
Knocking Down the Corporate Barriers to Lisp

Randal V. Zoeller

Itasca Systems, Inc.
7850 Metro Parkway

Minneapolis, MN 55425
(612) 851-3154

Abstract
It is a well-known fact that the software develop-

ment industry has not embraced Lisp as a main-
stream language. Despite the flexibility, power,
and heritage of the language, the fact still
remains--Lisp is a niche development language.
While there remain staunch proponents of Lisp,
their recommendations, proposals, and productiv-
ity gains are often overlooked. In many cases, the
programming language used to develop an appli-
cation is mandated by management, often for rea-
sons that appear to make sense (e.g., availability
of tools, portability of the application, and accept-
ability by the customer). How then do Lisp advo-
cates gain acceptance against the groundswell
generated by mainstream languages such as C and
C++? Knocking down the barriers to Lisp
involves not only co-existing with the mainstream
languages, but also complementing them. This
paper describes business issues that must be
addressed to enable Lisp to become accepted in
the computer industry and in Corporate America
as a whole. Additionally, it explains what it means
to "complement" mainstream languages and
describes some mechanisms used to accomplish
this task.

1 Introduction
Lisp was developed almost a half century ago as

a simple, flexible programming language to allow
easy manipulation of list constructs. During the
last 40 years, Lisp evolved into a complete pro-
gramming environment suitable for a wide range
of applications. Unfortunately, Lisp was also sad-
died with the burden of being known as a research,

Jeff Galarneau

Itasca Systems, Inc.
7850 Metro Parkway

Minneapolis, MN 55425
(612) 851-3155

or prototype language, unsuitable for application
deployment. What went wrong?

In the early 1980's, during the heyday of the
"Artificial Intelligence boom," Lisp was a prom-
inent language for software development. Real
products appeared that were implemented in
Lisp, and successful Lisp-based hardware and
software companies were launched. Unfortu-
nately, this powerful symbolic language became
overshadowed by static and less flexible lan-
guages like C and Pascal. The advent of object-
oriented languages like C++ has only furthered
the demise of this language. What can be done to
change this situation?

The purpose of this paper is to discuss some of
the issues involved with delivering commercial
applications developed in Lisp. More impor-
tantly, it sets out to promote discussion about
what must be done to put Lisp into the ma.in-
stream of Corporate America.

1.1 The Motivation

Why is it important for Itasca Systems person-
nel to get this message across? Because Itasca
Systems develops and markets an object data-
base management system ("ODBMS") that is
implemented almost entirely in Lisp: The
ITASCA Distributed ODBMS. Who better to
comment on commercial Lisp applications than
a company whose main product is implemented
in Lisp. We present to you the observations of a
company that successfully markets a Lisp-based
application in a predominantly C and C++
world.

4O

ITASCA is the most dynamic, feature-rich
ODBMS on the market today. For Lisp people,
these dynamic features may seem commonplace,
but in the object database industry, these features
set us apart from our competition. For example,
like CLOS, ITASCA allows the user to modify the
schema definition dynamically without having to
shutdown the database and recompile the applica-
tions. V'mually any schema change can be made
anywhere in the class hierarchy. Try doing that
with a C++-based ODBMS.

ITASCA's Lisp implementation gives us a big
advantage over our competitors by enabling us to
provide capabilities that our competitors cannot
approach [1]. Yet, as we now enter our 4th year of
business, we still hear criticism of our Lisp ances-
try. The degree of misinformation and the amount
of hearsay is amazing. In some cases, people dis-
miss the technology because 20 years ago they
worked with Lisp, and it was interpreted and slow.
Obviously, education about Lisp and its capabili-
ties is in order.

2 Coexisting with Other Development
Languages

In order for Lisp to thrive as a viable develop-
ment alternative, the concerns from developers
working in other programming languages must be
addressed. Many of these concerns revolve around
the lack of common ground. Ideally, development
systems should work for developers, rather than
against them. Too often a tool or system gets in the
way of a developer, particularly one who is unfa-
miliar with the environment. For example, if a
Lisp developer is forced by management to use C
as a programming language, that developer is also
forced to use C debugging tools. Not only is the
language possibly foreign, but the tools are foreign
as well. In this example, the tools are working
against the developer. A common ground must be
established so that the developer can work in the
environment where he/she is most productive.

2.1 What is Needed?

A key to successful Lisp applications is to estab-
lish common ground with people who like to work
in C, C++, Smalltalk, ADA, etc. This common

ground goes beyond foreign function interfaces.
It is necessary to establish a basis where devel-
opment tools, data, resources, and even ideas can
be shared among people working in different
programming languages. As an analogy, con-
sider two people who speak different languages.
A foreign function interface would merely serve
as an interpreter, while a paper, pencil, and the
ability to draw pictures provides a common
ground for understanding. With the common
ground established, the two people can appreci-
ate the differences in the languages, yet still
share information and cooperatively coexist.

With common ground established, the Lisp
developer can not only work side by side with
developers using other languages, they can com-
plement them. With this in mind, what compe-
tent manager could possibly refuse developers to
work in the environment where they're most
productive?

As for deployed Lisp applications, they must
be able to handle data and data access from a
Wide variety of sources. By providing more
"open" interfaces, the barriers and objections put
up by many misinformed or under-informed
developers can be put to rest. Foreign functions
are just one piece in the puzzle. Transparent
access and interoperability for C++ program-
mers (and others) is a necessity.

Unfortunately, if no changes occur in the goals
of Lisp developers and vendors, a different kind
of change will occur. Even Lisp users them-
selves are under pressure to make changes. To
quote one Lisp user [4], "We'd like to continue
to use Lisp for the life of the application, but the
pressures of the market may force us to change
over completely to C++ in the next few years."

2.2 What is the Common Ground?

One of the most important factors for coopera-
tive systems in a development environment is
the ability to share data. As long as applications
written in diverse languages can easily share
data among one another, they have a basis for
communicating and understanding.

The technology which provides the basis for
sharing data among applications is a Database

41

Management System CDBMS"). The problem
today is that very few DBMSs support the sharing
of data from a wide variety of programming lan-
guages. More alarming is that with the strong
emphasis on object technology today, there is little
or no support for a mixture of object-oriented lan-
guages among most ODBMSs, except for one:
ITASCA.

Why is ITASCA important to the readers and to
the Lisp industry in general? Because ITASCA is
written in Lisp and has application programming
interfaces ("APIs") for CLOS, Lisp, C++, C, and
Ada. More importantly, it provides that common
ground necessary for Lisp applications to coopera-
tively coexist with applications written in other
languages. Applications written in CLOS and C++
can actually share objects!

The dynamic capabilities of Lisp are truly
unequalled by any other commercial development
environment. Due to its Lisp heritage, ITASCA is
able to benefit from this flexibility. ITASCA pro-
vides direct access to literally any programming
language that can open a TCP/IP connection.
Because the system stores the data in a language
neutral format, these languages (and potentially
any other) can store and manipulate data using
their own native mechanisms.

What this flexibility means is that a C++ pro-
grammer manipulates C++ constructs, just as a
Lisp programmer manipulates Lisp constructs.
The key is that the stored data is maintained in a
dynamic, neutral format that is automatically
changed as necessary to conform to the accessing
language.

To further the portability across languages, every
database function is provided in each API. This
enables programmers and users to work entirely in
their preferred programming environment without
ever accessing Lisp directly. Therefore, ITASCA
serves as the common ground to tie languages
together persistently.

The net result of these features is a robust and
complete database that is suitable for a wide range
of application domains. These areas are as varied
as decision support, concurrent engineenng, multi-
media, GIS, CAD, and CASE [3]. This support
means that a Lisp developer can recommend

ITASCA to their management, confident that
developers in other languages wiU be appeased,
and the project can succeed for the long haul.

3 Making Lisp Deployment a Reality
A key to successful Lisp application deploy-

ment into mainstream Corporate America
involves not only cooperative coexistence, but
also education and value-added complimentary
technology. Without each piece, a Lisp project
runs the risk of being moved to a more tradi-
tional development language, or worse ye t - -
cancelled.

3.1 Educate

One aid in making Lisp deployment a reality is
to increase the level of understanding and educa-
tion about Lisp and Lisp development environ-
ments. Just like the person who quoted their 20
year old experiences, many people are making
decisions based on outdated and incorrect infor-
mation.

The goal is not necessarily to convince a
majority of people that Lisp is good. It is a well
known fact that Lisp and CLOS are powerful,
flexible, high-level programming languages that
enable programmers to be extremely productive
[5]. However, there is still an incorrect belief
that Lisp is inefficient and monolithic.

What we see as important is to eliminate some
of these stigmas that are associated with Lisp
without offending those proponents of more
mainstream programming languages. This, in
combination with cooperative coexistence, can
be an effective persuasion tool.

3.2 Don't Just Educate. Impress.
Rather than merely attempting to educate the

non-Lisp community about the virtues of Lisp,
ease their worries. Many concerns can be
addressed by providing functionality that is not
normally available in non-Lisp environments
without taking those environments away. This
should be done as transparently as possible.

In some cases, showing the virtues of Lisp
may require hiding Lisp completely. Other times
it may require using Lisp just to enhance func-

42

tionality that is beyond the capability of other lan-
guages or tools. Either way, the functionality
provided by Lisp can be used to develop applica-
tions that are certainly quicker to deliver, and pro-
vide consistently more functionality. The key to
success is adding value--not attempting to
replace, which will surely fail.

3.3 Do You Hide the Lisp?

One concern often expressed is the need for in-
house Lisp expertise in order to purchase a Lisp
application. This should not be true, especially in
the case of turn-key applications. Applications
developed in typical static languages like C, C++,
or ADA do not reveal their" implementation details
to end-users. It is virtually impossible for a user to
determine what programming language was used
to develop these applications. Most end-users do
not care what language was used to develop the
application. They just want an application that
works reliably and consistently.

Perhaps a possible goal is to deliver a Lisp-based
application that is indistinguishable from a C-
based application--with the obvious differences in
ease of programming, flexibility, and dynamics.
Then, extend this basic model for sophisticated
u s e r s .

4 S u m m a r y

In this paper, we attempted to provide a sense of
the requirements necessary to develop a successful
Lisp application in today's market. What we have
observed and recorded is certainly not the only
experience. They are merely the observations of a
successful company who markets a Lisp-based
product.

Rather than competing for static or even dwin-
dling market share, the Lisp community must band
together to promote the virtues of Lisp as a viable
production and development language. Perhaps
even an organization like the "Milk Council,"
whose goal is to promote and educate. Maybe
something like, "Lisp, it does a programmer
good."

The main thing we hope we have accomplished
is to provide the reader with some insight on how
Itasca Systems has approached the task of devel-

oping and selling a complex Lisp application in
a predominantly C and C++ world.

5 References
[1] Ahmed, S., et al., "A Comparison of Object-

Oriented Database Management Systems
for Engineering Application," MIT Techni-
cal Report IESL-90-03, October, 1990.

[2] Itasca Systems, Inc., "ITASCA Distributed
Object-Oriented Database Management Sys-
tem Technical Summary Release 2.2," 1993.

[3] Liu, L. and Horowitz, E., "Object Database
Support for CASE", Object-Oriented Data-
bases with Applications to CASE, Networks,
and VLSI CAD, Prentice-Hall, Inc., 1991.

[4] Newquist, Harvey P. rII, "In Practice - All It
Takes Is Finding the Right Recipe," ,4/

• Expert, May, 1992.
[5] Richardson, C., "Software Development

with CLOS", Object Magazine, March-April
1993.

[6] Stein, J., "OODBMS Object-Oriented Tech-
nologies for Complex Data-Management
Systems", SunWorld, Vol. 4, No. 5, May
1991.

[7] Zoeller, R. V., Galarneau, J., et al, "The
Development of the ITASCA ODBMS",
Journal of Object-Oriented Programming,
July 1991.

43

