
Continuation Conscious Compilation

Christian Queinnec*
l~cole Polytechnique & INRIA-Rocquencourt

Abstract

This paper proposes some (unimplemented) ideas for the compilation of Scheme-like languages where
functions may be specialized with respect to some of the continuations with which they are invoked.
This allows for some optimizations, for instance, when a frame to be pushed and the frame on top of
the continuation can be combined into a single and simplified frame. Among possible improvements are:
intermediate data structure elimination and removal of useless calculations. Functions can therefore be
compiled with respect to their near future and reorganize it when appropriate.

The compilation technique is based on a program transformation named Abstract Continuation Pass-
ing Style that makes continuation (i.e. stack) frames explicit. Shape of continuations is approximated
to determine which frames would gain by being combined together then partial evaluation is used to
determine the behavior of combined frames. Our main results cover local deforestation-like effect as well
as iterative compilation of associatively wrapped recursions converting, for example, a recursive unary
factorial into an iterative binary one.

This paper presents some ideas to improve the compilation of Scheme-like languages. The main idea is to
explore what can be gained if functions were allowed to look at their continuation before pushing frames onto
it. Basically, when a frame is about to be pushed onto a continuation and, if it is possible to combine this very
frame with the frames with which the continuation begins, then the top of the continuation is reorganized.
The simplest reorganization is to combine the frame to push with the frame on top of the continuation so
these two frames can be replaced by a single one. The resulting frame might have a substantially simpler
behavior since some simplifications can be performed like removing intermediate data structures produced
by one frame for the other, removing needless computations or, precomputing ready redexes.

The technique crucially depends on a program transformation named Abstract Continuation Passing Style
(ACPS) [FWFD88]. Abstract continuations were invented to denote elaborate control operators [FWFD88,
Que92b, QD92]. Despite the rich underlying theory, we only use the fact that ACPS represents continuations
by lists of frames. Each frame waits for a value as well as the list of frames that are below it; when a frame
is invoked it usually transforms the value into a result it sends to the other frames. ACPS represents
continuations in a less opaque way than CPS. Because of this richer structure, it is easier to approximate
the shape of the continuations that might appear in a program. This continuation shape analysis provides
some hints about the frames that are likely to be pushed on top of others. Rather than building a frame
to push onto a frame ~, it might be interesting to combine them into a single frame ~" so that (i) ~" is
built instead of ~o and (ii) ~o" replaces ~. There is a gain if the new frame ~" is shorter or has a simpler
behavior than the old frames ~ and ~. Let us give a short example where ~I is a frame that waits for a list
v, prefixes it with the number 3 and sends this new list to the frame below. Let ~2 be another frame that
waits for a value and pair it with the number 3. Finally let ~3 be a frame waiting for a list out of which is
extracted its first term. Less formally but more visually:

~1 = Av.cons(3, v)
~2 = ~ v . c o n s (v , 3)
¢P3 = Av.car(v)

With these f rame behaviors, to push ~1 over ~3 is like removing ~3 then pushing instead Av.3. Alterna-
tively to push ~ over ~os is s imply to remove 93 (and avoid pushing ~2 at all).

*Laboratoire d'I_nformatique de l'l~cole Polytechnique (URA 1437), 91128 Palaiseau Cedex, France - Email:
queinnec@polytechnique .fr This work has been partially funded by Greco de Programm~tion.

A first analysis, called continuation shape analysis, suggests which frames are likely to be combined and
which functions might be specialized with respect to their continuation. Combining frames is essentially
obtained through a kind of partial evaluation [Bon91] which is easier than in real Scheme since ACPS, heir
of CPS, restricts the language. Of course, our program transformation suffers from the same problems as
partial evaluation does regarding size of produced code or termination.

A continuation represents the future of a computation. This reorganization of the continuation can be
viewed as a simplification of this future. Our technique can be used statically in known contexts but it can
also be of some use at run-time where, before pushing a frame, the frame on the top of the continuation
can be analyzed to check if there is a dynamically unforeseen but statically precomputed combination to
perform.

The contribution of the paper is a compilation technique that reorganizes continuations using frames
combination. This technique shortens continuations, performs weeding (a small-scaled deforestation-like
effect) and transforms some associatively wrapped recursions into tail-recursions.

Our compilation technique does not depend on the implementation of continuations. It is a local analysis
since first, it does not require global properties the whole program must respect (as in deforestation) and
second, it only needs to know the behaviors of the frames that are to be combined. Moreover it can be used
in the context of a "mostly functional" language where pure fragments are not rare. We will show, by hand,
how our technique handles the examples (even the higher order ones) presented in [Chi92, H J91].

The structure of the paper is as follows: we first introduce the ACPS transformation in Section 1.
Continuation shape analysis is explained in Section 2. Section 3 handles combination of frames and presents
examples of weeding. Section 4 treats the specialization of functions with respect to continuations. Other
examples related to the li t terature on deforestation are discussed in Section 6; related works and conclusions
follow.

1 Abstract Continuation Passing Style

This Section introduces the ACPS program transformation. CPS makes continuations explicit but represents
them by unary functions which can only be applied. ACPS improves on CPS since it adopts a less opaque
representation for continuations: continuations are modeled by lists of frames. A frame is functionally
represented by a binary function that waits for a continuation and a value. When given a value, it performs
some computat ion transforming this value, the result of which is given back to the continuation.

ACPS[v~q ~ (resume q v)
ACPS~(quote e)~q ~ (resume q (quote e))
ACT~S[(if ~o ~ r2)~q -~ ACP$[~o](extend q (A(q' v') (if v' ACP$~r~q' ACP$[v~q')))
AC~oS~(set! v ~)]q --~ AC~o$[~r~(extend q (A(q' v') (resume q' (set! ~, v'))))
AC~°S[(A(v *) 7 r)] q - (resume q (A(q' v*) AC~o$[zr]q'))
AC~°S[(~h ~r2)]q-* AC~°$[lh](extend q (A(ql vl) AC~oS~r2~(extend ql (A(q2 v2) (Vl q2 v2)))))
ACPS[(Ih .. . ~,)]q0

AC'PS[rl](extend q0 (A(ql vl) ...ACPS[Trn](extend q,-1 (A(q, v,) (v~ q, v2 . . . v ~)))))

Table h ACPS rules for plain Scheme

Similarly to CPS, ACPS adds an extra argument to functions to represent their continuation: we name
this argument q. Two operators, resume and ex tend encapsulate continuations. Sending a value v to a
continuation q is expressed with (resume q v). One extends a continuation q with a frame ~ i.e. pushes a
frame on a stack, with (e x t e n d q ~o). The resume and ex tend operators obey the following fundamental
relation i.e. when a continuation receives a value, it simply applies its first frame on the value itself and on
the rest of the frames:

Rule h (resume (ex tend q ~) v) --i (~ q v)

A simple implementa t ion of resume and e x t e n d in regular Scheme, where the cont inuat ion is represented
by a list of regular closures, follows 1. Observe tha t r e s u m e and e x t e n d also respect the interface of ACPS-
t ransformed unary functions.

(define (resume q v) ((car q) (cdr q) v))
(define (extend q frame) (cons frame q))

The ACPS transformation is defined on table 12 for all the special forms of Scheme. The order of
evaluat ion is left to right. A C P S creates a lot of adminis t ra t ive redexes. A reformulat ion of A C P S along the
lines of [SF92] is p robably possible but would complicate the above rules. Alternatively, a post-processing
phase can be added to remove these adminis t ra t ive redexes as well as others tha t might exist in the original
p rogram. Appl ica t ions of primitives wi thout control effect such as cons , p a i r ? etc. (trivial forms of [Rey72])
can also be simplified according to rule 2:

Rule 2: (ACPS-primitive q vl ...Vn) ~ (resume q (primitive vl . . . v .))
Let us give an example of A C P S t ransformat ion inspired f rom [HJ91] where the regular factorial of n is

compu ted by first bui lding the list of all positive numbers f rom 1 u p t o n then making the produc t of all of
them. This p rog ram will serve as a running example for a large par t of the paper.

(define (factorial n)
(product (upto I n)))

(define (product numbers) ; (product ' (Vl . . .Vn)) = lqin=lVi
(if (pair? numbers)

(* (car numbers) (product (cdr numbers)))
I))

(define (upto start stop) ; (upto I n) = (1 2 ... n)
(if (<= start stop)

(c o n s s t ~ t (u p t o (+ 1 s t a r t) s t o p))
' ()))

The A C P S t rans fo rmat ion of these functions appears below. To make it more readable, we assume p a i r ? ,
cons , c a r 3 and other similar functions to be primitive and therefore to be left as they are by ACPS. We also
m a d e some cosmetical changes: (i) forms are simplified, whenever possible, according to rules 1 and 2, (ii)
l e t forms were in t roduced instead of ((A . . .) . . .) and local variables are hygienically renamed, (iii) global
variables have a name prefixed by ACPS-, (iv) all lambda forms are indexed with a number to distinguish
them later, (v) forms like (l ambda (q v) (f q v)) are rksimplified into f ,

(define ACPS-f actorial
(A0 (q n) (ACPS-upto (extend q hCPS-product) I n)))

(define ACPS-product
(A1 (q numbers)

(if (pair? numbers)
(let ((tmpl (car numbers)))

(ACPS-product (extend q (A2 (q result) (resume q (* tmpl result))))
(car numbers)))

(r e s u m e q 1))))
(d e f i n e hCPS-up to

(AS (q s t a r t s t o p)
(if (<= s ta r t stop)

(ACPS-upto (extend q (A 4 (q result) (resume q (cons start result))))
(+ i s t a r t) stop)

(r e s u m e q ' ()))))

1 Observe that CPS is a special case of ACPS with the following definitions: (de f ine (extend q frame) (lambda (v) (frame
q v))) and (de f ine (resume q v) (q v)) .

2Binary and n-dry applications axe both shown to give a flavor of the . .. ellipsis.
3To consider car as a primitive is similar to inline it as in a real compiler. If an inlined car is applied on a non dotted pair,

it is not possible to reify its exact continuation so this kind of error is not continuable. Therefore car has no perceivable control
effect.

A index calls after pushing
A0 (= A C P S - f a c t o r i a l) As A1
Al (= ACPS-product) Ai A2
As (= ACPS-upto) A3 A4

X2

Figure 1: Results of continuation shape analysis

2 Continuation shape analysis

The e x t e nd operator extends a continuation with a frame. The paper proposes to take advantage of this
extension to reorganize the continuation. From an implementation point of view, ex tend is nothing but
an operator that pushes frames onto a continuation whether implicitly (in a stack-based implementation)
or explicitly with some link adjustment (in a heap-based implementation). Alternatively ex t end can be
considered, from an Object Oriented point of view 4, as a generic function which may possess specialized
methods to push some kinds of frames depending on the nature of the frame on top of the continuation. The
nature of a frame is specified by the body of the abstraction that functionally represents this frame and is
materialized, in the f a c t o r i a l example, by the A-indices.

The continuation shape analysis proceeds as follows: for each non trivial application i.e. application that
calls a function which is not a primitive, nor a resume nor an ex tend operator, we record, if known 5, the
invoked function and the shape of the continuation i.e. the nature of the first frame(s). These are known
when the continuation argument is an ex tend form with a frame explicitly specified by a lambda form.

The analysis is particularly simple in the case of the above f a c t o r i a l example: there are only three non
trivial applications. Assuming that all global variables are immutable, the following table and figure show
the results of the analysis:

This table does not exclude these functions to be called with other continuations. Conversely, if one of
these functions, say ACPS-product, is known not to be called from elsewhere (for example as a result of an
exportation directive within a module facility [QP91]) then more aggressive transformations can be easily
imagined.

The results of the continuation shape analysis can be exploited in two ways.

. The analysis reveals possible combinations of frames that might appear at run-time. A strongly typed
language would restrict even more these possible combinations to type-compatible couples of frames.
In our preceding example we see that: (i) A4 frames might be pushed over A4 or A1 frames, (ii) A2
frames might be pushed over A2 frames.

2. The analysis reveals functions that can be specialized with respect to their continuation i.e. that are
called with some known frames on top of their continuation. Still from the example, we see that (i)
A3 may be called over a A1 or a A4 frame, (ii) A1 may be called over a A2 frame.

These two aspects are instances of partial evaluation applied, in the first case, to ex tend forms and
in the second case, to lambda forms where both are specialized with respect to the continuation. These
transformations must be driven not to produce optimized dead code. These three aspects will be respectively
handled in the three next Sections. The whole transformation appears as follows:

3 Combining frames

To combine frames T and T' (where ~ is about to be pushed over T') is similar to the invention of a new
frame ~" such that , for all continuation q and value v:

4this point of view is developped in [Que92a].
5 Some analyzes, [Shi90] for instance, may improve this knowledge.

5

Program
Shape

analysis

Combine

frames

Specialize

wrt frames

Dead code

removal

Figure 2: Continuation Conscious Compilation

Final Program

(resume (e x t e n d (e x t e n d q 9 ') 9) v) _---- (resume (ex t en d q 9") v)

The combined frame 9" can be precisely defined as (lambda (q v) (9 (e x t e n d q 9 I) v)) .
Not unlike partial evaluation, the problem is to determine where to stop inventing and combining new

frames. Practically, we only invent new frames that decrease the size of the body of the associated lambda
form compared to the sum of the sizes of the body of the combined lambda forms. This ensures a finite
number of new frames but also promises some increase of the size of the code.

Not all combinations are interesting but when they are i.e. when the partial evaluation of 9 " leads to
some gain, then we can transform all ex t end forms that pushes a 9 frame on top of a 9 ' frame so they
analyze their continuation and if appropriate, remove that 9 ' frame and push instead a 9 " frame. In more
programming terms, we replace (e x t e n d q 9) with:

(cond ((i s a 917 (car q)) (extend (cdr q) 9"))
(else (extend q 9)))

To build the combined frame requires to be able to recognize the nature of frames and to extract values
of closed variables from closures. To make this paper more readable, we express our ideas directly on ACPS
code and not on A-lifted code as done in [Que92a] since this would expose far too much details. We will
therefore suppose Ai? to be a predicate recognizing if its argument is a closure with a Ai nature and)q .Lv to
be a selector that extracts the value of the closed variable v out of a)q closure.

Returning to our running example, we can easily see that combining a (just consing) A4 frame with a
(just consing) A4 frame is not interesting since no simplification can be performed on the combined frame.

3 . 1 W e e d i n g

Among the suggested combinations by figure 1 was the combination of a (just consing) A4 over a (destructure
for multiplying) A1 frame. To combine them is similar to partially evaluate (modulo rules 1 and 2):

(lambda (q v) ;(A 4 (extend q Ai) v)
((A 4 (q result) (resume q (cons start result)))
(extend q (Ai (q numbers)

(if (pair? numbers)
(let ((tmpl (car numbers)))

(ACPS-product (extend q (A 2 (q result)
(resume q (* tmpl result))))

(cdr numbers)))
(resume q 1))))

v))

This is easily simplified into the following. Note that we can here use rules as (c a r (cons x y)) = x
since due to ACPS, forms x and y are trivial, terminate and have no control effects.

(lambda7 (q v)
(ACPS-product (extend q (A 2 (q result) (resume q (* start result))))

v))
It is important to limit the number of different frames since when new ones are invented, the continuation

shape analysis must be resumed to take these new frames into account. Therefore before inventing new frames
and even if this test is expensive, we check if they already exist. For instance, in the above expression the
lambda form can be recognized as an instance of a A1 frame i.e. a call to ACPS-product. Therefore we see
that pushing a A4 over a A1 frame can be performed by removing the Ai frame then pushing a A7 frame.
This last action (e x t e n d q A7) is easily simplified into (extend (extend q A2) A1) so, finally, to push a
A4 over a A1 frame can be performed by removing the A1 frame then sequentially pushing a A2 and again a

A1.
This combination of frames has an immediate gain which is to remove the need to construct a pair

which is immediately destructured. This achieves a deforestation-like effect but on a small scale, something
more akin to weeding. Weeding removes useless computations, these useless computations can concern data
allocations as well as really useless computations. Consider,for example, the following function

(define (main n)
(factorial n)
n)

which is ACPS-translated into:

(define ACPS-main
(Aio (q n)

(A C P S - f a c t o r i a l (e x t e n d q (All (q v) n)) n)))

It is easy to see that All ignores the value it will receive, it is an absorbing frame that swallows any flame
that resumes it and in particular A2 frames that will occur during the computation of ACPS- fac toz ia l .
A All frame cannot of course be combined with a f lame which is not known to terminate, for exam-
ple, an ACPS-product frame. Weeding there allows to remove all the multiplying A2 flames produced by
A C P S - f a c t o r i a l but leaves the flames enumerating the numbers from n to 1, a potentially looping activity
if n is negative.

3.2 Using associativity
Another possible combination, suggested by the continuation shape analysis, was to push a (multiplying)
A2, say ~, over a (multiplying) A2 frame ~ . The same partial evaluation as above leads to:

(lambda (q v) ; (~ (extend q ~') v)
(resume q (* (A2~tmpl ~o') (* (A2~tmpl ~o) v))))

Were we to invent a new frame for this combination, there would be no gain in grouping nmltiplications
two by two unless we use the associativity of the multiplication. All previous reorganizations never use such
properties, they were pure applications of fold/unfold/specialize/generalize strategies not beyond regular
compiler ability.

If we rearrange the above multiplications using associativity, we can group the two multiplicands and
obtain:

(lambda (q v) (resume q (* (* (A2l tmpl ~ ') (A2~tmpl ~)) v)))

We already know a frame which has this behavior: A2S[Therefore, given the associativity of the multi-
plication, two A2 frames can be combined into a single one.

Depending on the properties continuations have in the language, their possible capture, their lifetime,
their possible (multiple) use etc. an implementation may choose to implement the previous frames combi-
nation with an update-in-place effect. Since a A2 is replaced with another instance of A2, one can modify in
situ the existing instance rather than replace it with a new one. Observe that the validity of this side-effect
depends on non-local properties allowing us to decide if the to-be-patched frame is shared or not.

Let us return to our running example to show what we achieved so far. If we retain all the analyzed
combinations described so far, then we obtain the following code:

(define ACPS-factorial

6It is beneficial to share flames to reduce their number.

7

(A0 (q n) (ACPS-upto (extend q ACPS-product) 1 n)))
(d e f i n e ACPS-product

(A1 (q numbers)
(i f (pa i r? numbers)

(l e t ((tmpl (car numbers)))
(ACPS-product
(cond ((A2? (car q)) ; when called from ACPS-product

(extend (cdr q)
(l e t ((tmp2 (A21tmpl (car q))))

(A2 (q r e s u l t)
(resume q (* (* tmp2 tmpl) r e s u l t))))))

(e l s e (extend q (A2 (q r e s u l t) (resume q (* tmpl r e s u l t))))))
(cdr numbers)))

(resume q 1))))
(de f ine ACPS-upto

(A 3 (q s t a r t s top)
(i f (<= s t a r t s top)

(ACPS-upto
(cond ((Ai? (car q)) ;when called from ACPS-factor ia l

(extend (cond ((A2? (cadr q))
(extend (cddr q)

(l e t ((tmp2 (A2ltmpl (cadr q))))
(As (q r)

(resume q (* (* trap2 s t a r t) r))))))
(e l s e (extend (cdr q)

(As (q r e s u l t)
(resume q (* s t a r t r e s u l t))))))

ACPS-product))
(e l s e (extend q (A4 (q r e s u l t) (resume q (cons s t a r t r e s u l t))))))

(+ 1 start) stop)
(resume q '()))))

Although oversized, this transformed program is able to compute the f a c t o r i a l of a number without
any allocation of pairs and with a continuation containing at most two more top frames, one A2 and one Ai
frames. The transformation not only improves the evaluation of f a c t o r i a l , it also improves the product
function as well since it now computes its final result with a continuation containing at most one As top
frame.

Perhaps we can make this behavior clearer showing the state of the computation while computing
(f a c t o r i a l n). In the figure below, the state is represented by the current form over the continuation;
closed values appear between parentheses just after the name of the closure.

. f a c t o r i a l n ~ u p t o 1 n ~ u p t o 2 n ~ u p t o 3 n _ . ~ . . . ~ u p t o n - ~ l n ~ p r o d u c t () ~ l.n!
A1 ~1 ~1 ~1 ~2(n!)

As(l) A2(1.2) A 2 (1 . 2 * n)

Two problems still affect this code: it is oversized and all these improvements are dynamic since frames
are recognized at run-time. It is then time to exploit the second aspect of the continuation shape analysis
which is to now specialize functions with respect to their continuation.

4 Specia l izat ion with respect to the cont inuat ion

Due to the previous transformation, the continuation shape analysis has slightly evolved, new frames were
created that modify the shape of involved continuations. The analysis now produces:

8

A index calls
h0 (= ACPS-factorial) As
Ai (= ACPS-product) hl
A3 (: ACPS-upto) A3
A3 (= ACPS-upto) h3

with top frames
Ai
he
h4
Ai A2

k2

• k4

kl~t2

We can easily extract from the above table that it is worth investigating the specialization of A1 with a
top frame of A~ as well as the specializations of A3 with a top frame of A4 or two top frames: A1 and A2. These
are possibilities of specialization that do not prevent these functions to be called with other continuations.
The continuation shape analysis just suggests some specializations. There again, not all possibilities lead to
interesting specializations. To be interesting, a function to be specialized must be called more than once as
well as offer some gain i.e. be simpler than its non specialized version. This is a kind of polyvariant partial
evaluation since a same function may be specialized with respect to different continuations. The suggested
specializations of the f a c t o r i a l example seem to be particularly interesting since they all lead to recursive
specializations.

Let us first consider the case of specializing a function with respect to a single frame on top of the
continuation, we call this operation: "integrating the top frame". Specializing a function with respect to
more than one frame can be done by successive top frames integrations. The operation is a two phase
transformation: a raw specialization of all the functions that might benefit from the knowledge of the top
frame followed by a general retrofit of all invocations to these functions.

4.1 Raw special izat ion

Suppose a function f with variables q, vl . . . v,~ to be specialized with respect to a frame Ai, say ~, with free
variables cl . . . cp. The specialized version will be a function, say ff-overA~, such that:

(/ (e x t e n d q Ai) vl . . . Vn) ~ (f -ove rAi vl . . . v, AilCl(~p) . . . A i l c j (~ #))

The definition of f-overA~ is obtained as follows. Its list of variables is the list of variables of f plus the
variables cl . . .cp. Its body is the simplified expression (f (ex t en d q Ai) vl ...v,~) where the values of
(Ai.Lcj (c a r q)) are renamed cj , this is just a sort of A-lifting modulo rules 1 and 2.

For instance, this is the raw result of this transformation on ACPS-product with respect to A2:

(define ACPS-product-overA2
(A~ (q numbers tmpl)

(if (pair? numbers)
(let ((imp3 (car numbers)))

(ACPS-product ; We k n o w we are over a A2
(extend q (let ((imp2 tmpl))

(A2 (q result)
(resume q (* (* imp2 tmp3) result)))))

(cdr numbers)))
(resume (extend q (A2 (q result) (resume q (* tmpl result))))

1))))

4.2 G e n e r a l r e t ro f i t

The second phase of the transformation consists in changing all invocations to f with a top frame of A~ i.e.
a form like (f (e x t e n d q (Ai . . .)) . . .) , into the appropriate call to f -overAi . This transformation is
performed everywhere even in the newly generated functions. So the raw (and still to be simplified) definition
of ACPS-product-overA2 becomes:

(define ACPS-product-overA2
(As (q numbers trap1)

(if (pair? numbers)

9

(let ((tmp3 (car numbers)))
(ACPS-product-overA2
q (cdr numbers) (let ((imp2 tmpl)) (* tmp2 tmp3))))

(resume (extend q (A2 (q result) (resume q (* tmpl result))))
i))))

The result is part icularly interesting since it leads to a tail-recursive function. An ACPS inverse trans-
format ion [SF92, DL92b] would rewrite the above function back to direct style into:

(define (p roduc t -ove r)e2 numbers tmpl)
(if (pair? numbers)

(let ((tmp3 (car numbers)))
(product-overA2
(cdr numbers) (let ((trap2 trap1)) (* trap2 trap3))))

(* tmpl I)))

Observe that the technique that integrates the top frame applied to the unary recursive product function
turns it into its binary iterative (with accumulator) equivalent. The same effect can be observed on the regular
recursive factorial which is turned into its iterative equivalent [FWH92, Chap. i0].

5 Dead code removal

Let us summarize the results obtained so far in two tables. The first one shows the results of combining
frames, the second the results of top f rame integration.

pushing
A4 over A4 uninteresting
A4 over A1 (weeding) push instead ~1 on top of As
A2 over A2 (associativity) push instead A2

calling
A1 over A2 call instead ACPS-product-overA2
A3 over A4 not interesting
A3 over A1 A~ call instead ACPS-upto-overA1
ACPS-upto-overA1 over A2 call instead ACPS-upto-overA1A2

There is still room for improvements (as well as other analyses such as closure analyses) since lot of
adminis trat ive redexes have been produced. Another effect is that , specializing functions, we mult iply their
number so we must refine our continuation shape analysis to take into account these new possible interactions.
Fortunately, combining frames or specializing functions allows to suppress some type of Aforms since they
can no more be built so we can remove all the conditional code relative to them.

Another source of simplification is whether the t ransformation is applied on a whole program or a bunch
of functions. If we consider a whole program and the initial call is an invocation to f a c t o r i a l then we can
just keep A C P S - f a t o r i a l , ACPS-upto-overA1 and ACPS-upto-overA1A2. If we allow as well direct calls to
product and up to then we must add ACPS-upto, ACPS-product and ACPS-product-over~2.

All the previous analyses were static and yield static improvements. But the information acquired so far
also allows to install some code that will, at run-time, try to check whether some statically undetected but
dynamical ly possible optimizations occur. These various levels of code removal appears in appendix for the
f a c t o r i a l example.

6 Other examples

We discuss in this Section how our technique handles other examples taken from the li terature on deforesta-
tion and mainly [HJ91, Chi92]. The following are classical and come from [HJ91], raainl also appears in
[Chi92]:

(define (append x y)
(if (pair? x)

10

(cons (ca2: x) (append (cd r x) y))
y))

(d e f i n e (r e v e r s e 2 x y)
(i f (p a i r ? x)

(r e v e r s e 2 (cd r x) (cons (c a r x) y))
y))

(d e f i n e (mainl x y z)
(append (append x y) z))

(d e f i n e (main2 x y z)
(append (r e v e r s e 2 x y) z))

(d e f i n e (main3 x y z)
(r e v e r s e 2 (append x y) z))

Examples main1 and main3 do not pose any problems. It is easy to see that the inner call to append will
have to push a consing frame that can be fused with the outer destructuring append or r e v e r s e 2 waiting
frame. The case of main2 is interesting since, as noted in [HJ91], regular deforestation [Wad88] cannot
handle it but a more complex analysis, creation analysis, can take care of this. Our technique is unable to
improve anything since r e v e r s e 2 is tail-recursive and as such does not push any frame on the continuation.
Unless frames exist that can be combined or serve to specialize functions, our analysis is impotent.

The following example comes from [Chi92], it takes two lists and counts the number of their terms (in a
rather inefficient manner (but these sort of transformations are at their best when programs are not efficiently
coded):

(d e f i n e (s i z e ii 12)
(l e n g t h (append 11 12)))

(d e f i n e (l e n g t h 1)
(if (pair? I)

(+ I (length (cdr i)))
o))

The ACPS transformation yields:

(define ACPS-size
(A2o (q 11 12) (ACPS-append (extend q ACPS-length) 11 12)))

(define ACPS-length
(A21 (q i)

(if (pair? l)
(ACPS-length (extend q (A22 (q r) (resume q (+ I r))))

(cdr 1))
(resume q O))))

(define ACPS-append
(A23 (q x y)

(if (pair? x)
(ACPS-append (extend q (A24 (q r) (cons (car x) r)))

(cd r x) y)
(resume q y))))

Because append is a producer of pairs (using frame A24) that are consumed by l e n g t h i.e. frame A21, our
technique works well, combines these frames into, say A25 and therefore removes intermediate data allocation
automatically. Our technique rediscovers that:

(l e n g t h (s i z e (cons x y) z)) = (+ 1 (s i z e y z))

We thus do not need to explicitly introduce, as Chin does, a law such as:

(l e n g t h (append l l 12)) = (+ (l e n g t h l l) (l e n g t h 12))

The invention of frame A25 leads to a computation that pushes as many A22 frames as they are terms
in the two arguments of s i z e . The continuation shape analysis suggests to try to combine A22 frames but
unfortunately the combination is not interesting since, even using associativity of the addition, to combine

11

1+ with 1+ only yields (lambda (q r) (resume q (+ 2 r))) . We cannot invent such a frame for each
natural number. What is needed to combine these frames is to be able to generalize this kind of frame into
one which waits for a value and will add it to a closed value. This ability is related to the problem of sharing
frames to limit the invention of new frames when parameterizing old ones may suffice. This is an instance
of a generalization process, a difficult and complex task.

7 R e l a t e d works

Many works are related to ours. We are first indebted to the work of Greussay who presented in his
PhD [Gre77], run-time techniques allowing proper tail-recursion in the framework of an interpreter for a
dynamically-scoped Lisp. Interpreter functions, such as eval , e v l i s etc. were allowed to analyze (by
pattern-matching) the top of the stack in order to detect some configurations where optimizations were
possible. This work has been continued by Saint-James who improved it to a very sophisticated level
[SJ84, SJ87, SJ90]. Our first motivation was to bring similar improvements to compiled Scheme.

To use simultaneously ACPS and the ability for functions to inspect their continuation was therefore
a simple idea, at least tackled by Wand in [Wan80]. A quite similar idea can be found in [CD91] who
advocates the idea that partial evaluation of CPS-transformed programs improves the quality of residual
programs since CPS brings nearer the producers and consumers of intermediate data structures. Hence the
idea of combining frames together.

It is of course possible to make the same analysis on a non ACPS-transformed program but we thought
ACPS is more convenient to relate small parts of code together. Whenever two frames are known to be
possibly contiguous, their combination can be analyzed. These frames do not need to appear at the beginning
of the continuation, they might appear deeply inside. An interesting alley seems to improve programs
according to our technique then to translate them back to direct style [DL92a, SF92] to take benefit of
regular Scheme compilers.

We compare with some details our technique to deforestation in the previous Section. To summarize,
our technique (i) is purely local: it is not affected by the presence of side-effects elsewhere. In a "mostly
functional" language such as Scheme, many fragments are purely functional and can benefit from our ap-
proach; two side-effect free frames can be combined even if there are side-effects elsewhere. (i i) is able
to handle full Scheme with higher order functions, (i i i) improves programs by weeding intermediate data
allocations, useless computations and thus shortens continuations. For the sole point of deforestation, it is
inferior to the technique of [H J91] as shown in Section 6. Compared to [Chi92], it needs less additional laws
but requires the ability of generalizing frames.

8 Conc lus ions

The paper presented a program transformation which crucially depends on the shape of the continuations.
The various possible frames that can appear in a continuation are analyzed to see if there is some gain to
combine them. This allows the removal of useless computations and intermediate data structures and enable
some kinds of associative recursion to be made iterative. Combining frames and specializing functions with
respect to such frames are applications of partial evaluation.

We presently have no figures of the usefulness of these ideas. But it is sure that efficiently coded programs
will not gain from this technique since they already avoid to allocate short-lived objects as well as recursions
that are not tail-recursive.

Bib l iography

[Bon91] Anders Bondorf. Similix manual, system version 4.0. Technical report, DIKU, University of Copenhagen,
Denmark, September 1991.

[CD91] Charles Consel and Olivier Danvy. For a better support of static data flow. In John Hughes, editor, FPCA
'91 - Functional Programming and Computer Architecture, Lecture Notes in Computer Science523, pages
496-519, Cambridge (Massachusetts, USA), August 1991. Springer-Verlag.

12

[Chi92]

[DL92a]

[DL92b]

[FWFD88]

[FWH92]

[Cre77]

[H J91]

[QD92]

[QP91]

[Que92a]

[Que92b]

[Que92c]

[Rey72]

[SF92]

[Shi90]

[SJS4]

[SJ87]

[SJ90]

[WadS8]

[Wan80]

Wei-Ngan Chin. Safe fusion of functional expressions. In LFP '9£ - ACM Symposium on Lisp and
Functional Programming, pages 11-20, San Francisco (California USA), June 1992.

Ohvier Danvy and Juha Lawall. Back to direct style II: First-class continuations. In LFP '92 - A CM
Symposium on Lisp and Functional Programming, pages 299-310, San Francisco (California USA), June
1992. ACM Press. Lisp Pointers V(1).

Ohvier Danvy and Juha L. Lawall. Back to direct style II: First-class continuations. In LFP '92 - ACM
Symposium on Lisp and Functional Programming, LISP Pointers, Vol. V, No. 1, pages 299-310, San
Francisco, California, June 1992. ACM Press.

Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce Duba. Abstract continuations: a
mathematical semantics for handhng functional jumps. In Proceedings of the 1988 ACM Symposium on
LISP and Functional Programming, Salt Lake City, Utah., July 1988.

Daniel P Friedman, Mitchell Wand, and Christopher Haynes. Essentials of Programming Languages.
MIT Press, Cambridge MA and McGraw-Hill, 1992.

Patrick Greussay. Contribution d la dgfinition interprgtative et d l'impldmentation des Lambda-langages.
Th~se d'6tat, Universit6 Paris VI, November 1977. Rapport LITPy 78-2.

G W Hamilton and S B Jones. Extending deforestation for first order functional programs. In Procedings
of the 1991 Glasgow Workshop on Functional Programming, pages 134-145, Portree, Isle of Skye (United
Kingdom), August 1991.

Christian Queinnec and David DeRoure. Design of a concurrent and distributed language. In Anant
Agarwal, Robert H Halstead Jr, and Takayasu Ito, editors, Proceedings of the Worshop on Parallel
Symbolic Computing: Languages, Systems and Applications, Boston (Massachussetts US), October 1992.

Christian Queinnec and Julian Padget. Modules, Macros and Lisp. In Eleventh International Confer-
ence of the Chilean Computer Science Society, pages 111-123, Santiago (Chile), October 1991. Plenum
Pubhshing Corporation, New York NY (USA).

Christian Queinnec. Continuation sensitive compilation. Research Report LIX RR 92/14, Laboratoire
d'Informatique de l']~cole Polytechnique, 91128 Palaiseau Cedex, France, November 1992.

Christian Queinnec. Value transforming style. In M Billaud, P Cast,ran, MM Corsini, K Musumbu, and
A Rauzy, editors, WSA '9£--Workshop on Static Analysis, number 81-82 in Revue Bigre+Globule, pages
20-28, Bordeaux (France), September 1992. short version of [??Queinnec92f??].

Christian Queinnec. Value transforming style. Research Report LIX RR 92/07, Laboratoire
d'Informatique de l']~cole Polytechnique, 91128 Palaiseau Cedex, France, May 1992.

John Reynolds. Definitional interpreters for higher order programming languages. In ACM Conference
Proceedings, pages 717-740. ACM, 1972.

Amr Sabry and Matthias Felleisen. Reasoning about continuation-passing style programs. In LFP '92 -
ACM Symposium on Lisp and Functional Programming, pages 288-298, San Francisco (California USA),
June 1992. ACM Press. Lisp Pointers V(1).

Olin Shivers. Data-flow analysis and type recovery in scheme. Technical Report CMU-CS-90-115, CMU
School of Computer Science, Pittsburgh, Penn., March 1990.

Emmanuel Saint-James. Recursion is more efficient than iteration. In LFP '84 - ACM Symposium on
Lisp and Functional Programming, pages 228-234, 1984.

Emmanuel Saint-James. De la Mgta-Rgcursivitg comme Outil d'Implgmentation. Th~se d'4.tat, Universit4
Paris VI, December 1987.

Emmanuel Saint-James. Transformations de prograanmes ~ l'ex6.cution : puissance et efficience. In Pierre
Cointe, Philippe Gautron, and Christian Queinnec, editors, Actes des JFLA 90 - Journges Francophones
des Langages Applicatifs, pages 110-117, La Rochelle (France), January 1990. Revue Bigre+Globule 69.

Philip Wadler. Deforestation: Transforming programs to eliminate trees. In H Ganzinger (ed), editor,
ESOP '88 - European Symposium on Programming, volume 300 of Lecture Notes in Computer Science,
pages 344-358, 1988.

Mitchell Wand. Continuation-based program transformation strategies. Journal of the ACM, 27(1):164-
180, 1980.

13

Appendix: The final factorial example

I f t h e whole program is nothing but a ca l l to f a c t o r i a l , then it can be transformed into:

(define ACPS-factorial
(A0 (q n) (ACPS-upto-overA1 q I n)))

(define ACPS-upto-overA1
(AS (q start stop)

(if (<= start stop)
(ACPS-upto-overAiA2 q (+ I start) stop start)
(resume q I))))

(define ACPS-upto-overAiA2
(AT (q start stop tmpl)

(if (<= start stop)
(ACPS-upto-overAiA2 q (+ I start) stop (* imp1 start))
(resume q tmpl))))

If we still allow direct calls to functions product and upto we have to add the following definitions:

(define ACPS-product
(Ai (q numbers)

(if (pair? numbers)
(let ((tmpl (car numbers)))

(ACPS-product-overA2 q (cdr numbers) tmpl))
(resume q I))))

(define ACPS-product-overA2
(As (q numbers tmpl)

(if (pair? numbers)
(let ((imp3 (car numbers)))

(ACPS-product-overA2 q (cdr numbers) (* tmpl imp3)))
(resume q tmp1))))

(define ACPS-upto
(AS (q start stop)

(if (<= start stop)
(ACPS-upto
(extend q (A4 (q result) (resume q (cons start result))))
(+ I start) stop)

(resume q '()))))

Finally, if we wish to allow dynamic optimizations to occur, then we have to replace upto (the sole
function to push ~ames on an unknown continuation) by:

(define ACPS-upto
(An (q start stop)

(if (<= start stop)
(cond ((Ai? (car q))

(cond ((A2? (cadr q))
(let ((tmp (As~mpl (cadr q))))

(ACPS-upto-overAiA 2
(cddr q) (+ I start) stop (* imp start))))

(else (ACPS-upto-overA1
(cdr q) (+ I start) stop start))))

(else (ACPS-upto (extend q (A4 (q result)
(resume q (cons start result))))

(+ 1 start) stop)))
(resume q '()))))

In allthese examples, some obvious transformations were performed such assimplifying (* v i)into v.

14

