
P s d -  a Portable Scheme Debugger 

Pertti Kellom£ki, pk@cs.'tut. :fi 
Tampere University of Technology 

Software Systems Lab 
Finland 

Abstract 

Psd is a portable debugger for the Scheme language. Debugging 
with Psd is accomplished by instrumenting the original source pro- 
gram. When the instrumented program is run, it presents the user 
with an interactive interface that lets him or her examine and change 
values of variables, set breakpoints, and single step evaluation. Psd is 
designed to be run within GNU Emacs, which is used for displaying 
the current source code position. 

1 I n t r o d u c t i o n  

There are numerous implementations of the Scheme language available. While 
some of them have extensive debugging capabilities, many small implemen- 
tations have only limited support for it. Psd provides source level debugging 
as an "add on", relying only on features described in the Revised 4 Report on 
the Algorithmic Language Scheme [3]. Psd does not use the macro proposal 
of the report, so it should work with Revised 3 Scheme implementations, also. 

Psd works by transforming the original program into an operationally 
equivalent program (modulo the debugging capabilities), that allows the user 
to examine and change variables, set breakpoints, and single step the evalu- 
ation process. To a calling procedure, a debugged procedure behaves exactly 
like the original. This allows mixing debugged and non-debugged code. 

15 



When a program is debugged with Psd, its source code is first given to 
the instrumenting part of Psd. The instrumentation part writes an instru- 
mented version of the program to a file, which is then loaded into the Scheme 
environment. When a procedure in the program is invoked, it behaves as if 
it was executed under a conventional debugger. 

2 R e l a t e d  W o r k  

There are a few other debugger that are implemented similarily. The edebug 
package for GNU Emacs Lisp [2], written by Daniel LaLiberte, uses the the 
same ideas, but is much more tightly integrated with GNU Emacs. Jurgen 
Heymann has implemented an instrumenting debugger for the Simscript II.5 
simulation language [1]. 

3 T h e  E m a c s  I n t e r f a c e  

Psd uses GNU Emacs as its user interface. The primary use for Emacs is to 
provide source code debugging. A typical Psd session is shown in figure 1. 

Psd uses the same interface to Emacs as the GNU project debugger Gdb, 
and the Psd interface was actually modified from the existing Gdb interface. 
When an instrumented program is run, it emits specially formatted lines 
containing the source file and line number of the current source line. Emacs 
interprets these lines by showing the appropriate file in an editing window 
with an arrow indicating the current line. 

There is a small amount of Emacs Lisp code that interacts with the 
Scheme environment. Emacs generates temporary file names and issues in- 
strumenting and loading commands. The instrumenting code is file oriented, 
but with the Emacs interface it is possible to pick one procedure from a source 
file to be debugged. The Emacs interface is also used for setting breakpoints, 
with the Emacs Lisp code taking care of the low level details like file names 
and line numbers. 

16 



of 
> ;Evaluation took 17233 mSec (5800 in 9c) 710409 cons work 
W<unspeclfied> 
> ,loadi.9 "/~/;.zd~a04~5" 
:done loadin9 "/b,~/psd~a04635" 
;Evaluation took l~.lG p~Sec (2iG in So) 12009 cons 
#<unspecii~ied) 
> ;Evaluation took 0 m.~ (0 in ~ )  16 cons work 
"breakpoint at /nom~,'kaarne-b]pkJpsd/bintr~.sca:41" 
> (test iO) 
(if (not (mzll7 node)) (ff (...) (...) (iF ...)) mf) 
~d>| 

(node-set-ri~'~tl I~'e~t m~,-node))))))) 

(deFine (lookup object) 
(let $earch ((trade tree)) 

=> (if (not (null7 node)) 
(if (equal? object (node-item node)) 

(node-item node) 
(if (less? object (node-lUre node)) 

(search (node-left node)) 
(search (node-ri9ht node)))) 

Of))) 

(define (deletel object) 
(define (replace, node ~ e n t  r~l~ce~ent)., 

Figure 1: A Psd Session 

4 Accessing Variables by Name 

One of the main uses of a debugger is examining the values of variables. In 
some Lisp environments it is easy to provide access to variables by start- 
ing a new read-eval-print loop. The Scheme report does not include eval ,  
however, so a different strategy must be used. In Psd this problem is solved 
by inserting an access procedure each time new variable bindings are made. 
This procedure performs the mapping between symbols and actual program 
variables. Figure 2 shows a l e t  form and the code that Psd generates for it. 

The procedure psd-val is passed to the debugger command loop 
psd-debug. Using it the command loop gets access to variables in the cur- 
rent lexical environment of the debugged program. The scope rules come 
"for free", because the name p s d - v a l  in the body of p s d - v a l  refers to the 
lexical environment surrounding the l e t  form. 

Assignments to local variables are made using the same mechanism. A 
setter procedure p s d - s e t  ! is inserted each time local variables axe defined, 
and it is also passed to psd-debug. 

17 



(let ((x 1)) 
(+ x 1)) 

(let ((x 1)) 
(let ((psd-val 

(lambda (sym) 
(case sym 

((x) x) 
(else (psd-val sym)))))) 

(psd-debug psd-val (lambda () (+ x 1))))) 

Figure 2: Accessing variables by name 

Access to global variables is provided using the same idea. Every instru- 
mented Scheme file includes definitions for procedures similar to p s d - v a l  
and p s d - s e t  !. When the file is loaded, the procedures are added to a global 
access procedure list. The global definitions of p s d - v a l  and p s d - s e t  ! cM1 
the access procedures one by one until either the access succeeds or there are 
no more access procedures. 

The Psd runtime support includes access to all the essential procedures* 
described in the Revised 4 Report. The debugger command loop includes a 
simple evaluator that can evaluate calls of the procedures that are visible to 
it. The lack of a bound? predicate or some other portable way of finding out 
whether an identifier is bound prevents access to the non-essential names in 
the report. 

5 Breakpoints and Single Stepping 
In order to be able to single step the evaluation process, the debugger must 
be able to gain control both before and after each expression is evaluated. 
In Psd this is accomplished by packaging each expression inside a procedure. 
This procedure is then passed to the debugger command loop. When the 

* The report distinguishes between essential procedures that a conforming implementation 
must provide, and non-essential procedures that are not required. 

18 



user wants to continue, the command loop simply calls the procedure that 
was passed to it. The command loop then gains control again, and finally 
returns the value that the procedure returned. For example, the expression 
(+ x 1) in figure 2 is transformed to 

(psd-debug (lambda () (+ x 1)))  

The transformation is done recursively, so the expression is really trans- 
formed into 

(psd-debug (lambda () ((psd-debug (lambda () +) 
(psd-debug (lambda () x) 
(psd-debug (lambda () I))))))) 

In reality the debugger gets some more information (the current location in 
source code etc.), but the basic idea is the same. 

It may seem that there is no point in instrumenting expressions like + 
and 1, but the instrumentation is needed for supporting breakpoints. Break- 
points are implemented by maintaining a list of source code locations of 
breakpoints. Each time psd-debug is called, it checks if there is a break- 
point for the current source line, and starts a command loop if needed. If 
primitive expressions like x would not be instrumented, there would be source 
lines for which breakpoints could not be set, for example in 

(foo bar  
b a z  

zap) 

Single stepping is implemented similarily. Stepping by line is implemented 
by keeping track of the line number corresponding to the previous call to 
psd-debug. 

6 R u n t i m e  Support  

Psd needs some runtime support in the Scheme environment. The command 
loop psd-debug is a closure containing state variables for the debugger. Pro- 
cedure application needs the procedure psd-apply,  and breakpoint support 
needs a global variable for storing the breakpoint locations. 

19 



The instrumentation code resides in the same Scheme environment as the 
debugged program. This is not strictly necessary, but it has proved to be a 
convenient way of working. For example, it is easy to cut down the size of 
the instrumented files by assigning a unique integer for each source file name 
and using it instead of the full path name. 

7 Catching R u n t i m e  Errors 

A typical use of a debugger is to let the program run until a runtime error 
occurs and examine the program state to find out what went wrong. With 
Psd, real runtime errors can not be allowed to happen, since it relies on 
correct execution of the instrumented code. Instead, if an expression would 
cause a runtime error to occur, the command loop is called and an error 
message is issued. 

Aside from syntactically incorrect expressions and causes outside the 
scope of the language (exhaustion of memory, receiving a signal etc.), the 
only place where a runtime error can occur is the procedure call. When call- 
ing a user defined procedure, the only possible error is that a wrong number 
of arguments is supplied. Although it would be possible to detect at least 
some of these errors, Psd does not currently check the number of arguments 
to a user procedure. 

The number of primitive procedures is fixed, so they are easier to han- 
dle. Psd transforms each procedure call (proc args)  into (psd-app ly  proc 
a rgs ) .  Before p sd -app ly  applies the procedure to its arguments, it checks 
if the procedure is a primitive procedure. If it is, p sd -app ly  checks that the 
number of arguments is correct and that the arguments are of correct type. 
If a runtime error would occur, p sd -app ly  calls the debugger command loop. 
Runtime errors that occur in non-debugged code can not be caught this way. 

There are still some cases in the current implementation where a runtime 
error can occur. For example, for the a s s o c  procedure, the second argument 
should be a list of lists. Currently, it is only checked that it is a list. 

20 



8 Tail  R e c u r s i o n  and  C o n t i n u a t i o n s  

In Scheme, iteration is expressed as tail recursion. It is important that the 
debugger maintains this property whenever possible, because otherwise a 
debugged program might easily run out of memory. During single stepping 
Psd does not preserve tail recursiveness (because of the way single stepping 
is implemented), but in other situations it is preserved. 

Tail recursiveness could be fully preserved by using breakpoints to imple- 
ment single stepping. This would add some complexity, though, and since it 
would take quite a time to run out of memory by single stepping a program 
by hand, it has not been judged worth the effort. 

First class continuations are not a problem, since they are handled by the 
underlying Scheme environment. 

9 C a v e a t s  and  L i m i t a t i o n s  

Psd shares the problem common to all debuggers: running the debugged 
program is not exactly the same as running the same program without the 
debugger. Psd tries to be true to the underlying environment, but there is at 
least one aspect that would require access to the underlying implementation: 
evaluation order. 

In order to catch runtime errors, Psd transforms each procedure call into 
a call ,to the procedure psd-apply ,  with the subexpressions of the original 
combination as arguments. Because of the way the Scheme language is de- 
fined, it cannot be guaranteed that the evaluation order of the subexpressions 
is the same in the debugged program as in the original program. There is not 
much that  can be guaranteed about the order of evaluation anyway, which 
makes this a non-issue for well written programs. In practice, however, de- 
buggers are used for finding bugs in ill behaved programs, so it should be 
addressed somehow. If an implementation always uses a left to right or right 
to left evaluation, Psd preserves the evaluation order. 

Another limitation is caused by the lack of a standard method for access- 
ing top level variables. Psd provides access to all variables defined in the files 
that  are being debugged, but all other top level variables are inaccessible. A 
partial solution would be to detect all nonlocal variables that are referenced 
in the debugged expressions. This may be implemented in future versions of 

21 



Psd. 
Conventional debuggers can provide some help even when an error hap- 

pens in a part of a program that has not been compiled for debugging. With 
Psd this is not possible, because debugging with Psd relies on the correct 
execution of programs. 

A yet unsolved problem is providing the user with backtrace information. 
Access to local variables in the current lexical context is easy to provide using 
closures, but access to nonlocal variales at the calling procedure is more diffi- 
cult. It would be possible to collect backtrace by passing the backtrace as an 
extra parameter with every procedure call. This is not a very good solution, 
because it would not allow mixing debugged and undebugged code. Another 
solution would be to collect the same backtrace by inserting assignments to a 
global variable at each procedure entry and exit. This approach breaks when 
c a l l - w i t h - c u r r e n t - c o n t  inua ' t ion  is used, because a procedure invocation 
can be exited an arbitrary number of times. 

An inherent problem with instrumenting the original source code is that 
the resulting instrumented files are quite large. The extreme case is the one 
line procedure 

( d e f i n e  (foo x) (+ x 1)) 

that  is expanded from 25 bytes to 963 bytes, giving an expansion factor of 39. 
A more typical case is the instrumentation code of Psd that was expanded 
from 18058 bytes to 259309 bytes, giving a factor of 14. The time taken 
to instrument the instrumentation code was little over a minute on a Sun 
Sparcstation SLC using Aubrey Jaffer's scm interpreter. 

The instrumented code is so much slower than the original that it is by 
no means practical to instrument all the procedures of a large application. 
A binary tree implementation was instrumented, and the slowdown caused 
by instrumentation was in the range of 170-290. Usually the problem can 
be pinpointed to a few procedures with a fair accuracy without a debugger, 
though, and the debugger can be applied only to them. In practice the 
slowness has not been a serious problem. 

22 



10 Avai labi l i ty  of  P s d  

Psd is available from the author using email, or from cs . t u t  .f± as the file 
/ p u b / s r c / l a n g u a g e s / s c h e m e s / p s d - 1 . 1 . t a r . Z  using anonymous ftp. Psd 
is placed under the GNU General Public License,* so it can be freely used 
and distributed. 

R e f e r e n c e s  

[1] Jurgen Heymann. A 100 % portable inline-debugger. Sigplan Notices, 
28(9):39-46, September 1993. 

[2] Daniel LaLiberte. The edebug package for emacs lisp in the GNU Emacs 
distribution. 

[3] Jonathan A. Rees and William Clinger, editors. The revised 4 report 
on the algorithmic language Scheme. LISP Pointers, IV(3):1-55, July-  
September 1992. 

* The General Public License is included in the Psd distribution, or it can be obtained 
from the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA 

2] 


