
Functional Programming: More Fundamental than BASIC?

Iain Ferguson

Project MEGSSS, Nova High School
3600 College Ave, Davie FL 33314

Tel.: (305) 370-1691 EMail: 70262.630@compuserve.corn

ABSTRACT

The current secondary school computer science cur-
riculum, which culminates in the AP exam, provides
students with a misleading picture of the discipline,
and many young thinkers are turned off by the rigid-
ity and pettiness of syntax-heavy languages like BA-
SIC and Pascal. This paper describes an introduc-
tory course that uses functional programming tech-
niques to emphasize the analytical and problem solv-
ing aspects that make computer science so interest-
ing, while avoiding the tedium associated with tradi-
tional approaches. A course based on this approach
has proven very successful in encouraging students
to further their study of the discipline.

1 I n t r o d u c t i o n

At Project MEGSSS (Mathematics Education for
Gifted Secondary School Students) we have since
1985 taught a subsidiary course in computer sci-
ence to our middle and high school mathematics
students. The philosophy permeating our work in
the classroom has been that programming is about
problem solving, and is only peripherally concerned

with managing complex digital machines. In the
words of the eminent computer scientist Richard
W Hamming of the Naval Postgraduate School,
Monterey, CA, "The purpose of computing is in-
sight, not numbers." We wanted to make students
aware of the benefits of adopting a computing mode
of thought without cluttering their minds with the
tedious minutiae of computer control.

The computing side of things was a means to
an end, not an end in itself, so we rejected the
imperative-style languages such as BASIC and Pas-
cal that pander more to the needs of the computer
than to the student, opting initially for LOGO. For
reasons that are explained below, we currently use
Scheme, a cousin of LOGO that is now widely used
at the college level. (For a discussion of the relative
merits of these programming styles and languages,
see Harvey [1]. A extensive list of universities that
use Scheme in introductory and advanced courses
is available from [2].) However, we do not introduce
programming by discussing the syntactic and seman-
tic rules of our chosen language. Instead, we press
into service some intriguing machine puzzles based
on 'black box' problems of a kind sometimes used
by high school mathematics teachers and known to

43

2 Functional Programming

computer scientists as 'da ta flow diagrams'. When
presented with a problem requiring an algorithmic
solution, the students draw m a c h i n e d i a g r a m s
(such as those depicted later in this paper) consist-
ing of hook-ups of these black boxes. So before the
introduction of a programming language, the stu-
dents axe able to experiment with and communicate
ideas about algorithms.

As the algorithms they engineer become more
complex, so the students begin to feel the need for a
convenient written notation to replace their pictorial
solutions. They are now ready to learn a program-
ming language. The students are shown how their
diagrams may be translated directly into Scheme,
and a transition period begins in which students
think in terms of the machine diagrams but present
their solutions as programs. Of course, an algorithm
presented in the form of a program offers an addi-
t ional significant advantage-- i t can be run on a com-
puter! So the students now have a means of testing
and utilizing their algorithms. It is interesting to
note that the first lesson the students spend in the
computer laboratory is devoted to testing non-trivial
algorithms (involving recursion, for example).

Inspired by the clarity and power of the concep-
tual model provided by the machine diagrams, the
students progress well beyond traditional courses,
coming face to face with many fascinating aspects of
modern computer science. Moreover, in the author's
experience, the level of enjoyment and the degree of
motivation expressed by students of both sexes far
exceeds that typically displayed by similar students
taking more traditional courses.

2 F u n c t i o n a l P r o g r a m m i n g

The course begins with the students being intro-
duced to the l ist da ta structure. Lists axe of two

types:

1. the null list, written '() ' , and

2. non-null lists, which begin and end with paren-
theses and whi£h contain one or more expres-
sions (that may themselves be lists). For exam-
ple, the following are all non-null lists, the last
of which itself contains four lists:

• (Albert Betty Carol Donald)

e(12345)

• ((a) (list of) (lists) ()

One point that cannot easily be shown in a
monochrome paper such as this is that lists (and
the words, called atoms, that they contain) are al-
ways written in red, for reasons that are touched on
shortly. (In this paper, all symbols that should be
interpreted as being written in red are printed in the
typewriter typeface.)

Next, the students are introduced to certain prim-
itive black boxes, called m a c h i n e s . For example,

(Ed Den Fred) (Ed Den Fred)

)
Ed (Den Fred)

(a) (b)

Figure 1: The first and rest machines.

the first machine, which incidentally is called 'first',
takes as its input any non-nuU list. When presented
with such a list, the first machine outputs the first

44

Functional Programming 3

expression in the list, as shown in Figure l(a). On
the other hand, the rest machine, when presented
with a similar input, outputs the list obtained by
deleting the first expression from the input (seeFig-
ure l(b)). The following problem is then posed: Is it
possible to engineer a hook-up offirst and rest ma-
chines so that the output is the second expression of
the input list? The solution is given in Figure 2.

To distinguish them from atoms, the names of ma-
chines are always written in black. In reality, there
is little scope for confusion at this stage. However,
once the Scheme language is introduced there are
significant pedagogical advantages to making this
color distinction. (In this paper, black symbols are
represented by the sans serif typeface.)

Needless to say, many simple but intriguing prob-
lems can be posed using just the first and rest ma-

(FEd Den Fred)

D~

Figure 2: A hook-up of first and rest.

chines described above, and in a very short space of
time the students axe able to engineer solutions of
surprising sophistication. However, after a while it
becomes tedious having to draw a hook-up of first
and rest machines each time an algorithm requires
the second expression from a list to be extracted. At

this point, the students are introduced to the tech-
nique of defining new, or d e r i v e d , machines. The
process of creating a derived machine is very simple:
Take the hook-up concerned and draw a box around
it, to create a t w i n - f o c u s d i a g r a m . To give the
derived machine a name, the new name is writ ten
next to the box. For example, we define the sec-
ond machine by drawing the diagram in Figure 3(a).
Now, instead of drawing the first-rest hook-up, the

ond

(a) (b)
Figure 3: The second machine.

students may use the second machine. For example,
the machine in Figure 3(b) outputs the third expres-
sion from the input list. Of course, the students may
go on to create yet another derived machine, called
third perhaps, based on the algorithm depicted in
this figure, and thereafter use it in their machine
diagrams as though it were primitive.

The students are presented with four other prim-
itive machines in addition to first and rest. They
are also provided with certain special devices which
help in the construction of more complex machines.
A c o n s t a n t f u n c t i o n is a device that takes any red
expression as its input, but always outputs the same
expression regardless of the input. These devices are
identified by a small inverted triangle; for example,
the constant function in Figure 4 always outputs the

45

4 Functional Programming

(Ed Den Fred)
lat?

(a b c)

Figure 4: A constant .function

list ' (a b c) ' , no matter what expression.is provided
as its input.

In order to construct machines whose behavior
changes according to the inputs provided, the stu-
dents use an i f - swi tch , a device that channels its
input down one of two outputs, the selection being
determined by an expression passed as a special 'con-
trol input ' to the if-switch. When the control input
is the atom '#'e' (representing true), the if-switch di-
rects its input to the left-hand output. When the
control input is the atom '#f ' (representing false)
the input is directed to the right-hand output (two
if-switches appear in Figure 5).

Armed with these tools the students are able to
construct highly sophisticated machines, such as the
lat? machine depicted in Figure 5. This machine
outputs the atom 'ti t ' if its in.put is a list that con-
rains only atoms, otherwise (if the input list itself
contains one or more lists) it outputs the atom '#f ' .
Note that this machine is recusive, being defined
in terms of itself. The students are introduced to
recursion after about fifteen hours of instruction.
Thanks entirely to the machine diagrams, they find
it a simple and intuitive technique. Moreover, ini-
tially the students do not distinguish between tail

Figure 5: The lat? machine.

recursion--describing an iterative process- -and full
recursion, being equally at home with both and bliss-
fully unaware that fully recursive processes are, by
conventional wisdom, significantly harder to under-
stand. Even more remarkably, the students are in-
stinctively able to construct diagrams of machines
that recur at more than one location (describing
tree-recursive processes, for example). In fact, as
far as the students are concerned, recursion simply
means employing the machine within its own twin-
focus diagram, and not until much later is it pointed
out that i f the machine appears at the bot tom of its
twin-focus d iagram--as with the lat? machine in Fig-

h~

Functional Programming 5

ure 5--then the algorithm being depicted involves a
simple 'looping' process rather than a true recursive
process. (Shortly after the introduction of recursion,
the students take a test which involves engineering
several tail and fully recursive machines, and of the
sixty or so students that take this test each year,
about two thirds score 90% or more.)

After an initial period in which students construct
only pictorial algorithms, they are introduced to
Scheme notation. First, students learn to describe
hook-ups; for example, the output from the hook-up
of the first and rest machines shown in Figure 2 is
described by the following (black) funct ional ex-
pression (note how a variable ' r ' is introduced to
represent the input to the hook-up):

(first (rest r))

Next, the students are shown how to write expres-
sions that describe the process of creating a derived
machine. To construct a new machine, they first
draw a box around the appropriate hook-up. This
step is mirrored in the written notation by wrapping
a '(lambda ...)' around the functional expression
that describes the hook-up, together with a (black)
list giving the variables that are being used to repre-
sent the inputs. So drawing a box around a hook-up
of the first and rest machines is equivalent to writing
the functional expression

(lambda (r)(first (rest r)))

Finally, this derived function is given a name (a
process that corresponds to writing the new name
beside the twin-focus diagram) using 'define':

(define second
(lambda (r) (first (rest r))))

A similar process leads to the LOGO definition

TO SECOND :R
OP FIRST (BUTFIRST :R)
END

As mentioned earlier, initially we used LOGO as the
language for describing machine diagrams, since this
was the only appropriate language available on the
Apple lie's to which we had access. However, stu-
dents soon reached the point beyond which LOGO
cannot go. We then introduced them to the lan-
guage Scheme, and were forced to forgo laboratory
sessions. Now we are in the happy position of having
access to IBM compatibles and Macintosh comput-
ers, and use the Scheme language (see [3]) from the
beginning.

3 Conclusion

Because of the method by which a programming lan-
guage is introduced, the students view a program
not as a means for controlling a computer, but as
a notation for describing an algorithm. Thanks to
this deep and sophisticated insight into the nature
of computer programming, our students are able to
progress much further into the algorithmic aspects of
computer science than students who follow more tra-
ditional courses, such as those leading to the College
Board Advanced Placement Exam. For example, in
addition to the usual fare (which is covered in a re-
markably short time) students are able to explore
such important concepts and techniques as

1. procedural abstraction (a technique that allows
often-used algorithms to be generalized);

2. object-oriented programming (a technique used
for encapsulating related procedures); and

3. artificial intelligence (a simple learning strategy
is implemented as part of a tenth grade project).

47

6 Functional Programmin 9

All this is achieved with an absolute minimum of the
syntactic distractions that take up so much time in
most high school courses. In other beginning com-
puter science courses taught by the author, in which
BASIC and Pascal were the languages studied, stu-
dents wasted a great deal of energy, and generated
a equal amount of frustration, struggling with the
seemingly petty and pointless syntactic rules im-
posed by the language. Yet in over six years of teach-
ing this course, the author has yet to hear a single
student express frustration as a result of syntactic
issues. Instead, the students direct their unfettered
creative energies toward devising elegant algorithms.

In May of 1901 we gave the Part B, Section II (pro-
gramming) paper of the College Board Advanced
Placement exam to our ninth grade students, with-
out warning or preparation, and asked them to com-
plete the test, writing their answers in Scheme. The
students found the test to be easy, in some cases triv-
ial, and most of the students had finished 15 minutes
before the 45 minutes allowed. At the time of taking
this test, the students had received less than forty
hours of instruction in computer science, compared
to the three hundred or more hours that most stu-
dents who take the AP test must endure.

Unfortunately, to have received credit the stu-
dents would have had to have written their answers
in Pascal. However, by communicating directly with
universities, we are able to ensure that our students
are properly placed, and many of our former stu-
dents are now studying computer science at col-
lege, either as their major or as a subsidiary dis-
cipline. Moreover, their background enables them
to progress much faster than might otherwise be the
case; for example, two of our former students have
taken (and excelled in) a graduate level course in
lambda calculus at Rice University, despite being
only in their freshman year.

Acknowledgements
The diagrams in this paper are reproduced from The
Schemer's Guide [4] with permission from the pub-
Usher.

Re/erences

[i] Brian Harvey, "Symbolic Programming vs. the
A.P. Curriculum", in The Computing Teacher,
February 1991, pp. 27-29, 56.

[2] A list of universities and colleges who teach
Scheme may be obtained by sending a stamped
self-addressed envelope to Project MEGSSS,
Nova High School, 3600 College Ave, Davie FL
33314. Many of these, including some of the
most prestigious colleges in the USA, have in-
dicated a strong desire to attract students who
have taken the course described in this paper.

[3] Project MEGSSS uses the EdScheme imple-
mentation of Scheme on IBM PC compatibles
with 640K and one floppy disk drive. EdScheme
is also available for Atari computers, and for the
Macintosh (from September 1991). The imple-
menter is Schemers Inc, 4250 Galt Ocean Mile,
Suite 7U, Ft Lauderdale, FL 33308.

[4] Iain Ferguson, Edward Martin & Burz Kauf-
man, The Schemer's Guide, Schemers Inc, Fort
Lauderdale, FL, 1990.

48

