages 65.4.1-65.4.1, Qudbec, Canada, Septem-
ber 1991.

[San89]

[Ste84]

B. Sanden. The case for eclectic design of real-time software. IEEE Transactions on
Software Engineering, 15(3):360-362, March 1989.

Guy L. Steele. Common Lisp, the Language. Digital Press, Burlington, MA, 1984.

LP5-3.12

