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ABSTRACT 

The current secondary school computer science cur- 
riculum, which culminates in the AP exam, provides 
students with a misleading picture of the discipline, 
and many young thinkers are turned off by the rigid- 
ity and pettiness of syntax-heavy languages like BA- 
SIC and Pascal. This paper describes an introduc- 
tory course that uses functional programming tech- 
niques to emphasize the analytical and problem solv- 
ing aspects that make computer science so interest- 
ing, while avoiding the tedium associated with tradi- 
tional approaches. A course based on this approach 
has proven very successful in encouraging students 
to further their study of the discipline. 

1 I n t r o d u c t i o n  

At Project MEGSSS (Mathematics Education for 
Gifted Secondary School Students) we have since 
1985 taught a subsidiary course in computer sci- 
ence to our middle and high school mathematics 
students. The philosophy permeating our work in 
the classroom has been that programming is about 
problem solving, and is only peripherally concerned 

with managing complex digital machines. In the 
words of the eminent computer scientist Richard 
W Hamming of the Naval Postgraduate School, 
Monterey, CA, "The purpose of computing is in- 
sight, not numbers." We wanted to make students 
aware of the benefits of adopting a computing mode 
of thought without cluttering their minds with the 
tedious minutiae of computer control. 

The computing side of things was a means to 
an end, not an end in itself, so we rejected the 
imperative-style languages such as BASIC and Pas- 
cal that pander more to the needs of the computer 
than to the student, opting initially for LOGO. For 
reasons that are explained below, we currently use 
Scheme, a cousin of LOGO that is now widely used 
at the college level. (For a discussion of the relative 
merits of these programming styles and languages, 
see Harvey [1]. A extensive list of universities that 
use Scheme in introductory and advanced courses 
is available from [2].) However, we do not introduce 
programming by discussing the syntactic and seman- 
tic rules of our chosen language. Instead, we press 
into service some intriguing machine puzzles based 
on 'black box' problems of a kind sometimes used 
by high school mathematics teachers and known to 
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computer scientists as 'da ta  flow diagrams'. When 
presented with a problem requiring an algorithmic 
solution, the students draw m a c h i n e  d i a g r a m s  
(such as those depicted later in this paper) consist- 
ing of hook-ups of these black boxes. So before the 
introduction of a programming language, the stu- 
dents axe able to experiment with and communicate 
ideas about algorithms. 

As the algorithms they engineer become more 
complex, so the students begin to feel the need for a 
convenient written notation to replace their pictorial 
solutions. They are now ready to learn a program- 
ming language. The students are shown how their 
diagrams may be translated directly into Scheme, 
and a transition period begins in which students 
think in terms of the machine diagrams but present 
their solutions as programs. Of course, an algorithm 
presented in the form of a program offers an addi- 
t ional significant advantage-- i t  can be run on a com- 
puter! So the students now have a means of testing 
and utilizing their algorithms. It is interesting to 
note that  the first lesson the students spend in the 
computer laboratory is devoted to testing non-trivial 
algorithms (involving recursion, for example). 

Inspired by the clarity and power of the concep- 
tual model provided by the machine diagrams, the 
students progress well beyond traditional courses, 
coming face to face with many fascinating aspects of 
modern computer  science. Moreover, in the author's 
experience, the level of enjoyment and the degree of 
motivation expressed by students of both sexes far 
exceeds that  typically displayed by similar students 
taking more traditional courses. 

2 F u n c t i o n a l  P r o g r a m m i n g  

The course begins with the students being intro- 
duced to the l ist  da ta  structure.  Lists axe of two 

types: 

1. the null list, written '(  ) ' ,  and 

2. non-null lists, which begin and end with paren- 
theses and whi£h contain one or more expres- 
sions (that may themselves be lists). For exam- 
ple, the following are all non-null lists, the last 
of which itself contains four lists: 

• (Albert Betty Carol Donald) 

e(12345) 

• ((a) (list of) (lists) () 

One point that cannot easily be shown in a 
monochrome paper such as this is that lists (and 
the words, called atoms, that they contain) are al- 
ways written in red, for reasons that are touched on 
shortly. (In this paper, all symbols that should be 
interpreted as being written in red are printed in the 
typewriter typeface.) 

Next, the students are introduced to certain prim- 
itive black boxes, called m a c h i n e s .  For example, 

(Ed Den Fred) (Ed Den Fred) 

) 
Ed (Den Fred) 

(a) (b) 

Figure 1: The first and rest machines. 

the first machine, which incidentally is called 'first', 
takes as its input any non-nuU list. When presented 
with such a list, the first machine outputs the first 
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expression in the list, as shown in Figure l(a).  On 
the other hand, the rest machine, when presented 
with a similar input,  outputs the list obtained by 
deleting the first expression from the input (seeFig- 
ure l(b)).  The following problem is then posed: Is it 
possible to engineer a hook-up offirst and rest ma- 
chines so that the output  is the second expression of 
the input list? The solution is given in Figure 2. 

To distinguish them from atoms, the names of ma- 
chines are always written in black. In reality, there 
is little scope for confusion at this stage. However, 
once the Scheme language is introduced there are 
significant pedagogical advantages to making this 
color distinction. (In this paper, black symbols are 
represented by the sans serif typeface.) 

Needless to say, many simple but intriguing prob- 
lems can be posed using just the first and rest ma- 

(FEd Den Fred) 

D~ 

Figure 2: A hook-up of first and rest. 

chines described above, and in a very short space of 
time the students axe able to engineer solutions of 
surprising sophistication. However, after a while it 
becomes tedious having to draw a hook-up of first 
and rest machines each time an algorithm requires 
the second expression from a list to be extracted. At 

this point, the students are introduced to the tech- 
nique of defining new, or d e r i v e d ,  machines. The 
process of creating a derived machine is very simple: 
Take the hook-up concerned and draw a box around 
it, to create a t w i n - f o c u s  d i a g r a m .  To give the 
derived machine a name, the new name is writ ten 
next to the box. For example, we define the sec- 
ond machine by drawing the diagram in Figure 3(a). 
Now, instead of drawing the first-rest hook-up, the 

ond 

(a) (b) 
Figure 3: The second machine. 

students may use the second machine. For example, 
the machine in Figure 3(b) outputs the third expres- 
sion from the input list. Of course, the students may 
go on to create yet another derived machine, called 
third perhaps, based on the algorithm depicted in 
this figure, and thereafter use it in their machine 
diagrams as though it were primitive. 

The students are presented with four other prim- 
itive machines in addition to first and rest. They 
are also provided with certain special devices which 
help in the construction of more complex machines. 
A c o n s t a n t  f u n c t i o n  is a device that  takes any red 
expression as its input,  but always outputs the same 
expression regardless of the input. These devices are 
identified by a small inverted triangle; for example, 
the constant function in Figure 4 always outputs  the 

45 



4 Functional Programming 

(Ed Den Fred) 
lat? 

(a b c) 

Figure 4: A constant .function 

list ' ( a  b c ) ' ,  no matter  what expression.is provided 
as its input. 

In order to construct machines whose behavior 
changes according to the inputs provided, the stu- 
dents use an i f - swi tch ,  a device that channels its 
input down one of two outputs,  the selection being 
determined by an expression passed as a special 'con- 
trol input '  to the  if-switch. When the control input 
is the atom '#'e' (representing true), the if-switch di- 
rects its input to the left-hand output.  When the 
control input is the atom '#f '  (representing false) 
the input is directed to the right-hand output  (two 
if-switches appear in Figure 5). 

Armed with these tools the students are able to 
construct highly sophisticated machines, such as the 
lat? machine depicted in Figure 5. This machine 
outputs the atom 'ti t '  if its in.put is a list that  con- 
rains only atoms, otherwise (if the input list itself 
contains one or more lists) it outputs the atom '#f ' .  
Note that  this machine is recusive, being defined 
in terms of itself. The students are introduced to 
recursion after about fifteen hours of instruction. 
Thanks entirely to the machine diagrams, they find 
it a simple and intuitive technique. Moreover, ini- 
tially the students do not distinguish between tail 

Figure 5: The lat? machine. 

recursion--describing an iterative process- -and full 
recursion, being equally at home with both and bliss- 
fully unaware that  fully recursive processes are, by 
conventional wisdom, significantly harder  to under- 
stand. Even more remarkably, the students are in- 
stinctively able to construct diagrams of machines 
that recur at more than one location (describing 
tree-recursive processes, for example). In fact, as 
far as the students are concerned, recursion simply 
means employing the machine within its own twin- 
focus diagram, and not until much later is it pointed 
out that  i f  the machine appears at the bot tom of its 
twin-focus d iagram--as  with the lat? machine in Fig- 
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ure 5--then the algorithm being depicted involves a 
simple 'looping' process rather than a true recursive 
process. (Shortly after the introduction of recursion, 
the students take a test which involves engineering 
several tail and fully recursive machines, and of the 
sixty or so students that take this test each year, 
about two thirds score 90% or more.) 

After an initial period in which students construct 
only pictorial algorithms, they are introduced to 
Scheme notation. First, students learn to describe 
hook-ups; for example, the output from the hook-up 
of the first and rest machines shown in Figure 2 is 
described by the following (black) funct ional  ex- 
pression (note how a variable ' r '  is introduced to 
represent the input to the hook-up): 

(first (rest r))  

Next, the students are shown how to write expres- 
sions that describe the process of creating a derived 
machine. To construct a new machine, they first 
draw a box around the appropriate hook-up. This 
step is mirrored in the written notation by wrapping 
a '(lambda ...)' around the functional expression 
that describes the hook-up, together with a (black) 
list giving the variables that are being used to repre- 
sent the inputs. So drawing a box around a hook-up 
of the first and rest machines is equivalent to writing 
the functional expression 

(lambda (r)(first (rest r))) 

Finally, this derived function is given a name (a 
process that corresponds to writing the new name 
beside the twin-focus diagram) using 'define': 

(define second 
(lambda (r )  (first (rest r)))) 

A similar process leads to the LOGO definition 

TO SECOND :R 
OP FIRST (BUTFIRST :R) 
END 

As mentioned earlier, initially we used LOGO as the 
language for describing machine diagrams, since this 
was the only appropriate language available on the 
Apple lie's to which we had access. However, stu- 
dents soon reached the point beyond which LOGO 
cannot go. We then introduced them to the lan- 
guage Scheme, and were forced to forgo laboratory 
sessions. Now we are in the happy position of having 
access to IBM compatibles and Macintosh comput- 
ers, and use the Scheme language (see [3]) from the 
beginning. 

3 Conclusion 

Because of the method by which a programming lan- 
guage is introduced, the students view a program 
not as a means for controlling a computer, but as 
a notation for describing an algorithm. Thanks to 
this deep and sophisticated insight into the nature 
of computer programming, our students are able to 
progress much further into the algorithmic aspects of 
computer science than students who follow more tra- 
ditional courses, such as those leading to the College 
Board Advanced Placement Exam. For example, in 
addition to the usual fare (which is covered in a re- 
markably short time) students are able to explore 
such important concepts and techniques as 

1. procedural abstraction (a technique that allows 
often-used algorithms to be generalized); 

2. object-oriented programming (a technique used 
for encapsulating related procedures); and 

3. artificial intelligence (a simple learning strategy 
is implemented as part of a tenth grade project). 
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All this is achieved with an absolute minimum of the 
syntactic distractions that take up so much time in 
most high school courses. In other beginning com- 
puter science courses taught by the author, in which 
BASIC and Pascal were the languages studied, stu- 
dents wasted a great deal of energy, and generated 
a equal amount of frustration, struggling with the 
seemingly petty and pointless syntactic rules im- 
posed by the language. Yet in over six years of teach- 
ing this course, the author has yet to hear a single 
student express frustration as a result of syntactic 
issues. Instead, the students direct their unfettered 
creative energies toward devising elegant algorithms. 

In May of 1901 we gave the Part B, Section II (pro- 
gramming) paper of the College Board Advanced 
Placement exam to our ninth grade students, with- 
out warning or preparation, and asked them to com- 
plete the test, writing their answers in Scheme. The 
students found the test to be easy, in some cases triv- 
ial, and most of the students had finished 15 minutes 
before the 45 minutes allowed. At the time of taking 
this test, the students had received less than forty 
hours of instruction in computer science, compared 
to the three hundred or more hours that most stu- 
dents who take the AP test must endure. 

Unfortunately, to have received credit the stu- 
dents would have had to have written their answers 
in Pascal. However, by communicating directly with 
universities, we are able to ensure that our students 
are properly placed, and many of our former stu- 
dents are now studying computer science at col- 
lege, either as their major or as a subsidiary dis- 
cipline. Moreover, their background enables them 
to progress much faster than might otherwise be the 
case; for example, two of our former students have 
taken (and excelled in) a graduate level course in 
lambda calculus at Rice University, despite being 
only in their freshman year. 
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