
Concurrent Replicating Garbage Collection

James O’Toole and Scott Nettles

Abstract

We have implemented a concurrent copying garbage collec-

tor that uses replicating garbage collection, In our design, the

client can continuously access the heap during garbage col-

lection. No low-level synchronization between the client and

the garbage collector is required on individual object opera-

tions. The garbage collector replicates live heap objects and

periodically synchronizes with the client to obtain the client’s

current root set and mutation log. An experimental imple-

mentation using the Standard ML of New Jersey system on a

shared-memory multiprocessor demonstrates excellent pause

time performance and moderate execution time speedups.

1 Introduction

As programs have become larger and more complex the use

of dynamic storage allocation has increased. Increased use

of object oriented and functional programming techniques

further exacerbates this trend. These same trends also make

automatic management of dynamic storage or garbage col-

lection (GC) increasingly necessary. GC simplifies the pro-

grammers task and increases the robustness and safety of

programs that use it.

The traditional objections to GC are primarily performance

related. It has often been considered too expensive for use

in practical applications. Recent studies by Zorn [16] of

applications that make heavy use of dynamic storage suggest

that in fact explicit storage management may be as costly as

GC. However, many garbage collectors stop the application

during collection, creating pauses that are unacceptable to

many applications that might otherwise utilize GC.

Incremental collection addresses the problem of pause

times by allowing the collector and application to proceed in

tandem. We have previously demonstrated that replicating

garbage collection can be used to build incremental collec-

tors that limit these pauses sufficiently to allow applications

such as mouse tracking to use GC [10]. In this work we

show how the same technique can be used to build collectors

that are concurrent. Because most of the collection work can

be done concurrently we are able to demonstrate both much

shorter pauses and speedups compared to our previous work.

In the next section we introduce the basic idea of repli-

cating garbage collection. Then we describe our implemen-

tation (Section 3) and present measurements of its perfor-

mance (Section 4). The results show that pause times are

mostly eliminated zmd that elapsed execution times are re-

duced. Finally, we discuss possible improvements to the

implementation and suggest areas for further work. We as-

sume that the reader is familiar with the basics of copying and

generational garbage collection. The survey by Wdson [15]

should be useful to readers unfamiliar with the area.

Authors’ addresses: otoole @lcs mit.edu, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
617-253-6018 nettles @cs.cmu.edu, School of Computer Science, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213. (412)268-3617

This research was sponsored by the Wright Research and Development
Center, Aeronautical Systems Division under Contract F33615-90-C-1465,
ArpaOrderNo. 7597,by the Air Force Systems Command andtheAdvanced
Research Projects Agency (ARPA) under Contract F1 9628-91 -C-O 128, and

by the Department of the Army under Contract DABT63-92-C-0012,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

LISP 94- 6/94 Orlando, Florida
@I 1994 ACM 0-89791 -643-3/94/00 :6s.:3.50

2 Concurrent Replicating GC

Concurrent garbage collectors permit the client to execute

while the garbage collection is in progress. The operations

of the client and the collector may be interleaved in any

order, yet the effects of the garbage collector must not be ob-
servable by the client. In many previous concurrent garbage

collection designs, the interactions between the client and the

collector may lead to complex and expensive synchroniza-

tion requirements. Replicating garbage collection requires

that the collector replicate live objects without modifying the

original objects. Interactions with the client are minimized,

making this design attractive for use in a concurrent collector.

34

F==l r==

Figure 1: Replication and The Mutation Log

2.1 The Client Uses From-Space

The standard technique used by copying garbage collectors

to copy an object destroys the original object by overwriting

it with a forwarding pointer. Therefore, concurrent collectors

using this technique must ensure that the client uses only the

relocated copy of an object. This requirement is referred to

as the to-space invariant.

The primary way in which replicating collection differs

from the standard approach is that the copying of objects

is performed non-destructively. Conceptually, whenever the

collector replicates an object it stores a relocation record in

a relocation map, as shown in Figure 1. In general the client

may access the original object or the relocated objects and is

oblivious to the existence or contents of the relocation map.

In the implementation we describe here the client accesses

only the original object. We call this the from-space invariant.

2.2 Mutations are Logged

After the collector has replicated an object, the original object

may be modified by the client. In this case, the same modifi-

cation must also be made to the replica before the client can

safely use the replica. Therefore, our algorithm requires the

client to record all mutations in a “mutation log”, as shown in

Figure 1. The collector uses the log to ensure that all replicas

are in a consistent state when the collection terminates. The

collector does this by reading the log entries and applying the

mutations to the replicas.

The cost of logging and of processing the log varies de-

pending on the application and the logging technique. Mu-

tation logging works best when mutations are infrequent or

can be recorded without client cooperation. Mutation log-

ging is also attractive whenever a log is already required for

other reasons, such as in generational collectors, distributed

applications, and transactional storage systems [12, 14].

2.3 The Collector Invariant

The invariant maintained by the collector is that the client can

only access from-space objects and that all to-space replicas
are up-to-date with respect to their original from-space ob-

jects unless a corresponding mutation is described in the

mutation log.

2.4 The Completion Condition

While the collector executes, it endeavors to replicate all the

objects that are accessible to the client. The collector cre-

ates replicas of the objects pointed to by the client’s roots.

The collector also scans replicas in to-space to find point-

ers to from-space objects and replace them with pointers to

corresponding replicas in to-space.

The collector has completed a collection when the muta-

tion log is empty, the client roots have been scanned, and

all of the objects in to-space have been scanned. When

these conditions have been met, the invariant ensures that

all objects reachable from the roots have been replicated in

to-space and are up-to-date. The replicas contain only to-

space pointers because to-space has been scanned. When the

collector has established this completion condition, it halts

the client, atomically verifies the completion condition, up-

dates the client’s roots to point at the corresponding to-space

replicas, discards the from-space, and renames to-space as

from-space.

2.5 Client Interactions

Although the garbage collector executes concurrently with

the client, the from-space invariant ensures that there is no

low-level interaction between the collector and client, The

client executes machine instructions that read and write the

objects that reside in from-space. The collector reads the ob-

jects in from-space and writes the objects in to-space. Con-

ceptually, the relocation map shown in Figure 1 is used only

by the collector.

The collector does interact with the client via the mutation

log and the client’s roots. The collector must occasionally

obtain an up-to-date copy of the client’s roots in order to

continue building the to-space replica. Also, the collector

reads the mutation log, which is being written by the client.

These interactions may be asynchronous and do not require

the client to be halted.

However, when the collector has established the comple-

tion condition, it must halt the client in order to atomically

verify the completion condition and update the client’s roots.
After the roots have been updated, the client can resume ex-

ecution. The duration of this pause in the client’s execution

depends on the synchronization delay due to interacting with

the client thread and also on the size of the root set. In

a generational collector the root set may include the set of

cross-generational pointers that point from older objects to

newer objects.

3 Implementation

Our concurrent replicating collector is based on a version

of Standard ML of New Jersey (SML/NJ) that has been ex-

tended to support multiprocessors [9]. The collector uses a

separate thread for garbage collection work. Scanning and

replication work are done concurrently, but the current pro-

totype processes mutation log entries only while the client is

paused. The concurrent collector can be enabled for one or

both of the two generations present in the original SML/NJ

collector.

3.1 The SML/NJ Runtime System

SML/NJ (version 0.75) has a good compiler and a simple

generational garbage collector. The runtime system has no

stack and therefore places heavy demands on the memory

management system. Providing efficient garbage collection

in this environment is challenging because of SML/NJ’s high

allocation rates. However, the SML language encourages a

mostly functional programming style, so mutations are rare.

In the SML/NJ collector, there are two generations: old

and new. Objects are allocated in new-space. The size of the

new-space is controlled by the runtime parameter N. When

new-space fills, a minor collection is initiated to copy the live

data into old-space. Old-space is divided into from-space

and to-space. Another parameter, O, controls the initiation

of a major collection. When the amount of memory copied

into from-space by minor collections exceeds O, a major

collection occurs, copying all live data into to-space and then

exchanging the roles of to-space and from-space. The spaces

and associated parameters are shown in Figure 2.

I I I I
1A 1-----1 L----l

N
o L

- \
minor

major \

New-space From-space To-space

o Memory copied into From-space before major gc,

N Initial allocation limit in New-space before minor gc.

A Minimum additional allocation permitted per gc pause.

L Maximum amount of data copied while client paused.

Figure 2: SML/NJ Heaps with GC Parameters

3.2 Logging and Replication

Generational collectors must identify mutations that might

create pointers from older spaces into younger spaces. The

SML/NJ collector uses a log called the “storelist” to track

such mutations. We modified the SML/NJ compiler and all

appropriate runtime system operations so that all mutations

are recorded in the storelist. In previous work [10], we

measured the runtime cost of the additional logging to be

O-5% of total execution time for the benchmarks described

in this paper. No logging is required for allocation operations

because newly allocated objects cannot yet have been copied

by the garbage collector.

The easiest way to implement the relocation map is to store

a forwarding pointer in an extra word in each replicated ob-

ject. However, most objects in the SML/NJ runtime system

are only three words long, so the forwarding words would

be relatively costly in space. Therefore in our implementa-

tion the collector overwrites the object header word with the

forwarding pointer.

As shown in Figure 3, the client operation that reads the

header word was modified to follow the forwarding word.

Our previous results showed that the runtime cost to the

client due to this change was not significant [10]. However,

in the presence of concurrency, this change creates a potential

read-write conflict between the collector and the client. If the

client is reading the header word at the same time the collector

is installing a forwarding pointer, we must make sure that the

client gets the correct header word.

From-space To-space
Object Object

getheader ~
wd ptr — ~ hdr word

Client read D

lLJp-1 m
Figure 3: Getheader Operations Follow the Forwarding Word

The code sequences used by the client and the collector

for these operations were designed to avoid any possible

race condition. The client reads the from-space header word

only once and then dereferences the value obtained if it is
a forwarding pointer. The collector replaces the from-space

header word with the forwarding pointer only after storing

the correct header word in the to-space replica. This method

works provided that the memory system performs single-

word write operations atomically and that several write op-

erations issued from a single processor are performed in the

order issued.

36

3.3 Controlling Client Allocation

The SML/NJ system uses an allocation limit to control the

amount of memory that can be allocated by the client. The

allocation limit is initially set to the size of new-space (N).

Whenever the client is about to exceed its current allocation

limit it traps into the garbage collection module. In our

current implementation, the client then synchronizes with the

collector, The garbage collector processes the mutation log,

initiates a concurrent garbage collection, and then permits

the client to continue execution.

However, to continue executing the client must allocate

more memory. Yet, the client must also be prevented from

allocating live data more rapidly than the collector can copy

it, or else the collection will never be completed. Therefore,

our implementation sometimes slows down the client by not

permitting it to continue execution immediately. If the client

exceeds its allocation limit while a garbage collection is al-

ready in progress, then the client is paused until the collector

has performed some minimum amount of replication work

(see Section 3.4).

The collector calculates how much additional memory al-

location will be granted to the client using the parameter A

(see Figure 2). When the client exhausts its allocation limit,

the limit is advanced by (last-amount + A)/2 units of addi-

tional memory, where last-amount is the previous amount

of memory given to the client. Using this formula the alloca-

tion increment eventually decays to A. Thus, the A parameter

specifies the minimum amount of memory the client must be

permitted to allocate each time it is delayed by interacting

with the garbage collector.

3.4 Controlling GC Activity

When the client is allocating very aggressively, it will be

paused by the garbage collector when it exceeds its alloca-

tion limit. The collector also pauses the client when it has

established the completion condition, in order to attempt a

flip. We believe the collector should pause the client and

attempt to flip immediately upon establishing the completion

condition, because otherwise the client will allocate more

memory. To control how long the client will be halted during

these pauses we use a parameter L. The L parameter limits

the amount of memory the collector will copy while the client

is paused.

When the collector has paused the client to attempt a flip,

it processes the mutation log and performs some replication

work. If the completion condition can be established without

exceeding the limit L, then the client’s roots are updated

and the from-space and to-space exchange roles. Otherwise,

the client’s roots are copied into a shadow root set used by

the collector and the client is permitted to resume execution

while the collector continues to perform replication work.

3.5 Client/Collector Synchronization

Inversion 0.75 of SMLJNJ, the client always transfers control

to the garbage collector using an arithmetic trap that causes

a Unix signal. Also, our collector uses a Unix signal mech-

anism taken from the SMIJNJ MP system by Morrisett and

Tolmach [9] to interrupt the client when it has established the

completion condition. Our implementation also requires the

client to asynchronously pause the collector. This is now im-

plemented by having the collector poll periodically to detect

a synchronization request from the client.

Unix signals are an expensive way for the client to syn-

chronize with the garbage collector. Version 0.93 of SML/NJ

replaces the client-initiated trap with a goto. However, even

with this improvement our implementation will need to asyn-

chronously halt the client in a known garbage collectible state.

This is because in general there maybe more than one client

thread, all of which must synchronize to perform the flip. We

are investigating better solutions to this problem.

4 Performance

The goals of the performance study were to demonstrate

that pause times are significantly shorter than those for the

incremental version of the algorithm and to measure the

speedup provided by the use of another processor for con-

current garbage collection work. The measured performance

is good; the concurrent collector achieves pause times in the

neighborhood of 5 milliseconds and eliminates most of the

garbage collection work from the elapsed execution time,

4.1 Benchmarks

Three benchmarks were used to test our implementation.

Each was chosen because it stressed the memory management

system in a different way. All benchmarks require many

major and minor garbage collections during execution.

●

●

●

Primes is a prime number sieve implemented in a simple

lazy language which is in turn interpreted by an SML

program. It allocates memory at a very high rate (ap-

proximately 10 megabytes per second), but few objects

survive garbage collection. It is typical of compute-

bound programs in SMLINJ.

Comp is the SMLINJ compiler compiling a portion of

itself. This is the most realistic benchmark; the compiler

is a large optimizing compiler in daily production use.

Comp does not allocate as much data as Primes, but

more of it survives collections. The amount of live data

fluctuates depending on the compilation phase.

Sort is a sorting program based on futures that are im-
plemented using SML threads. Sort does more mutation

than typical SML programs and creates a large amount

of live data. The high mutation and survival rates make

this a challenging gc benchmaxk.

37

All benchmarks were executed on a Silicon Graphics

4D/340 equipped with 192 megabytes of physical memory.

The clock resolution on this system is approximately 1 mil-

lisecond. The machine contains four MIPS R3000processors

clocked at 33 megahertz. Each processor has a 64 kilobyte

instruction cache, a 64 kilobyte primary data cache, and a

256 kilobyte secondary data cache. The primary data caches

are write-through caches and there is a five word deep write

buffer between each primary cache and its associated sec-

ondary cache. The secondary data caches are write-back

caches and are kept consistent via a shared memory bus

watching protocol. Because of the store buffers, proces-

sors can observe out-of-date values. The average copying

rate achieved by the garbage collector while running the

benchmarks on this hardware platform was between 1 and

2 megabytes per second.

4.2 Parameter Settings

To test our system we chose values for the parameters N,

O, L and A. For O we used the values 2000 kilobytes and

100 kilobytes. The larger value is typical for running SML/NJ

in our environment, while the lower setting was chosen to

emphasize overheads present in major collections. For N we

chose 1000 kilobytes and 500 kilobytes. Again, the larger

value is typical for use with the stop-and-copy collector, while

the lower value showed good performance with our system.

Unlike in our previous work on incremental collection, small

values of N are not important for providing short pause times.

In all cases we set L to 3 kilobytes. The L parameter

determines how long the client might remain in the garbage

collector. Choosing a low setting allows us to achieve max-

imum speedups and short pauses. This result contrasts with

our incremental collector, where short pause time conflicted

with good elapsed time performance. Empirically, the 3 kilo-

byte limit appeam to be a good compromise between greater

overhead and larger pause times. We arbitrarily chose A to

be 10 kilobytes in all cases. Our studies showed that per-

formance was not strongly coupled to the choice of A in our

current implementation.

Unfortunately, trying to compare SML/NJ’s stop-and-copy

collector to our concurrent collector is difficult. Ideally we

would like each collector to do the same amount of work and

for this amount of work to be repeatable. Unfortunately con-

currency introduces a degree of nondetemninism that makes

such repeatability almost impossible to achieve.

4.3 Pause Times

One motivation for using a concurrent garbage collector is

to eliminate the pause times normally experienced by the

client while the garbage collector executes. In this section

we report on the pause times achieved by our collector.

Figures 4, 5, and 6 show plots of pause times for each

of the benchmarks. The plots shown are for the setting that

achieved the best absolute performance. In general we see

21M3 -

1500-

g

E

~ 1003-
b

%

i? f)

503-

0 1-,,, I I +=rlll=l
O51O152O253O 35404550

Pause Time (ins)

Figure 4: Primes Benchmmk Pause Times

Pause Time (ma)

Figure 5: Compiler Benchmark Pause Times

700 7

103

0
0 51015202530354045505560 65707580859095103

Pause Time (ins)

Figure 6: Sort Benchmark Pause Times

38

NO Stop+copy Major-Only-Concurrent Concurrent

Kb Kb Elapsed Major Minor Elapsed Speedup Major Minor Elapsed Speedup Major Minor

1000 100 119.36 10.3% 15.7% 112.84 5.5% 4.3% 24.5% 133.46 -11,8% 4.5% 31.4%

1000 2000 108.71 1.2% 17.7% 109.33 -0.6% 1.6% 19.4% 132.33 -21.7% 4.4% 33.9%

500 100 132.6816.8% 17.9% 116.79 12.0% 4.8% 24.8% 135.09 -1.8% 4.8% 29.7%

500 2000 112.20 2.2% 22.2% 114.16 -1.7% 2.1% 22.6% 132.19 -17.8% 5.8% 35.0%

Table 1: Primes Benchmark Elasped Times

NO Stop+copy Major-Only-Concurrent Concurrent

Kb Kb Elapsed Major Minor Elapsed Speedup Major Minor Elapsed Speedup Major Minor

1000 100 87.86 34.8% 10.9% 60.45 31.2% 2.1% 16.1% 60.92 30.7% 3.2% 12.9%

1000 2000 58.96 4.0% 16.8% 57.11 3.1% 1.3% 20.1% 57.82 1.9% 3.4% 16.1%

500 100 102.42 43.7% 11.9% 63.76 37.7% 2.7% 15.6% 64.91 36.6% 4.0% 12.6%

500 2000 60.21 4.9% 20. 1% 58.99 2.0% 2.2% 22.8% 60.16 0.1% 4.8% 18.1%

Table 2: Compiler Benchmark Elasped Times

NO Stop+copy Major-Only-Concurrent Concurrent

Kb Kb Elapsed Major Minor Elapsed Speedup Major Minor Elapsed Speedup Major Minor

1000 100 80.60 26.3% 30. 1% 81.73 -1 .4% 1.2% 56.5% 72.24 10.4% 8.3% 38.3%

1000 2000 61.90 3.0% 39.4% 81.78 -32.1% 1.7% 78.4% 73.37 -18.5% 11 .0% 50.0%

500 100 94.50 33.1% 31.0% 82.77 12.4% 2.3% 48.9% 79.57 15.8% 12.7% 37.2%

500 2000 65.44 4.5% 45.2% 82.55 -26.1% 3.4% 70.5% 79.17 -21.0% 18.1% 53.2%

Table 3: Sort Benchmark Elasped Times

that the pauses are very short, around 5 milliseconds. The

pause times are generally an order of magnitude shorter than

the delays due to virtual memory when page faults must

access the disk.

We are concerned about the long tail of longer pause times

that appear in these results, although they makeup only a tiny

fraction of the pauses. Although we don’t yet have good ex-

planations for the longer pauses, our traces show that most of

those pauses have much larger elapsed wallclock time (shown

here) than user cpu time. This indicates that uncontrolled op-

erating system effects such as processor scheduling or page

faults are definitely contributing to the longer pauses. An-

other interesting anomaly is the second peak of longer pause

times occurring in the primes benchmark (see Figure 4). This

is due to processing the mutation log. The implementation

does not process the log concurrently or account for log pro-

cessing under the work limit parameter L. We hope to fix this

in our next implementation.

The measurements show that the concurrent collector is

largely successful at eliminating the pauses. Its pauses are

minuscule in comparison to those produced by the stop-and-

copy collector, which are often one second or more.

4.4 Elapsed Times

The other primary motivation for using a concurrent garbage

collector is to reduce the elapsed time of the client program by

allowing the collection work to be performed concurrently.

Because garbage collection time can be a smrdl component

of total execution time, and concurrent collection introduces

many short clienticollector interactions, such speedups are

difficult to achieve and hard to measure.

Tables 1,2, and 3 contain the elapsed time performance re-

sults for the three benchmarks. Each table contains a section

for the stop-and-copy collector, our new collector perform-

ing only major collections concurrently, and our concurrent

collector in use for both minor and major collections. The

columns shown are the total elapsed time, speedup relative

to the stop-and-copy collector, and percentage of time spent

doing major and minor collection work.

All percentages are given relative to the original elapsed

time using stop-and-copy. The speedup provides the reduc-

tion in elapsed time as a percentage of the original elapsed

time, so a negative speedup indicates a slowdown. Each row

corresponds to a different choice of the parameter values con-
trolling how much allocation takes place before collections

are initiated.

39

The improvement in total elapsed time achieved by the

concurrent collector ranges from a speedup of 4770 to a

slowdown of 21 Yo. Comparing the concurrent collector’s

speedup to the major-only-concurrent speedup reveals that

the performance improvements are mostly due to concurrent

major collections. From the center sections of the table, we

note that when major collections are performed concurrently,

the time attributed to minor collections rises. This is party

due to the cost of log processing, which is charged entirely to

the minor collector because the minor and major log process-

ing code is intermingled. Concurrent major collections also

may increase minor collection costs because interrupting the

client to complete a major collection causes a minor garbage

collection.

However, we still observe that the total time devoted to

minor and major collections is generally lower for the major-

only-concurrent collector than for the stop-and-copy collec-

tor. Both concurrent collectors achieve better speedup results

when the O parameter setting is small. When O is small the

major collections occur much more often and therefore con-

sume a larger fraction of the stop-and-copy execution time.

Although using the concurrent collector for major collec-

tions produced good speedups, it appeam that concurrent

minor collections were less successful, In fact, compar-

ing the major-only-concurrent and the concurrent collector

sections of the tables reveals that the fully concurrent con-

figuration often performed worse. Only the Sort benchmark

performed better when minor collections were concurrent,

because only the Sort benchmark spends a large percentage

of elapsed time on minor collections in the stop-and-copy

configuration. Even in this benchmark, the fully concurrent

configuration shows more elapsed time in the minor collector

than the stop-and-copy configuration does.

We believe that the increased fraction of elapsed time in the

minor collector is caused by high synchronization costs and

the log processing work. Earlier measurements [10] of these

benchmmks indicate that the log processing costs are small,

but they do explain some of the increase in minor gc time

observed here. More significantly, the delay imposed when

the client waits for the gc thread to detect a synchronization

request appears to be about 2 milliseconds on average. (The

gc thread was polling to detect a synchronization request

from the client after copying 3 kilobytes.) This delay is

not required by our design and can be eliminated by using

fine-grained locking within the garbage collection module

to control access to particular collector state variables. We
therefore expect further experience with the collector to allow

us to improve this aspect of its performance.

4.5 Future Benchmarking Plans

All of the benchmarks we have measured so far use single-

threaded client programs, but the implementation does sup-

port multithreaded clients. We have heard from Tolmach that

the speedups achieved on the benchmarks in his work with

Morrisett [9] may have been limited because the garbage

collector was stop-and-copy and single-threaded. It is pos-

sible that those speedups would be closer to linear using a

concurrent collector,

We are also interested in investigating performance ques-

tions about the collector that are not answered by this paper.

We expect to be able to measure the trapping and synchro-

nization costs in the current implementation. These and other

measurements might answer the policy questions raised in

Sections 3.3 and 3.4.

5 Related Work

There is a long history of incremental and concurrent copying

collectors dating back to Baker [2]. Essentially all of these

collectors require the client to access the to-space version of

an object during collections. The technique of Ellis, Li, and

Appel [1] enforces this restriction by using virtual memory

protection to force clients to use only to-space objects. Our

technique does not require any unusual operating system or

hardware support and it imposes smaller demands on the

client than software versions of Bakers algorithm. To-space

methods also constrain the order in which objects are copied,

We believe that the ability to freely choose the order in which

objects are copied and traversed is especially important in a

system that may need to optimize access to the disk.

The idea of a separate forwarding pointer word first ap-

peared in the context of to-space methods. Brooks’ tech-

nique [4], later implemented by North and Reppy [13], re-

quires the client to follow a forwarding pointer that leads to

the relocated object. This eliminated a test in favor of extra

space and an indirection.

Work by Boehm, Demers and Shenker [3] on a concur-

rent mark-and-sweep collector uses mutation logging to track

changes made by the client. The mutation log is implemented

by periodically sampling the dirty page bits maintained by the

virtual memory system. The authors observed the possibility

of using a from-space invariant for a copying collector.

Two recent collectors for ML are quite closely related to

ours and employ variations of the replication idea. Doligez

and Leroy [7] implemented a concurrent collector that uses

a mixed strategy to provide collection for a multithreaded

version of CAML. Huelsbergen and Larus [8] implemented

a concurrent collector for SML/NJ that uses replicating col-

lection. Both of these collectors depend heavily on the fact

that ML implementations can distinguish mutable from im-

mutable data. Our technique does not depend on this feature
of ML and is therefore more generally applicable.

In Doligez and Leroy’s system immutable objects are allo-

cated in private heaps and collected by a replicating stop-and-

copy collector. The collector copies live immutable objects

into a shared heap. To avoid inconsistent mutable values, all

mutable objects are allocated in the shared heap. The shared

heap is collected by a concurrent mark-and-sweep algorithm

based on Dijkstra [5]. When a mutation causes an immutable

object to become reachable from the shared heap, then it is

40

immediately copied into the shared heap. The use of replicat-

ing collection allows the original owner of immutable objects

to continue to access the private copy.

The critical difference between their approach and ours is

that they do not use replicating collection to implement the

concurrent collector. They also avoid the issue of mutable

object consistency by not replicating mutable objects. Their

approach has several disadvantages when compared to ours.

First, the need to allocate mutable objects in the shared heap

makes such allocation expensive. Second, the need to copy

values assigned to mutable value may lead to unnecessary

overhead. If the same location is overwritten before the next

collection then extra copying will be done. Finally, the use of

a stop-and-copy collector for minor collections means such

collections are bounded induration only by the size of the new

area. They deal with this problem by limiting the new area

size to 32 kilobytes. This is acceptable for their byte-code

interpreter, but would not be for SML/NJ. Their technique

has one important advantage over ours, In their collector

each thread can perform its minor collection independently

of every other thread and in general no global synchronization

is needed between the clients and the collector. Doligez and

Gonthier further characterize how a multiprocessor garbage

collector can be more unobtrusive [6]. We believe this is an

important advantage and are attempting to understand how

to achieve it in our system.

Huelsbergen and Larus’s collector uses an invariant that

requires the client to use the to-space version of a mutable

object if it exists, Because the client sometimes uses to-

space objects, all operations on mutable objects must suffer

some additional overhead due to synchronization with the

collector. As a result, their implementation is more closely

tied to the semantics of mutable values in SML and to the

details of their processor memory consistency model.

In addition, their collector is not generational, so it is less

efficient than the original SML/NJ collector despite the use of

multiple processors. This also makes it difficult to assess the

overhead of their technique. Less importantly, their imple-

mentation does not merge forwarding pointers with header

words and thus has a substantial space penalty. We hope to

implement their invariant along with some of the others we

have described elsewhere [11] and obtain a direct compari-

son.

The work described in this paper extends our previous

work on incremental and real-time collection [10, 11] by sup-

porting concurrency among multiple clients and the garbage

collector. We use this concurrent collector together with a

transaction manager for a persistent heap in which the mu-

tation log also serves as the transaction log [14]. In that

work [14] we used replicating garbage collection to demon-

strate the first implementation of a concurrent compacting

garbage collector for a persistent heap. We showed how to

provide good performance for a transactional heap but dis-

cussed the concurrent garbage collection algorithm only at

a high level. In contrast, this paper explains the concurrent

collector design and implementation in detail and explores

some of the policy issues that are relevant to providing better

control over garbage collection pauses.

6 Future Work

We plan to make additional performance measurements and

test various control policies for the concurrent collector (see

Section 4.5). Another area that requires study is how to

schedule the work of the concurrent garbage collector oppor-

tunistically so as to minimize its impact on overall client per-

formance, In an interactive or disk-bound system, collection

work could be scheduled to coincide with I/O activity. Also,

the resources consumed by the garbage collection thread in

a multiprocessor system are not free; understanding the col-

lector’s impact on overall system performance is therefore a

natural area for future work.

7 Conclusions

We have implemented a simple concurrent garbage collec-

tor using replicating garbage collection. The from-space

invariant permits the collector and the client to operate con-

currently without imposing low-level synchronization delays

on individual heap operations. The client communicates to

the collector via a mutation log. We have examined vari-

ous synchronization costs in an implementation that relies

on client cooperation for logging. Our prototype implemen-

tation shows moderate speedups and excellent pause time

performance for applications with bounded allocation rates.

Acknowledgments

We would like to thank the DEC Systems Research Center for

support as summer interns in 1990, when we first explored

the idea of replicating collection. We thank Sally McKee for

showing us how to use jgraph. We also thank an anonymous

referee for detailed and useful comments.

References

[1] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time

Concurrent Garbage Collection on Stock Multiproces-

sors. In SIGPLAN Symposium on Programming Lun-

guage Design and Implementation, pages 11–20, 1988.

[2] H. G. Baker. List Processing in Real Time on a Serial

Computer. Communications of the ACM, 21(4):280-

294.1978.

[3] Hans-Juergen Boehm, Alan J. Demers, and Scott

Shenker. Mostly Parallel Garbage Collection. In SZG-

PLAN Symposium on Programming Language Design

and Implementation, pages 157–164, 1991.

41

[4] Rodney A. Brooks. Trading Data Space for Reduced [15] Paul R. Wilson. UniprocessorGarbage Collection Tech-

Time and Code Space in Real-Time Garbage Collec- niques. In Proceedings of the 1992 SIGPLAN Interna-

tion. In SIGPLAN Symposium on LISP and Functional tional Workshop on Memory Management, pages 1-42.

Programming, 1984. ACM, Springer-Verlag, September 1992.

[5] E. Dijkstra, L. Lamport, A. Martin, C. Scholten, and [16] Benjamin Zorn. The measured cost of conservative

E. Steffens. On-the-fly Garbage Collection:An Ex- garbage collection. Software-Practice and Experi-

ercise in Cooperation, Communications of the ACM, ence, 23(7):733–756, July 1993.
21(1 1):966-975, November 1978.

[6] D. Doligez and G. Gonthier. Portable Unobtrusive

Garbage Collector for Multiprocessor Systems. In Pro-

ceedings of the 1994 ACM Symposium on Principles of

Programming Languages, January 1994.

[7] D. Doligez and X. Leroy. A Concurrent Generational

Garbage Collector for a Multi-Threaded Implementa-

tion of ML. In Proceedings of the 1993 ACM Sympo-

sium on Principles of Programming Languages, pages

113–123, January 1993.

[8] Lorenz Huelsbergen and James R. Lams, A Concurrent

Copying Garbage Collector for Languages that Distin-

guish (Immutable Data. In Proceedings of the 1993

ACM Symposiym on Principles and Practice of Paral-

lel Programming, 1993.

[9] J. Gregory Morrisett and Andrew Tolmach. Procs and

Locks: A Portable Multiprocessing Platform for Stan-

dard ML of New Jersey. In Proceedings of the 1993

ACM Symposiym on Principles and Practice of Paral-

lel Programming, pages 198–207, 1993.

[10] Scott M, Nettles and James W. O’Toole. Real-Time

Replication Garbage Collection. In SIGPL4N Sympo-

sium on Programming Language Design and Imple-

mentation, pages 2 17–226. ACM, June 1993.

[11] Scott M. Nettles, James W. O’Toole, David Pierce, and

Nicholas Haines. Replication-Based Incremental Copy-

ing Collection. In Proceedings of the SIGPIXV In-

ternational Workshop on Memory Management, pages

357–364, ACM, Springer-Verlag, September 1992.

[12] S.M. Nettles and J.M. Wing. Persistence+ Undoability

= Transactions. In Proceedings of the 25th Hawaii In-

ternational Conference on System Sciences, volume 2,

pages 832–843. IEEE, January 1992.

[13] S. C. North and J.H. Reppy. Concurrent Garbage Col-

lection on Stock Hardware. In Gilles Kahn, editor,

Functional Programming Languages and Computer

Architecture (LNCS 274), pages 113–133. Springer-

Verlag, 1987.

[14] James O’Toole, Scott Nettles, and David Gifford. Con-

current Compacting Garbage Collection of a Persistent

Heap. In Proceedings of the 14th ACM Symposium on

Operating Systems Principles. ACM, SIGOPS, Decem-

ber 1993.

42

