
The Scheme of Things

Jonathan Rees (guest columnist)
Computer Science Robotics and Vision Laboratory

Cornell University
Ithaca, NY 14853

j argos, cornell, edu

Most modern programming languages provide some way to define new types.
Scheme doesn't. What gives?

The record facility previously described in this column[2] was proposed at
the June 1992 meeting of the Scheme report authors, but didn't meet with
broad agreement. The fact that a need for user-defined types is strongly felt
but no consensus has been reached hints that something interesting is going
on. In this column I hope to motivate the need for user-defined types and to
articulate the structure of the large and murky space of designs for possible
Scheme type-definition facilities.

The original rationale for leaving data type definitions out of Scheme was
minimalist: No such facility is needed. If you want a new type, define it yourself
on top of the types provided. For example, if I need a two-element record in
order to implement a FIFO queue data type, I can use pairs:

(def ine (make-queue) (cons ' () ' ()))

(def ine (enqueue! q obj)
(se t -ca r ! q (cons obj (car q))))

(def ine (dequeue! q)
(i f (nu l l? (cdr q))

(begin (se t -cdr ! q (reverse (car q)))
(se t -ca r ! q ' ())))

(l e t ((head (car (cdr q))))
(se t -cdr ! q (cdr (cdr q)))
head))

(The queue-empty? predicate and a check for empty queue in dequeue! have
been omitted for the sake of brevity.)

The first change to be made is to try to make queues distinguishable from
other objects. There are several different reasons for this:

1. Debugging: When I accidentally pass an ordinary list to enqueue! or
dequeue !, I would like to see a meaningful diagnostic message.

2. Debugging: When I accidentally pass a queue to an operator like length
that expects a list, I would like to see a meaningful diagnostic message.

3. Disjointness: One would like to be able write case analyses that discrimi-
nate between queues and members of other Scheme types.

LP5-3.39

The first of these is easily addressed: Chaage the representation of queues so
that they are marked as being queues. For example, queues could be represented
as three-element vectors, where one element (the first, say) is a unique token:

(define queue-unique-token (list 'queue))

(define (make-queue) (vector queue-unique-token ' () ' ()))

(define (enqueue! q obj)
(if (queue? q)

(vector-set! q I (cons obj (vector-tel q i)))
(error "expected a queue but found this instead"

q)))

(define (dequeue! q) . . .)

(define (queue? obj)
(and (vector? obj)

(= (vec to r - l eng th obj) 3)
(eq? (v e c t o r - t e l obj 0) queue-unique-token)))

This particular choice of unique token even makes queues easily identifiable
when displayed by write.

Our only hope of addressing goal number 2 is to represent queues as proce-
dures. Pairs as the representation are subject to accidental appends, lengths,
and so forth, and vectors are prone to accidental v e c t o r - f i l l ! s ; a process of
elimination and dim recollection of Scheme programming folklore lead us to try
procedures, which only support a single operation, application. Using the classic
implementation technique, we get something like this:

(def ine (make-queue)
(l e t ((incoming ' ()) (outgoing ' ()))

(lambda (operation)
(case operation

((enqueue !)
(lambda (obj)

(set! incoming (cons obj incoming))))
((dequeue !)
(if (null? outgoing)

(begin (set! outgoing (reverse incoming))
(set! incoming '())))

(let ((head (car outgoing)))
(set! outgoing (cdr outgoing))
head))

(else (error "unrecognized queue operation"
operation))))))

(define (enqueue! q obj) ((q 'enqueue!) obj))
(define (dequeue! q) (q 'dequeue!))

LP5-3.40

The implementation has even become easier to read because all the vector opera-
tions (or c a r / c d r s) have been replaced by accesses and assignments to variables
with mnemonic names. (We could have obtained most of this benefit earlier
by introducing auxiliary access and modification functions queue-incoming,
set-queue-incoming!, queue-outgoing, and set-queue-outgoing!.)

Since application is the only operation available on procedures, the only way
we can get into trouble on that account is by accidentally calling a queue as if
it were a procedure, passing it a single argument that is one of the two symbols
' enqueue! or ' dequeue! . This is highly unlikely, but still possible. Happily,
if we happen to be paranoid about this, we can make it quite impossible by
lexically closing the queue module over unique tokens accessible only to it:

(define make-queue #f)
(define enqueue! #f)
(define dequeue! #f)
(let ((queue-module

(let ()

(define enqueue !-token (list 'enqueue !))
(define dequeue ! -token (list 'dequeue !))
(define (make-queue)

(let ((incoming '())
(outgoing ' ()))

(lambda (operation)
(cond ((eq? operation enqueue!-token)

(lambda (ob j) . . .))
((eq? o p e r a t i o n dequeue ! - t oken) . . .)
(else
(error "unrecognized queue operation"

operation))))))
(define (enqueue! q obj) ((q enqueue!-token) obj))
(define (dequeue! q) (q dequeue!-token))

(list make-queue enqueue ! dequeue !))))
(set ! make-queue (car queue-module))
(set ! enqueue! (cadr queue-module))
(set! dequeue! (caddr queue-module)))

(The encapsulation idiom used here -- defining the exported variables to be
#f, creating a new scope with (l e t () . . .) , and extracting all the exports
from some single object containing them - - can easily be captured by a module
building macro. This is left as an exercise.)

But now we have failed to meet goal number 1. Sure, we can't accidentally
apply a list or vector operation to a queue, or apply a queue to any unexpected
arguments, but we can apply queue operations to procedures. We would like
the following to be errors, but instead they quietly return useless values:

(dequeue ! list)
(enqueue! (lambda (ignore) list))

LP5-3.41

This is a result of the same' aspect of procedures tha t made them attract ive in
the first place: The only operation on procedures is application to arguments,
and applying an unknown procedure to any set of arguments could have disas-
trous consequences (e.g. suppose it is the l a u n c h - m i s s i l e procedure). Scheme
doesn ' t give us any way to safely distinguish the particular procedures tha t are
queues from those tha t aren' t .

But even worse, all the representations described so far fail to meet goal 3.
No ma t t e r what we do, queues will always return true to some built-in Scheme
predicate - - p a i r ? , v e c t o r ? , or p r o c e d u r e ? for the above implementat ions, or
some other predicate for the less plausible representations (numbers, ports, etc.).
Suppose, for example, tha t we wanted to write a general object printing utility,
and tha t this utility was intended to do something reasonable with queues as
well as with other Scheme objects like vectors. Somewhere there would be a
case analysis on the type of the argument. Such aca se analysis would plausibly
look something like the following:

(cond . . .
((vector? obj) (print-vector obj))
((queue? obj) (print-queue obj))
,. °)

If queues are implemented as vectors, then the queue? case will never be
reached. We could just stipulate that such case analyses must try applying
queue? before vector? (and pair?), but this gratuitously exposes an imple-
mentation detail to users of the queue abstraction. If queues are implemented
as procedures, then there is no hope of implementing a queue? predicate at alh

This is the line of reasoning that leads even minimalists to urge the Scheme
report authors to add data type definitions to the language. Which leads to a
discussion of the language design space.

* * *

The earnest minimaiist might propose the addition to Scheme of just one
new type, with a constructor, a single accessor, and a predicate. Choosing the
bland te rm entity for these new objects, the required primitives are:

(m a k e - e n t i t y object) ~ entity
(entity-value entity) , object
(e n t i t y ? ob j) ~ boolean

This seems to solve the problem of disjointness of a user-defined type from other
Scheme types. I can implement queues as entities whose value components are
pairs, as follows:

(d e f i n e (make-queue) (m a k e - e n t i t y (cons ' () ' ())))
(d e f i n e (enqueue! q ob j) . . . (e n t i t y - v a l u e q) . . .)

(d e f i n e queue? e n t i t y ?)

LP5-3.42

But now I have commandeered the entity type for my own purposes, leaving
it unavailable for others. If I had multiple types to represent, I could install
markers in my own entities to distinguish their various types, but if there's
no agreement from people implementing other types on which I might depend,
then chaos will ensue. The representation value must generally be a pair or
vector, and all the problems that arose earlier appear again. It would be bet-
ter to canonize a mechanism for generating new types. Given a single type, as
above, it is possible to implement such an institution (for example, the record
proposal). But for the purpose of sharing program modules instead of just com-
plete programs, it is desirable for all Scheme programmers to use the same such
institution, at which point we might as well add it to the language definition.

Suppose then that there is to be an unbounded supply of triples (constructor,
accessor, predicate), each manipulating a type disjoint from all others. A single
such triple is sufficient to establish a new type. The different predicates are true
for disjoint sets of objects, and it is an error to apply one type's accessor to
members of another type. A type definition facility might then take the form
of a new kind of definition:

(d e f i n e - t y p e constructor accessor predicate)

For example,

(define-type rep->queue queue->rep queue?)

would simultaneously define rep->queue, queue->rep, and queue?, rep is short
for "representation." Then with pairs as the representation for queues, we could
define

(define (make-queue)
(rep->queue (cons ' () ' ())))

(define (enqueue! q obj)
. . . (queue->rep q) . . .)

and so forth. A facility like this has something of the flavor of Common Lisp
d e f s t r u c t .

Alternatively, type generation might take a more dynamic form:

(make-new-type)) type-descriptor
(t y p e - c o n s t r u c t o r type-descriptor)) procedure
(t y p e - a c c e s s o r type-descriptor) ~ procedure
(t y p e - p r e d i c a t e type-descriptor) , procedure

with

(define queue - type (make-new-type))
(define (make-queue)

((type-constructor queue - type) (cons ' () ' ())))

and so forth.
These two forms are equipotent. Clearly d e f i n e - t y p e can be defined as a

macro that generates a call to make-new-type and definitions for the construc-
tor, accessor, and predicate extracted from the new type descriptor. Unless

LP5-3 • 43

d e f i n e - t y p e is to be a primitive special form, something like make-new-type
must exist in order for d e f i n e - t y p e to be implementable as a macro.

Less obviously, make-new-type can be defined in terms of d e f i n e - t y p e ,
assuming that d e f i n e - t y p e forms are permit ted where internal definitions are:

(define (make-new-type)
(define-type new-type make access has-type?)
(lambda (operation)

(case operation
((constructor) make)
((accessor) access)
((predicate) has-type?)
(else (error ...)))))

(define (type-constructor type) (type 'constructor))
and so on.

Allowing type definitions in such non-top-level contexts is necessary in order to
be true to the spirit of block structure.

Given this equivalence, together with Scheme's historical aversion to adding
new primitive syntactic forms, the make-new-type primitives seem preferable
to d e f i n e - t y p e .

The make-new-type primitive is non-applicative because each call to it must
generate a different type descriptor. It is odd that an almost-functional language
seems to require a non-applicative primitive in order to be able to define abstract
da ta types. Section 3.2 of [3] discusses two applicative models for abstract data
types; one model relies on static typing, and is open to some forms of abstraction
violation, while the other relies on the use of passwords. These do not seem
applicable to Scheme, although it would be interesting to a t tempt to adapt
them somehow.

Some variants on make-new-type present themselves.

• For those averse to adding a type-descriptor type to the language, the
make-new-type primitive could instead return the constructor, accessor,
and predicate as three values using Scheme's newly-approved multiple
value return mechanism (see the description of c a l l - w i t h - v a l u e s and
values in [2]).

• Another way to avoid a type of type descriptors would be to have the
constructor, accessor, and predicate each take two arguments:

(rep->datum object type-identifier) ~ datum
(datum->rep datum type-identifier) ~ object
(h a s - t y p e ? object type-identifier) ~ boolean

These are just un-curried version of t y p e - c o n s t r u c t o r , t y p e - a c c e s s o r ,
and t y p e - p r e d i c a t e . But now a separate type descriptor type is unnec-
essary, since the type-identifier argument to these procedures could be an
arbi t rary user-supplied object, such as a unique token.

LP5-3.44

Stepping a bit away from minimalism now: Members of user-defined types
could directly contain multiple fields. Fields could be indexed, as are vec-
tor components, or named, as in the record proposal. One argument for
providing this functionality would be efficiency. An extra indirection might
be avoided, since a member of a multi-component user-defined type could
be represented directly as a single object in memory rather than as two.
A reason not to do this is orthogonality: It is somewhat inelegant to bun-
dle the user-defined type mechanism with a new way to make compound
objects (product types), given that Scheme has two kinds of compound
data already.

A final language design question is that of the opaqueness of user-defined
types. A data type is opaque (or abstract) if clients of the type have no access to
its representation beyond advertised interface routines. The implementation of
queues in terms of pairs is not abstract because clients can get at the represen-
tation using car and cdr. make-new-type as described above provides abstract
types, because the type descriptor itself acts as a key or capability. If the data
type implementation doesn't make the type descriptor accessible to clients, then
clients will have no direct way to access representations. If, however, there is a
g e t - t y p e primitive that goes from an object of a user-defined type to its type
descriptor, then any client can access any representation:

(define (representation object)
((type-accessor (get-type object)) object))

The language design questions here are:

1. Should the language provide any secure representation-hiding mechanism
at all?

2. Should user-defined types be opaque?

The Scheme report answers the first question in the affirmative by specifying
procedures to be an opaque type. There are those who believe that even this is
evil - - they see a closed door and insist on being able to get to the other side.
Procedures have some representation inside the computer, the reasoning goes,
and it's unfriendly of Scheme to prevent access to that representation. Access
to the representation would be useful in writing, say, a portable debugger or
garbage collector. Arguing against this position, however, is the difficulty of
giving any clear semantics to such access primitives that would not greatly
inhibit the ability to reason about programs and program transformations.

Given that the language has opaqueness in the form of procedures, the second
question amounts to asking whether it should be convenient to obtain opaque
user-defined types. This could go either way:

• Convenient: As described above, require a key or capability in order to be
able to use the representation-exposing primitives. Opaqueness is achieved
by making the key inaccessible.

LP5-3.45

• Inconvenient: Provide ge t - type so that clients can inspect representa-
tions. A programmer that desires inaccessible representations can en-
capsulate the representation in a procedure. If the representation is a
procedure, then members of the new type have as much opaqueness as
procedures do, because it is in general impossible to synthesize the right
combination of arguments that will cause the procedure to divulge any
information of interest.

This discussion is just the tip of the iceberg. The study of type systems is
a small industry within academic computer science. Most of this work is in the
context of static type systems, but as we have seen, even dynamic type systems
like Scheme's present plenty of challenges.

I haven't spoken about performance, but it will inevitably come up in a
full discussion of data type definition facilities. Performance issues include the
number of machine operations (indirections in particular) necessary to select
fields from records defined as members of user-defined types, the amount of
memory required to represent such records, and optimized representations of
components, such as non-boxed floating point fields.

An alternative approach to user-defined types is object orientation. The
correspondence between first-class procedures and message-accepting objects,
with argument lists playing the role of messages, makes Scheme object-oriented
a priori. But the fact that procedures are used both as objects and as sub-
routines would lead us to propose the creation of a new type to separate those
procedures that are intended to be message-accepting objects from those such
as l ength that aren't. This amounts to something like make-ent i ty where the
representation is required to be a message handler procedure that adheres to
certain protocols. (This is exactly what the pre-flavors MIT Lisp Machine sys-
tem had.) Further exploration leads to a succession of increasingly structured
frameworks, leading perhaps to classes, inheritance, and generic functions.

Many fully object-oriented Scheme dialects have been invented, the latest
being Dylan [1]. Object orientation is still not well understood according to the
conservative standards of those cantankerous Scheme report authors. But let's
hope that a future Scheme report will settle on some structured way to express
type definitions.

R e f e r e n c e s

[1] Apple Computer Eastern Research and Technology. Dylan: An Object-
Oriented Dynamic Language. Apple Computer, Inc., 1992.

[2] Pavel Curtis. The Scheme of Things. Lisp Pointers 4(1): 61-67, ACM Press,
1991.

[3] B. Lampson and R. Burstall. Pebble, a kernel language for modules and
abstract data types. Information and Computation 76(2/3): 278-346, 1988.

LP5-4.46

