
Practicing AI with the Portable AI Lab

Fabio Baj, Paolo Ca t t aneo , Mike Rosner

IDSIA, Corso Elvezia 36, 6900 Lugano, Swi tzer land
Tel.: +41 91 22.88.81, e-mail : paolo@idsia.ch

Abstract

The Portable AI Lab (PAIL) is an integrated collection of modules implementing established AI
tools and techniques intended for use as a resource for teaching or learning artificial intelligence (AI).
to well illustrated A[concepts by providing a set of incrementally complex demonstration programs,
interactive tools to develop new examples, on-line context sensitive documentation with the description
of the techniques involved, bibliographic references, and a set of exercises and projects. PAIL supplies
a consistent interface that allows naive and more expert users to explore the core of AI algorithms in
source form or graphically.

This paper describes and illustrates in depth the implementation and use of one of the twelve modules
currently available and presents a discussion of the motivation behind, and some enhacement to, the
communication between modules which is one of the key features of the system.

This public domain system is implemented in Common Lisp, CLOS, and Common Windows and
,uns on SPARC stations. It is distributed in source form via FTP. An alpha version of the same system
is now available on Macintosh hardware.

1 I n t r o d u c t i o n

The Portable AI Lab is a computing environment containing a collection of state-of-the-art AI tools,
examples, and documentat ion. It is aimed at those involved in AI courses (i.e. in both teaching and
learning) at university level or equivalent. It has been developed under Swiss National Research P rog ramme
PNR 23 on AI and Robotics by IDSIA Lugano in collaboration with IFI, University of Zurich and the
Laboratoire d'IA at the EPFL, Lausanne. The system is available free of charge.

The design of Portable AI Lab is motivated by the conviction tha t the acquisition of expertise in
AI depends on extensive practical experience with a broad range of AI problems. Students should also
appreciate that such problems are typically interdiscipfinary in tha t they often involve more than one
AI subdomain. The system has enough built-in functionality to enable its users to get such experience
without having to build all the supporting tools from scratch and is intended to encourage the exploration
of subdomains and the relationships between them.

There are a number of problems typically associated with the learning and teaching of AI which the
system is designed to overcome. These include:

• There is no single, agreed definition of what AI is. Unlike such disciplines as physics or mathemat ics ,
it is difficult to identify a set of generally shared assumptions and goals from which the practice
of AI can in some sense be said to follow deductively. Consequently, practice in AI tends to be
associated with a set of very general problems and the use of a fairly heterogeneous set of tools and
techniques to solve them. The Portable AI Lab a t tempts to provide a representative set of such tools
and techniques.

44

Although tliere is now no shortage of AI inspired software available at low or zero cost, it is difficult
to find integrated collections of applications that have been designed from an educational perspec-
tive. This affects both. the the grain size and functionality of applications, the use of visuaJ.isation
techniques, the availability of help files, bibliographic references, and above all, the compatibility- of
different components.

AI problems are typically interdisciplinary in nature, in the sense that they often involve techniques
arising from a number of different subdomains. To see this we need only consider typical AI problems
such as language understanding or knowledge acquisition, of which we shall have more to say in later
sections of this paper. The acquisition of expertise in AI problem-solving therefore involves becoming
familiar with both the components of interdisciplinary problems and the relationships between their
parts.

The functionality is provided though a number of modules all implemented in Common Lisp and CLOS
concerned with:

• Automatic Theorem Proving

• Natural Language Processing

• Rule-Based Inference

• Truth Maintenance Systems

• Constraint Satisfaction Problems

• Learning

• Knowledge Acquisition

* Genetic Algorithms

• Neural Networks

Each module comprises a fully implememented and documented computational kernel over the subdo-
main in question, together with a representative set of autonomous demonstrations and running examples.
UnUke many similar systems, a lot of attention has been paid to providing appropriate graphic visualisa-
tions for key algorithms and concepts. In addition, sufficient documentation is included to enable the user
to retrieve key literature references and to understand the architecture and specifics of the implementation.

In the remainder of the paper we will address two topics. First, we describe the implementation of a
typical module to illustrate its underlying structure and to point out the advantages to the end user. The
second topic is intermodule communication, one of the key features of the system. That section of the paper
discusses the motivation and the mechanism used to provide intermodule communication. We conclude by
suggesting some future directions for intermodule communication in order to open the discussion on how
to develop a powerful system for exploring interdisciplinary AI applications.

2 Designing a module : Cons t r a in t Sat isfact ion

This section illustrates some issues involved with the design and the implementation of a typical PAIL
module, using that concerned with Constraint Satisfaction Problems (CSPs) as an example. The under-
standing of a concept often involves the process of seeing the relation between its many different (but in
some sense isomorphic) representations. In some cases "understanding" is exactly the recognition of a
mapping between different representation spaces. For this reason the designer of a module must be careful
in defining all these levels of description in a way that suggests to the student the existing links. These
design choices should ultimately be reflected in the CLOS coding style: the Lisp program (or, at least
segments of it) have been expressly thought as fundamental parts of the system documentat ion. There
has been a long debate during the development of the PAIL system about whether or not to provide users
with direct access the Lisp code: the problem is that the system is intended to satisfy a broad set of users
ranging from novices to expert Lisp programmers. For the former class of users it is impor tant to provide
graphics, on-line, context-sensitive help, and demonstrations: there is no need to show any language level
implementation issue. On the other hand, expert users may feel "imprisoned" if they can not put their
hands inside the system: a door to Lisp seems to provide the best solution.

2.1 C h o o s i n g t h e r i g h t a l g o r i t h m

The basic step in the design of a tutorial module is the choice of a particular technique/algor i thm to be
implemented. In general a candidate algorithm should have the following characteristics: it should be well-
known and accepted in the basic AI literature, understandable, as similar as possible to both the theory in
the relevant field and to the code used to implement it. In the case of Symbolic Constraint Propagat ion we
decided on Mackworth's AC3 [1], which is a generalization of the Waltz's well-known filtering algorithm [9],
created for the domain f interpretation over three dimensions of two-dimensional drawings. The class of
constraint satisfaction problems considered in this module are those in which there is a set of variables
each to be instantiated in an associated domain and a set of boolean constraints limiting the set of possible
values for specified subsets of the variables. A surprisingly large number of apparently different applications
can be formalized in this way. Some of them are: map-coloring problems, crypto-arithmetic, geometric
puzzles, crossword puzzles, n-queens problems, graph homomorphisms and isomorphisms, spatial layout,
edge detection in computational vision, etc. Examples of such algorithms written in Lisp can be found
in [6], and some of the core algorithms are explicitly taken from this source: however it is worth noting
that PAIL designers had the additional problem of integrating standard Lisp algorithms with the code for
graphical visualization, possibly avoiding confusion in the reader. We found very useful the adoption of an
object-oriented programming style in order to encapsulate implementation details and let the user focus
on the algorithms. In the PAIL system efficiency is often sacrificed in favour of clarity of code. Here are
examples of class definitions and algorithms for the module of constraint propagation:

(defclass constraint-network ()
((nodes :initarg :nodes :accessor nodes :initform nil)
(main-net :accessor main-net :initarg :main-net :initform nil)))

(defclass node ()
((name :initarg :name :accessor name :initformnil)
(domain :initarg :domain :accessor domain :initform nil)
(neighbors :initarg :neighbors :accessor neighbors :initform nil)
(possible-values :initarg :possible-values :accessor possible-values :initform nil)))

(defmethod propagate-constraints ((net constraint-network))

46

(loop (if (empty-queue) (return net))
(let, ((arc (dequeue)) (nodel (first arc)) (node2 (second arc))

(old-hum (length (possible-values nodel))))
(sho,-arc arc)
(arc-consistency nodel node2)
(i f (impossible-p nodel) (return n i l))
(when (< (length (possible-values nodel)) old-nma)

(not i fy- reduct ion node1 node2 old-nun)
(enqueue nodel)))))

The function propagate-constraints implements part of the classical algorithm for CSP quite read-
ably and consistently with standard literature: however its execution must be massively interlaced with
hidden code for graphical representation and animation, debugging and stepping: for instance, from the
perspective of the above function an arc is simply a pair of nodes, but each node knows how to display
and highlight itself when the function show-arc is invoked. Object-orientation allows to hide this low-level
details from the program reader.

2.2 S m o o t h i n g t h e l e a r n i n g c u r v e : a u t o n o m o u s d e m o n s t r a t i o n s

There are often AI techniques which require of the user considerable initial efforts to enter in a particular
domain, so that s/he can find answers to fundamental questions like: What is this technique for? Which
problems can I solve with it? What kind of representation does it use? How does it work? How can I
use this tool? Every module therefore includes a set of autonomous demonstrations illustrating the basic
features of the technique and the tool. These play a crucial role for a module to be accepted and used
by students. Since the user of a demonstration might be completely ignorant in the subject, these are
normally based on domains with clear commonsense interpretations (figure 1 shows the CSP module in
demo mode).

2.3 P r o v i d i n g a w i d e se t of r u n n a b l e e x a m p l e s

For every module, much attention has been devoted to the preparation of directly runnable examples
in order to provide the widest view on the range of applicability of the technique. They are generally
taken from the standard literature and provide additional information about the concepts to be acquired.
Running examples also provide a useful guide to the user wishing to write his own applications. In the case
of a CSP a running example is a file containing Lisp expressions defining the network structure together
with the unary and binary constraints.

The definitions in the previous paragraph suggest that the CSP module may require the user to define
the following functions:

' (defun P-I (var value) <BODY>)

this function implements the set of unary predicates : it must return T or NIL

(defun P-2 (varl valuel var2 value2) <BODY>)

this function implements the set of binary predicates and it must return T or NIL

(defun VARIABLE-DOMAIN (domain-name) <BODY>)

this function must return the contents of the given domain name. It is used to initially fill the associated
domains: it must return a list of values.

The choice of using Lisp as an input language might cause problems to the PAIL system when the
user makes syntactic or semantic errors: for this reason all the errors occurring during the load of a CSP

47

~ f ~ ~ i ~ - - ~ ~ ~

v ~ i i l l ~ , ' ~k ~ I I)
JIG81: [Lqc~OS5 ~,J.e~,~$ ~Cll~*S o~ICNOS5 1.C~C~05$] I J ~ . ~ l l ~ : <Lhir"~.v)

1 : (1 ~ ~ ~ 4 1 I I l l m l . J i l l : i l l
~lllOil~$: [1,[041 ~ d N ~] ~l~llll. vihal'll: (l l l l l l)
i l ~ i q : (1 ~ ~ ~ ~ 1 0 ~ 5 S I ~ , ve l l l l l : (i V)
l i O i i : I I I I t t O O l S 1 ~ I i . ~ l l u n : 4 / 1 t 1 ~

l l t ~ l l m : 2

Q ~ecbome mode Q 8 t o 9 a f t e c e o ~ , l t r a t . n t p o o p .
• Cga~14:i 0 | t o p arO ~ g i e t O ~

~ F-~r ' -I v -~r -1 ~

A second Demo on
Constraint Propagation

T~lni l l r i I)

I ~ l t]

Figure 1: The ConstraintPropagation Module in demo mode

description file and during the evaluation of user-defined functions are caught and the appropriate debug
information is displayed on the standard output window. The following is an example of an input file
describing a simple problem of map colouring. Notice the command cons truct -ne twork with which the
user defines a constraint network.

(defun p-I (var value) t)

(defun p-2 (varl vl var2 v2)(aot (equal vl v2)))

(defun variable-domain (domain-name)
'(red green blue black))

(construct-network '((rl D r2 r3 rS r6) (r2 D rl r3 r4 r5 r6)
(r3 D rl r2 r4 r6) (r4 D r2 r3)
(r5 D rfi rl r2) (r6 D r3 r5 r2 rl)))

;;optional part:
(setq *all-distinct-values* nil)
(setq *stop-at-sol* t)

2.4 S e l e c t i n g a n d p r e s e n t i n g t e x t - b a s e d t u t o r i a l s o u r c e s

Text-based sources of documentation (both online and paper) form an important component of every mod-
ule, ca~ting concepts acquired by running the system into a more formal framework that is consistent with
the standard literature. The following formalization is an example of the kind of text-based information
which can be found on-line within the Portable AI Lab.

48

A constraint satisfaction problem (CSP) is characterized as foLlows: given is a set V of vari-
ables vl , . .v , . Associated with each variable v~ is a finite domain D~ of possible values for
variable vi. We define a set of unary constraints & , P2, .., P,~ and a set of binary constraints
P12,Pla, . . ,Po, . . , Pk,., In general we may represent the satisfiability decision problem for a
CSP as equivalent to determining the truth value of a well-formed formula in first order logic:
(3~,) (3~2) . . . (~Xn)(l l ~ Dx)(z2 E D 2) . . . (z , E D,)Pi(z,)AP2(x2)A...AP,~(z,~)AP1 2(x,. z2)A
& A . . . A

2.5 C h o o s i n g a m e t h o d to r e p r e s e n t a l g o r i t h m s g r a p h i c a l l y

The formal specification of problems (see for instance the logic-based specification of CSPs in section 2.4)
does not necessarly suggest effective algorithms for their solution, al though it does provide concise ways
to specify input to the system. Furthermore there is a gap between an abstract definition for a given algo-
rithm and its implementation in a particular programming language. In general a module employs graphic
tools to present algorithms and data structures: examples are decision trees (inductive learning) spread-
sheets (knowledge acquisition, learning), proof trees (explanation-based-generalisation, t ru th maintenance,
theorem proving, rule-based systems), networks (augmented transistion networks, constraint satisfaction).

Mackworth's AC3 algorithm represents a CSP as a network consisting of a graph with a vertex for
each variable vi and its associated domain Di, and an edge between the vertices corresponding to each
pair of directly constrained variables (i.e pairs of variables vl, v./ for which the binary predicate Pii is
defined). Most textbooks introduce the AC3 algorithm using pictures representing constraint networks
before giving a formal specification. The obvious choice was to provide the user with a conceptual view of
the Constraint Propagation algorithm by animating on the screen this kind of picture (see figure 1). The
possibility of interacting with these graphics adds to the System functionalities and is useful when debugging
user-defined examples. Again, object orientation helps to write code which separates conceptual data with
graphic-oriented features. The class n o d e - w i t h - g r a p h i c s inherits the at t r ibutes of a generic node of a
constraint network, and specializes it to have a graphic representation on the screen. The doma in -bu t t on
slot is a push-button with which the user can inspect interactively the domain of the node (see figure 1).
Nonetheless the algorithms for constraint propagation still work on the more abstract object node

(defclass node-with-graphics (node)
(xpos :initarg :xpos :accessor xpos :initform nil)
(ypos :initarg :ypos :accessor ypos :init~orm nil)
(radpos :initarg :radpos :accessor radpos :initform nil)
(domain-button :initarg :domain-button :accessor domain-bu%ton :ini~form nil)))

2.6 L i n k i n g t h e g e n e r a l a l g o r i t h m w i t h spec i f i c p r o b l e m - i n s t a n c e s

We saw that CSPs can be represented and solved with a constraint network. But we should also teach
the student how to match apparently different problems like crossword puzzles, computer vision or map
colouring in the same unifying framework. In general, a useful aid on this side is to provide, alongside
the abstract view of algorithms, pictures showing the problems in their original representation space. The
process of comparing, on the same screen, a picture with, for instance, a real crossword puzzle and the
corresponding network seems to be very useful for students to acquire the ability to represent and solve
new problems. If the user wants to customize the display of solutions according to a particular example
(see for instance crosswords and puzzles) he/she can define a optional function named

(defmethod DOMAIN-DEPENDENT-SHOW-SOLUTION ((c-n constraint-network) <BODY>)

which will be called whenever a solution is displayed on the standard ouput. The variable c-n and its

accessor functions are defined and described in the public source code. To issue a message on the CSP

Standard Output the user can use the function (message (string))

49

2.7 P r o v i d i n g a d v a n c e d e x a m p l e s

If we claim that the peculiarity of Constraint Propagation algorithms is their efficiency when dealing with
huge search spaces, we must provide complex examples exploiting this feature. A full-page crossword
puzzle, with about 103°s possible solutions is a good candidate: it would require thousands of years with
a generate-and-test approach but the student can solve it in few minutes using Constraint Propagation.
In general every module, besides classical toy examples, supplies harder applications, eventually giving
the student some hints on the possible limitations of a particular technique. A module must also provide
easy and flexible ways for the student to set up new experiments: this influences the design of the input-
output interface. When an advanced user understands how the basic algorithms work, he will eventually
be interested in re-using pieces of CLOS code for research or development. This is supported through
fully documented and modular source code (the Common Lisp Package System was fundamental in this
context). Furthermore the module designer must provide a framework for sharing information with the
other modules, as shown in the next sections.

3 I n t e r m o d u l e c o m m u n i c a t i o n

The previous section described a typical module in the Portable AI Lab. All other modules have been
developed and built following a similar style and guidelines, one of the goals of which is to provide and
facilitate communication between modules.

3.1 M o t i v a t i o n s b e h i n d i n t e r m o d u l e c o m m u n i c a t i o n

Artificial Intelligence problems are typically interdisciplinary. A program with the goal of teaching AI tech-
niques must address the problem of providing methods to explore interaction among different algorithms.

We can exemplify a few typical AI domains where interaction between different techniques seems
fundamental:

Logic and language: a cluster based on the modules for Augmented Transition Networks (ATN),
Chart Parsing (CKY), and Theorem Proving. This cluster applies to the problem of establishing the
semantic consistency of English (or any other language) sentences.

M a c h i n e l ea rn ing and knowledge acquisi t ion: a typical application may be set up as follows:
knowledge from a human expert can be elicited, refined and structured in tables using the Repertory
Grid module [8]. Tables can be automatically converted in sets of examples to be given as input for
the inductive learning module ID3 [7], which, in turn, is able to generate decision trees summarizing
the original knowledge. This representation is also useful for evaluating the accuracy of the knowledge
structures elicited by the Repertory Grid module.

Rule-based systems: this cluster is centered around the rule-set data type. Rules can be used to
perform backward or forward reasoning, eventually producing explanation trees which can be given
as input to an explanation based learning algorithm as described in [5] to produce more specialized
rules. Proof trees and rules are also the basic data structure for truth maintenance system [3].
Notice that knowledge acquired as decision trees by means of the Machine Learning cluster can be
transformed into rule sets and integrated with this subset of modules.

The possibility of implementing some of these connections, and possibly discovering new ones, has
always had a high priority on the list of activities associated with the development of the Portable AI Lab.

50

3.2 A m e c h a n i s m o f i n t e r m o d u l e c o m m u n i c a t i o n : t h e P o o l

Individual modules can be regarded as units that consume one or more input items and produce one or
more output items. Perhaps the simplest subclass of interdisciplinary applications are those for which the
output of one module is used as the input to another as in the case of Logic and Language where the output
of ATN parse, a translation from an English sentence to a first order logic formula, is passed directly to the
Automated Theorem Prover module. A slightly more complex class of applications arises when modules
have multiple inputs and outputs belonging to different types. For example, an ATN requires a grammar ,
a lexicon, and of course, a sentence in order to produce some output .

The Pool (see Allemang [2]), a-data oriented approach to intermodule communication, was created in
the first instance to make this kind of communication possible and in addition:

• to insulate modules (and their authors) from the peculiarities of any particular kind of file system
implementation.

• to minimise the knowledge required by one module concerning the exact input or output formats
used by other modules.

To achieve this the Pool is a logical structure similar to a file system that lies between the modules and the
physical file system. All communication between modules and the Pool is assumed to be in terms of typed
objects that are implemented as CLOS classes. The Pool has access to algorithms that permit conversions
between some (not all) pairs of types. This permits automatic conversions between types wherever possible,
so that for example, an object of type decision tree can be converted to one of type rule set if a particular
module required it. Each module must therefore define a strongly typed interface tO the Pool.

The conversion mechanism in Pool takes advantage of the CLOS properties. Every object must be
loaded through the Pool which passes the data on file through the proper change-type method to provide
conversion and then to the module. The default behavior is when no conversion is needed (i.e. we are
loading the original data structure into the module). In this case the conversion method look pret ty simple:

(defmethod change-type ((a op-se¢) (b op-set)) a)

If a conversion is possible between a pair of modules the programmer needs to write a method change-
type to convert the data object accordingly.

(defmethod change-type ((dtree decision-tree) (rset rule-set))
(make-instance 'rule-set :name-part "Rule-set" :rule-set-part (mapcar #'make-rule-from-path

(intern-all (get-paths dtree) :dump))))

(defun make-rule-from-path (path)
(make-instance 'rule :name-part "ID3-Rule" :if-part (do* ((I path (cddr i))

(result nil (cons (list (second i) (first I)) result)))
((null (cddr I)) result))

:then-part (list (second path) (first path))))

For all other pairs of incompatible modules the default change-type method wiU be invoked which just
returns a warning.

(defmethod change-type (a b)
(documentation-print (format nil "Conversion not possible from type "a to "a."

class-name (class-of a)) (class-name (class-of b))) nil)

The Pool itself is of course implemented on the host file system: any number of Pool objects that work
together can be thus be stored in a single file.

51

3.3 T h e P o o l to t h e u s e r

The user has two different views on the Pool. The first, accessible from the main window of each module.
allows the user to "load" objects from the file system into the Pool and to edit the contents of the Pool.
The following operations are permitted:

Ge t File: select a file from the current directory and load the objects it contains into the Pool.

M a i n t a i n File: add or delete objects from a file.

M a i n t a i n Pool : delete objects from Pool.

The second view is accessible from input or output buttons provide facilities for loading or saving
objects for a specific module. When an input or output button is pressed the following options become
available:

G e t f r o m P o o l shows all objects available in the Pool. Objects selected are converted for the active
module if possible.

P u t to P o o l enters newly created objects into the Pool.

S h o w Displays objects, graphically if possible, otherwise simply as S-expressions;

E d i t Edit the s-expression corresponding to the current object. Templates are provided to edit new
objects.

In a typical interaction, the user first loads the module of interest, then clicks on the file but ton to load
all the files available for that particular module. At this point he is able to load input (with appropriate
conversions if possible) by clicking on the input button of his module. After loading input the module
creates at least one output object. The user can then decide whether to save the ou tput object in the Pool,
thus making it available to every other active module.

4 T h e Future of I n t e r m o d u l e C o m m u n i c a t i o n

The Pool works reasonably well in simple cases, ensuring that every active data object available in memory
can be shared, and allowing the exchange of data structures among different modules. When the user is
sufficiently knowledgeable, the Pool is thus a useful tool for experimenting with different AI techniques.

The Pool mechanism for intermodule communication with some minor face-lifts seems to be more
than adequate for naive to medium level users. However, experience suggests that expert users wishing
to explore in-depth communication between modules need a far more sophisticated environment to solve
their problems. In general, the data ceptric view to intermodule communication puts too many constraints
on expert users. Interdisciplinary applications cannot be build only by sharing data among modules but
some kind of process and data flow control should be built into the environment.

One example where the Pool approach to IC seems to fall short can be drawn from [4] and his description
of learning classifier systems. A classifier system is a rule based system (1) capable of learning new rules
in an arbitrary environment using a genetic algorithm (2) as a rule discovery system [4]. Most of the main
parts to a classifier system are available individually in PAIL ((1) can be found in the rules module, (2)
is available via the Genetic Alorithms module). Like many other applications however a learning classifier
system routinely exchanges data between a rule system and the genetic algorithm. These cyclic constructs
are not available through the Pool as is a Lisp entry point.

52

PAIL is object oriented and its key components (main function calls, data) are reusable and recombined
to extend the functionality of the system. We envisage that the optimal solution for the creation of
interdisciplinary applications would be a graphic engine capable of dealing with a variety of constructs
such as input/output objects and parameters, cycle (loop) control, and Lisp-level routines.

We are also investigating the possibility of a metalanguage (macro language) whose expressions de-
scribe complex applications built out of the existing "primitive" modules. Here we envisage to apply the
client/server metaphor while supplying the user with a set of primitives to send and receive messages from
and to the modules core function calls.

5 Acknowledgements

The present state of the Portable AI Lab is a result of the contributions of many individuals. In particular
we would wish to thank Dean Allemang, who was responsible for the original design of the Pool, and in
addition Fatma Fekih, Nick Almassy, and Erik Vinkhuyzen. The work reported here has been in part
funded by a research grant of the Swiss National Fund for Scientific Research.

R e f e r e n c e s

[1] A.K.Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99-118, 1977.

[2] D. Allemang and R. Aiken. Tailoring advanced instructional software for AI. In IEA/AIE-92 Paderborn,
1992.

[3] J. Doyle. A truth maintenance system. Artificial Intelligence, pages 231-272, 1979.

[4] J. H. Holland. Escaping brittleness: The possibilities of general-purpose learning algorithms applied to
parallel rule-based systems. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell., editors, Machine
Learning. Morgan Kaufmann, Los Altos, CA., 1986.

[5] Tom Mitchell, Richard Keller, and Smadar Kedar-CabeUi. Explanation-based generalization: A unify-
ing view. Machine Learning, 1:47-80, 1986.

[6] Peter Norvig. Paradigms of Artificial Intelligence Programming. Morgan Kaufmann, 1991.

[7] J. Ross Quinlan. Machine Learning: An Artificial Intelligence Approach, chapter Learning Efficient
Classification Procedures and Their Application to Chess End Games. Tioga., Palo Alto, CA, 1983.

[8] Mildred Shaw and Brian Woodward. Validation in a knowledge support system: Construing and
consistency with multiple experts. Knowledge-based Systems, 4:39-60, 1990.

[9] D. Waltz. Understanding line drawings with shadows. In The psycology of computer vision. Mc.Graw
Hill, NY, 1975.

53

