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Most modern programming languages provide some way to define new types. 
Scheme doesn't. What gives? 

The record facility previously described in this column[2] was proposed at 
the June 1992 meeting of the Scheme report authors, but didn't meet with 
broad agreement. The fact that a need for user-defined types is strongly felt 
but no consensus has been reached hints that something interesting is going 
on. In this column I hope to motivate the need for user-defined types and to 
articulate the structure of the large and murky space of designs for possible 
Scheme type-definition facilities. 

The original rationale for leaving data type definitions out of Scheme was 
minimalist: No such facility is needed. If you want a new type, define it yourself 
on top of the types provided. For example, if I need a two-element record in 
order to implement a FIFO queue data type, I can use pairs: 

(def ine (make-queue) (cons ' ( )  ' ( ) ) )  

(def ine (enqueue! q obj) 
( se t -ca r !  q (cons obj (car q) ) ) )  

(def ine (dequeue! q) 
( i f  (nu l l?  (cdr q)) 

(begin ( se t -cdr !  q (reverse (car q))) 
( se t -ca r !  q ' ( ) ) ) )  

( l e t  ((head (car (cdr q))) )  
( se t -cdr !  q (cdr (cdr q))) 
head)) 

(The queue-empty? predicate and a check for empty queue in dequeue! have 
been omitted for the sake of brevity.) 

The first change to be made is to try to make queues distinguishable from 
other objects. There are several different reasons for this: 

1. Debugging: When I accidentally pass an ordinary list to enqueue! or 
dequeue !, I would like to see a meaningful diagnostic message. 

2. Debugging: When I accidentally pass a queue to an operator like length 
that expects a list, I would like to see a meaningful diagnostic message. 

3. Disjointness: One would like to be able write case analyses that discrimi- 
nate between queues and members of other Scheme types. 

LP5-3.39 



The first of these is easily addressed: Chaage the representation of queues so 
that they are marked as being queues. For example, queues could be represented 
as three-element vectors, where one element (the first, say) is a unique token: 

(define queue-unique-token (list 'queue)) 

(define (make-queue) (vector queue-unique-token ' () ' ())) 

(define (enqueue! q obj) 
(if (queue? q) 

(vector-set! q I (cons obj (vector-tel q i))) 
(error "expected a queue but found this instead" 

q))) 

(define (dequeue! q) . . .) 

(define (queue? obj) 
(and (vector? obj) 

(= (vec to r - l eng th  obj) 3) 
(eq? ( v e c t o r - t e l  obj 0) queue-unique-token)))  

This particular choice of unique token even makes queues easily identifiable 
when displayed by write.  

Our only hope of addressing goal number 2 is to represent queues as proce- 
dures. Pairs as the representation are subject to accidental appends, lengths, 
and so forth, and vectors are prone to accidental v e c t o r - f i l l ! s ;  a process of 
elimination and dim recollection of Scheme programming folklore lead us to try 
procedures, which only support a single operation, application. Using the classic 
implementation technique, we get something like this: 

(def ine  (make-queue) 
( l e t  ((incoming ' ( ) )  (outgoing ' ( ) ) )  

(lambda (operation) 
(case operation 

( (enqueue ! ) 
(lambda (obj) 

(set! incoming (cons obj incoming)))) 
( (dequeue ! ) 
(if (null? outgoing) 

(begin (set! outgoing (reverse incoming)) 
(set! incoming '()))) 

(let ((head (car outgoing))) 
(set! outgoing (cdr outgoing)) 
head) ) 

(else (error "unrecognized queue operation" 
operation) ) ) ) ) ) 

(define (enqueue! q obj) ((q 'enqueue!) obj)) 
(define (dequeue! q) (q 'dequeue!)) 
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The implementation has even become easier to read because all the vector opera- 
tions (or c a r / c d r s )  have been replaced by accesses and assignments to variables 
with mnemonic names. (We could have obtained most of this benefit earlier 
by introducing auxiliary access and modification functions queue-incoming,  
set-queue-incoming!, queue-outgoing, and set-queue-outgoing!.) 

Since application is the only operation available on procedures, the only way 
we can get into trouble on that  account is by accidentally calling a queue as if 
it were a procedure, passing it a single argument that  is one of the two symbols 
' enqueue!  or ' dequeue! .  This is highly unlikely, but still possible. Happily, 
if we happen to be paranoid about this, we can make it quite impossible by 
lexically closing the queue module over unique tokens accessible only to it: 

(define make-queue #f) 
(define enqueue! #f) 
(define dequeue! #f) 
(let ( (queue-module 

(let () 

(define enqueue !-token (list 'enqueue ! )) 
(define dequeue ! -token (list 'dequeue ! )) 
(define (make-queue) 

(let ((incoming '()) 
(outgoing ' ())) 

(lambda (operation) 
(cond ((eq? operation enqueue!-token) 

(lambda (ob j )  . . . ) )  
( (eq?  o p e r a t i o n  dequeue ! - t oken )  . . . )  
(else 
(error "unrecognized queue operation" 

operation) ) ) ) ) ) 
(define (enqueue! q obj) ((q enqueue!-token) obj)) 
(define (dequeue! q) (q dequeue!-token)) 

(list make-queue enqueue ! dequeue ! )))) 
(set ! make-queue (car queue-module)) 
(set ! enqueue! (cadr queue-module)) 
(set! dequeue! (caddr queue-module))) 

(The encapsulation idiom used here -- defining the exported variables to be 
#f,  creating a new scope with ( l e t  () . . . ) ,  and extracting all the exports 
from some single object containing them - -  can easily be captured by a module 
building macro. This is left as an exercise.) 

But now we have failed to meet goal number 1. Sure, we can't  accidentally 
apply a list or vector operation to a queue, or apply a queue to any unexpected 
arguments, but we can apply queue operations to procedures. We would like 
the following to be errors, but instead they quietly return useless values: 

(dequeue ! list) 
(enqueue! (lambda (ignore) list)) 
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This is a result of the same' aspect of procedures tha t  made them attract ive in 
the first place: The only operation on procedures is application to arguments,  
and applying an unknown procedure to any set of arguments could have disas- 
trous consequences (e.g. suppose it is the l a u n c h - m i s s i l e  procedure). Scheme 
doesn ' t  give us any way to safely distinguish the particular procedures tha t  are 
queues from those tha t  aren' t .  

But  even worse, all the representations described so far fail to meet  goal 3. 
No ma t t e r  what  we do, queues will always return true to some built-in Scheme 
predicate - -  p a i r ? ,  v e c t o r ? ,  or p r o c e d u r e ?  for the above implementat ions,  or 
some other predicate for the less plausible representations (numbers, ports,  etc.). 
Suppose, for example, tha t  we wanted to write a general object printing utility, 
and tha t  this utility was intended to do something reasonable with queues as 
well as with other Scheme objects like vectors. Somewhere there would be a 
case analysis on the type of the argument.  Such aca se  analysis would plausibly 
look something like the following: 

(cond . . . 
((vector? obj) (print-vector obj)) 
((queue? obj) (print-queue obj)) 
,. °) 

If queues are implemented as vectors, then the queue? case will never be 
reached. We could just stipulate that such case analyses must try applying 
queue? before vector? (and pair?), but this gratuitously exposes an imple- 
mentation detail to users of the queue abstraction. If queues are implemented 
as procedures, then there is no hope of implementing a queue? predicate at alh 

This is the line of reasoning that leads even minimalists to urge the Scheme 
report authors to add data type definitions to the language. Which leads to a 
discussion of the language design space. 

* * * 

The earnest minimaiist might propose the addition to Scheme of just one 
new type,  with a constructor,  a single accessor, and a predicate. Choosing the 
bland te rm entity for these new objects, the required primitives are: 

( m a k e - e n t i t y  object) ~ entity 
(entity-value entity) , object 
( e n t i t y ?  ob j )  ~ boolean 

This seems to solve the problem of disjointness of a user-defined type from other 
Scheme types. I can implement queues as entities whose value components  are 
pairs, as follows: 

( d e f i n e  (make-queue)  ( m a k e - e n t i t y  (cons  ' ( )  ' ( ) ) ) )  
( d e f i n e  (enqueue!  q ob j )  . . . ( e n t i t y - v a l u e  q) . . .)  

( d e f i n e  queue? e n t i t y ? )  
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But now I have commandeered the entity type for my own purposes, leaving 
it unavailable for others. If I had multiple types to represent, I could install 
markers in my own entities to distinguish their various types, but if there's 
no agreement from people implementing other types on which I might depend, 
then chaos will ensue. The representation value must generally be a pair or 
vector, and all the problems that  arose earlier appear again. It would be bet- 
ter to canonize a mechanism for generating new types. Given a single type, as 
above, it is possible to implement such an institution (for example, the record 
proposal). But for the purpose of sharing program modules instead of just com- 
plete programs, it is desirable for all Scheme programmers to use the same such 
institution, at which point we might as well add it to the language definition. 

Suppose then that  there is to be an unbounded supply of triples (constructor, 
accessor, predicate), each manipulating a type disjoint from all others. A single 
such triple is sufficient to establish a new type. The different predicates are true 
for disjoint sets of objects, and it is an error to apply one type's accessor to 
members of another type. A type definition facility might then take the form 
of a new kind of definition: 

( d e f i n e - t y p e  constructor accessor predicate) 

For example, 

(define-type rep->queue queue->rep queue?) 

would simultaneously define rep->queue,  queue->rep,  and queue?, rep  is short 
for "representation." Then with pairs as the representation for queues, we could 
define 

(define (make-queue) 
(rep->queue (cons ' ( )  ' ( ) ) ) )  

(define (enqueue! q obj) 
. . .  (queue->rep q) . . . )  

and so forth. A facility like this has something of the flavor of Common Lisp 
d e f s t r u c t .  

Alternatively, type generation might take a more dynamic form: 

(make-new-type) ) type-descriptor 
( t y p e - c o n s t r u c t o r  type-descriptor) ) procedure 
( t y p e - a c c e s s o r  type-descriptor) ~ procedure 
( t y p e - p r e d i c a t e  type-descriptor) , procedure 

with 

(define queue - type  (make-new-type))  
(define (make-queue) 

((type-constructor queue - type )  (cons ' () ' ( ) )  ) ) 

and so forth. 
These two forms are equipotent. Clearly d e f i n e - t y p e  can be defined as a 

macro that  generates a call to make-new-type and definitions for the construc- 
tor, accessor, and predicate extracted from the new type descriptor. Unless 
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d e f i n e - t y p e  is to be a primitive special form, something like make-new-type 
must exist in order for d e f i n e - t y p e  to be implementable as a macro. 

Less obviously, make-new-type can be defined in terms of d e f i n e - t y p e ,  
assuming that  d e f i n e - t y p e  forms are permit ted where internal definitions are: 

(define (make-new-type) 
(define-type new-type make access has-type?) 
(lambda (operation) 

(case operation 
((constructor) make) 
((accessor) access) 
((predicate) has-type?) 
(else (error ...))))) 

(define (type-constructor type) (type 'constructor)) 
and so on. 

Allowing type definitions in such non-top-level contexts is necessary in order to 
be true to the spirit of block structure. 

Given this equivalence, together with Scheme's historical aversion to adding 
new primitive syntactic forms, the make-new-type primitives seem preferable 
to d e f i n e - t y p e .  

The make-new-type primitive is non-applicative because each call to it must 
generate a different type descriptor. It is odd that  an almost-functional language 
seems to require a non-applicative primitive in order to be able to define abstract  
da ta  types. Section 3.2 of [3] discusses two applicative models for abstract data  
types; one model relies on static typing, and is open to some forms of abstraction 
violation, while the other relies on the use of passwords. These do not seem 
applicable to Scheme, although it would be interesting to a t tempt  to adapt  
them somehow. 

Some variants on make-new-type present themselves. 

• For those averse to adding a type-descriptor type to the language, the 
make-new-type primitive could instead return the constructor, accessor, 
and predicate as three values using Scheme's newly-approved multiple 
value return mechanism (see the description of c a l l - w i t h - v a l u e s  and 
values in [2]). 

• Another  way to avoid a type of type descriptors would be to have the 
constructor,  accessor, and predicate each take two arguments: 

( rep->datum object type-identifier) ~ datum 
(datum->rep datum type-identifier) ~ object 
( h a s - t y p e ?  object type-identifier) ~ boolean 

These are just un-curried version of t y p e - c o n s t r u c t o r ,  t y p e - a c c e s s o r ,  
and t y p e - p r e d i c a t e .  But now a separate type descriptor type is unnec- 
essary, since the type-identifier argument to these procedures could be an 
arbi t rary user-supplied object, such as a unique token. 
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Stepping a bit away from minimalism now: Members of user-defined types 
could directly contain multiple fields. Fields could be indexed, as are vec- 
tor components, or named, as in the record proposal. One argument for 
providing this functionality would be efficiency. An extra indirection might 
be avoided, since a member of a multi-component user-defined type could 
be represented directly as a single object in memory rather than as two. 
A reason not to do this is orthogonality: It is somewhat inelegant to bun- 
dle the user-defined type mechanism with a new way to make compound 
objects (product types), given that  Scheme has two kinds of compound 
data  already. 

A final language design question is that  of the opaqueness of user-defined 
types. A data  type is opaque (or abstract) if clients of the type have no access to 
its representation beyond advertised interface routines. The implementation of 
queues in terms of pairs is not abstract because clients can get at the represen- 
tation using car  and cdr. make-new-type as described above provides abstract 
types, because the type descriptor itself acts as a key or capability. If the data  
type implementation doesn't  make the type descriptor accessible to clients, then 
clients will have no direct way to access representations. If, however, there is a 
g e t - t y p e  primitive that  goes from an object of a user-defined type to its type 
descriptor, then any client can access any representation: 

(define (representation object) 
((type-accessor (get-type object)) object)) 

The language design questions here are: 

1. Should the language provide any secure representation-hiding mechanism 
at all? 

2. Should user-defined types be opaque? 

The Scheme report  answers the first question in the affirmative by specifying 
procedures to be an opaque type. There are those who believe that  even this is 
evil - -  they see a closed door and insist on being able to get to the other side. 
Procedures have some representation inside the computer, the reasoning goes, 
and it's unfriendly of Scheme to prevent access to that  representation. Access 
to the representation would be useful in writing, say, a portable debugger or 
garbage collector. Arguing against this position, however, is the difficulty of 
giving any clear semantics to such access primitives that  would not greatly 
inhibit the ability to reason about programs and program transformations. 

Given that  the language has opaqueness in the form of procedures, the second 
question amounts to asking whether it should be convenient to obtain opaque 
user-defined types. This could go either way: 

• Convenient: As described above, require a key or capability in order to be 
able to use the representation-exposing primitives. Opaqueness is achieved 
by making the key inaccessible. 
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• Inconvenient: Provide ge t - type  so that clients can inspect representa- 
tions. A programmer that desires inaccessible representations can en- 
capsulate the representation in a procedure. If the representation is a 
procedure, then members of the new type have as much opaqueness as 
procedures do, because it is in general impossible to synthesize the right 
combination of arguments that will cause the procedure to divulge any 
information of interest. 

This discussion is just the tip of the iceberg. The study of type systems is 
a small industry within academic computer science. Most of this work is in the 
context of static type systems, but as we have seen, even dynamic type systems 
like Scheme's present plenty of challenges. 

I haven't spoken about performance, but it will inevitably come up in a 
full discussion of data type definition facilities. Performance issues include the 
number of machine operations (indirections in particular) necessary to select 
fields from records defined as members of user-defined types, the amount of 
memory required to represent such records, and optimized representations of 
components, such as non-boxed floating point fields. 

An alternative approach to user-defined types is object orientation. The 
correspondence between first-class procedures and message-accepting objects, 
with argument lists playing the role of messages, makes Scheme object-oriented 
a priori. But the fact that procedures are used both as objects and as sub- 
routines would lead us to propose the creation of a new type to separate those 
procedures that are intended to be message-accepting objects from those such 
as l ength  that aren't. This amounts to something like make-ent i ty  where the 
representation is required to be a message handler procedure that adheres to 
certain protocols. (This is exactly what the pre-flavors MIT Lisp Machine sys- 
tem had.) Further exploration leads to a succession of increasingly structured 
frameworks, leading perhaps to classes, inheritance, and generic functions. 

Many fully object-oriented Scheme dialects have been invented, the latest 
being Dylan [1]. Object orientation is still not well understood according to the 
conservative standards of those cantankerous Scheme report authors. But let's 
hope that a future Scheme report will settle on some structured way to express 
type definitions. 
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