
Scheme as an Expository Language
for

Liberal Arts Students

Aaron Konstam
Department of Computer Science

715 Stadium Drive
San Antonio, Texas 78212-7200

(210) 736-7484
FAX: (210) 736-7477

akonstam@shrew.cs.trlnity.edu

John E. Howland
Department of Computer Science

715 Stadium Drive
San Antonio, Texas 78212-7200

(210) 736-7480
FAX: (210) 736-7477

Jhowland@arlel.cs.t rlnlty.edu

Abstract

Tile Scheme dialect of Lisp is being used as an
expository notation in introductory courses for
liberal arts students at Trinity University.
Tenuinology from natural language identifying
parts of speech, such as verb, noun, pronoun,
adverb, etc., is used to present Scheme syntax and
semantics to non programmers. Simple working
models of various computer science topics a r e

described. Experiences from two Trinity
computer science courses are presented.

Keywords: Scheme, exposition.

In t roduct ion

Throughout tile period that we have been teaching
computer science courses at Trinity we have tried
to be consistent in choosing a programming
language environment for our beginning courses.
Not consistent in that we always have used tile
same programming language but rather choosing
the currently available language that best met the
same consistent set of goals.

First, we would like our language to be in some
sense a lingua franca [Kon74,21J. That is, a
language that allows us to teach the art of
programming as well construct models of the
computer science concepts we wish to get across
and be pervasively usable in a wide variety of our

courses. In addition, tile language should support
an expository style of expression in a concise
manner and it should be possible to verbalize
"sentences" in tile language so that students and
faculty may easily communicate. The language
should have a simple enough syntax and a straight
forward enough semantics to prevent the necessity
of the instructor spending the large fraction of the
course discussing the arcane intricacies of the
language. We would rather spend the time in our
courses focusing on the programming and
computer science principles we would like the
students to learn.

For students who are not intending to become
computer scientists, tlle progranmfing environment
used in such a course should be applicable
directly and easily to problems it their chosen
disciplines, As with natural languages the proof
of the programnfing language pudding is in the
using. No one can become interested in a
programming language that can not efficiently
support him in doing something he or she decides
they want to do.

A further characteristic of this programing
environment that can be derived directly form the
considerations discussed above is that the
programming environment that is introduced to
students in these first courses should be generally
available on file variety of computer systems they
will most likely have available to them during their
tenure in the college environment,

54

The language we chose that met these criteria is
Scheme. Twenty years ago one of the authors
attended an ACM conference where the suggestion
that Lisp be taught as a first language was met
witti" both hostility and disbelief. Now the Scheme
dialect of Lisp is used in the first courses taught at
some of the most prestigious universities in our
country. What brought this change about?

A primary factor was the development of the
Scheme programming language and the availability
of a number of Scheme systems; many with out
charge. But more important is the realization that
this language contains the basic tools to model the
essential principles of computer science and
technology in a way unprecedented in previous
languages. Scheme can be used directly as a
language of exposition for the concepts that we
want to teach in ways that are more direct and less
cluttered by arcane syntax then trying to do the
same exposition in Basic, C, Pascal or Fortran.

It is well understood that Scheme is an ideal
notation of exposition for computer science topics
when dealing with computer science and
engineering students, l abe l 85J, [Spri 891 and
[File 92]. The focus of this paper is to argue that
Scheme is an ideal notation for describing the
important ideas of computer science to liberal arts
studentS. Recent ly , the authors have
experimentally used Scheme in two introductory
computer science courses which are designed
primarily for liberal arts and humanities students
rather than science or engineering students.

The first course, Compute r s and Society, has
approximately 1/3 content of problem solving,
algorithms and programnfing; 1/3 content of a
variety of computer applications including topics
of what computers can and cannot do and 1/3
content studying the impact of computers
technology on society.

The second course is a laboratory science course,
Great Ideas in Computer Science,
consisting of lectures lasting one week each on
twelve core computer science topics ranging from
computer organization to artificial intelligence.
This course has a co-requisite contained laboratory
course where students perform 13 prepared
laboratory experiments.

An Approach for Students in the
Liberal Arts.

Our experience has been that students in the liberal
arts are more than slightly awed by the computer.
They have had to accept that computer based word
processing is a necessary activity that they have to
perform, but, in their minds, they are using what
to them is a complex typewriter. The thought that
they could ever share with the computer some
common procedural task fills them with fear and
apprehension. If they are going to be introduced
to the principles of computers and computing it
will have to be on their own terms. One can not
start by bombarding them with strange terms like
byte and mips which seems to be evidence of the
computer scientist's inability to spell correctly.

Rather, we find computing must be introduced bv
emphasizing that it is merely a reapplication of
things they already k n o w how to do. They
already know how to explain to to a friend how a
task is to be accomplished. Well, now they are
going to try to explain a task that the), already
understand to a computer in a similar way.
Similar in that such explanations are done in boih
instances in a language that the other (whether a
human or computer other) understands.

Just as different people understand different
languages it should not be to big a leap of faith for
a liberal arts student to accept that different
computers understand different languages or that
(and this may be even nlore relevant) that the same
computer or person may understand different
languages. Students are well aware that languages
are used to communicate and such languages are
characterized by a describable syntax. This syntax
tells us whether a unit in that language, usually
called a sentence, is properly formed. Properly
formed sentences are made up of standard parts of
speech such as nouns, verbs, pronouns, adverbs.
etc.

Another characteristic of languages is semantics. It
should be possible to assign a meaning to the
syntactically correct sentence with its component
parts. There is the possibility, of course, that a
sentence, though properly formed from a syntactic
point of view, is meaningless or ambiguous.

In teaching liberal arts students about
programming, we find it helpful to emphasize the
similarities between what one might call the
essential or no frills structure of programming

55

languages and the natural languages with which
they are already familiar. In describing the syntax
and semantics of Scheme, this analogy seems
especially worthwhile and palatable to the students
we have had contact with in our classes.

What we call sentences in Scheme (and what
others might call expressions) are a list of elements
enclosed in parentheses. In a properly formed
sente,ce the first item in this list is a verb.
Following the verb, in a sentence, can be nouns,
pronouns, verbs or subordinate sentences which
are the objects of file sentence verb.

(<verb> <object> ...)

As one would expect, a simple sentence would not
contain subordinate sentences.

For example,

(+ 2 3)
(* 2 (+ 2 3))

The latter is an example of a compound sentence.

A nou,, from out point of view, is a self defining
item whose meaning never changes. It might be a
number, a list or a string. A pronoun is an item
that is used in place of the noun. The meaning of
a pronoun must be determined form the context of
the sentence. It is what one would normally call a
variable or a parameter.

A verb phrase in Scheme can either be a simple
verb (or what we might more commonly call a
function) or it might be what we describe as
adverbial phrase, that is a sentence whose meaning
results in a verb.

It is poss ib le (and even useful when
communicating with liberal arts students) that the
verb of a sentence is. itself, the result of a
sentence. Such compound sentences do not seem
to occur in English, however, the authors have not
found this a problem because this kind of
compound sentence may be explained as being
similar to the way an adverbial phrase modifies a
verb deriving a new verb.

Wily do we go to some much trouble to give these
things such un-computerese names? Because we
are dealing with people for whom use of common
used computer science terms are so foreign that

they serve as a sometimes impenetrable barrier to
tile learning process.

Scheme as the Language

If one accepts the suggestion of ephasizing to
novice students the analogy between the physical
structure (i,.e., the syntax) of programming
languages and natural languages, Scheme provides
another advantage as the language of choice to be
used in this way. That is, that its syntax is so
simple. Students are aware that it is hard work to
become familiar enough with a natural language
which is not their native language before one is
confident of being able to construct syntactically
correct sentences in that language. It can be
pointed out very quickly that to learn the structure
of a syntactically correct sentence in Scheme is a
job of no more than a few minutes. They may not
yet know what the sentences mean but they can
become very quickly "experts" in detecting
incorrectly formed sentences in Scheme.

It might be more difficult to convince beginning
students that the semantics of scheme is also easy
to learn. On one level, the semantics of Scheme is
readily grasped. Itow verbs or verb phrases are
applied to the nouns and pronouns in their scope
can, we believe, be readily grasped. The order in
which verbs are applied in sentences with more
than one verb is a little more difficult but we
believe can also be readily absorbed by students
by relying on an analogy with what they already
know about the language of function application in
high school algebra.

However, if we focus on the semantics of scheme
on a different level we have more of a problem.
We all know that in any language there may be a
difference between knowing what the words mean
individually and knowing what the sentence means
as a totality. In natural language we rarely resort
to reeursive definitions when we explain to
someone how to accomplish a task. While in a
language like Scheme recursion is a major tool
used in carrying out algorithms and iterative or
enumerated processes. Therefore, in our
experience the semantics of recursion has to be
approached very carefully with liberal arts students
(and even many hard-core science students).

The semantics of special forms is another topic
that must be carefully approached with these
students as an embodiment of an idiosyncratic
syntax which follows special rules. Here we are

56

fortunate to be able to fall back on analogies with
the many idiosyncratic semantic examples from the
students own natural language.

One.semantic related problem with some scheme
implementations should be noted in passing. We,
as computer scientists, feel comfortable with the
notion that there are some expressions that return
values, some that do not and also some
expressions whose return values are unspecified
because they are being evaluated for a side effect.
There is at least one implementation of Scheme
that arranges for the third type of sentence to
return the result, <unspecified>. From our
observation the novice student finds this choice of
return value some what unsettling. For example,
to specify a value for a symbol they write:

(define a lO)=ffi> <unspecified>

Which seems to imply, perhaps, that something
was wrong with the specification. This is an
illustration of how we need to be very sensitive to
aspects of the semantics of a programming
language that has special meaning to us as
technologists but serves as a barrier for
understanding among a more general audience.

57

References

lAbel 85] Abelson, Harold and Sussman, Gerald with Sussman, Julie. Structure alzd
Interpretation of Cornputer Programs, MIT Press, 1985.

[Spri 891 Springer, George and Friedman, Daniel. Scheme and the Art of Programming,
M1T Press, 1989.

[Kon74J

[Frie 92J

Konstam, Aaron and ttowland, John E. "APL as a Lingua Franca in the
Computer Science Curriculum", SIGCSE Bulletin 6 (1), February 1974.

Friedman, Daniel, Wand, Mitchell and Haynes, Cl~istopher. Essentials of
Programming Languages, MIT Press, 1992.

58

