
Literate Programming on a Team Project∗

Norman Ramseyy and Carla Marceau

Odyssey Research Associates

301A Harris B. Dates Drive

Ithaca, New York 14850

February 4, 1991

Abstract

We used literate programming on a team project to write a 33,000-

line program for the Synthesizer Generator. The program, Penelope, was

written using WEB, a tool designed for writing literate programs. Unlike

other WEB programs, many of which have been written by WEB’s developer

or by individuals, Penelope was not intended to be published. We used

WEB in the hope that both our team and its final product would benefit

from the advantages often attributed to literate programming. The WEB

source served as good internal documentation throughout development

and maintenance, and it continues to document Penelope’s design and

implementation. Our experience also uncovered a number of problems

with WEB.

Introduction

Donald Knuth coined the term “literate programming” when describing WEB, the
tool he used to build TEX [1]. He believes that “the time is ripe for significantly
better documentation of programs, and that we can best achieve this by con-
sidering programs to be works of literature.” Knuth and others have presented
examples of such programs [2, 3, 4, 5].

Literate programming is usually discussed in the context of publishing pro-
grams or of publishing books or articles about programs. TEX and METAFONT,
the original applications of WEB, have been published as books [6, 7]. Other

∗This research has been sponsored in part by the USAF, Rome Air Development Center,

under contract number F30602–86–C–0071. The first author gratefully acknowledges the

support of the Fannie and John Hertz Foundation.
†Current address: Department of Computer Science, Princeton University, Princeton, New

Jersey 08544.

1



published literate programs seem to be primarily for teaching. Programs to find
random sequences and count common words were written to illustrate the power
of literate programming [2, 3]. Another program to count common words is a
tutorial on how to develop and tune a small program [4]. Another illustrates
formal methods of program development and the use of abstract data types [5].

A valedictory assessment points out three common aspects of the published
literate programs: cosmetics, polish, and verisimilitude, of which verisimilitude—
the property of using one input to produce both compilable program and pub-
lished document–is deemed essential [8]. Additional expectations of a literate
programming tool include flexible order of elaboration, ability to develop pro-
gram and documentation concurrently in one place, cross-references, and index-
ing [9].

WEB is the principal tool used for literate programming; a number of im-
plementations are available [1, 10, 11, 12, 13, 14]. WEB programmers interleave
source code and descriptive text in a single document. When using WEB, a pro-
grammer divides the source code into small textual units called modules, and
each module carries associated documentation. In the WEB source, different mod-
ules may be written in any order. The programmer is encouraged to choose an
order that helps explain the program. The modules are like macro definitions;
they have the form

@<module name@>=body

where the body contains both code and references to other modules. WEB pro-
grammers can also define and use macros similar to C preprocessor macros. One
module is unnamed; its body represents the underlying program.

Two filters process WEB source. TANGLE reads the WEB source and expands
the unnamed module according to its definition. References to named modules
are expanded where they occur, and the end result is that TANGLE extracts
the underlying program from the WEB source. This program is formed from the
code fragments that the programmer put into the module definitions, assembled
in the order required by the compiler. A second filter, WEAVE, reads the WEB

source and converts it to TEX input, with which TEX can produce high-quality
typeset documentation of the program. Examples of WEB source and typeset
documentation can be found in Reference 1.

Using Literate Programming

Penelope is a language-based editor intended to help programmers develop for-
mally verified Ada programs [15, 16, 17]. It parses annotated Ada programs,
performs static semantic checking and overload resolution, computes weakest
preconditions by predicate transformation, simplifies the resulting precondi-
tions, and helps users construct proofs of those preconditions. Its source code is

2



an editor specification for the Synthesizer Generator [18]. The Synthesizer Gen-
erator builds an editor of attributed syntax trees. When a user defines a tree,
the editor attributes it. When the user changes the tree, the editor recomputes
only those attribute values that have changed [19].

Penelope has two written specifications: the Ada language reference manual
and a denotational-style definition of Ada predicate transformers [20, 21]. After
three years of work, the WEB source for the editor is over 33,000 lines. Over
13,000 of those lines are interleaved documentation. The editor has been used to
verify a software repeater for an asynchronous communication line and security
properties of a part of the ASOS operating system kernel [22, 23, 24]. Seven
programmers have written WEB source, but no more than four have worked on
it at any one time. At this writing, the editor is being extended to support Ada
libraries.

We decided to write the editor as a literate program because we expected
implementing predicate transformation to be error-prone. To avoid errors, we
used WEB to juxtapose the specification and implementation of each predicate
transformer. We used TEX’s math mode to write the specifications in the nota-
tion of denotational semantics. [21, 25].

The right model for a literate program that is being maintained and extended
is not the novel but the car repair manual. We began writing new code as an
explanation or tutorial for our colleagues, but as the text grew we treated it
more like a reference work. As with any document, we revised repeatedly to
clarify meaning. We often used TANGLE’s reordering mechanism to make major
revisions in the WEB source without changing the underlying program.

We divided Penelope into parts according to functionality: we wrote chapters
on abstract syntax, concrete syntax, predicate transformation, static semantic
checking, proof construction, and simplification of terms. Each of the first four
chapters follows the structure of the Ada Language Reference Manual, since
each is closely related to Ada. Only knowledge of the Ada manual is required
to navigate this code; a reader who knows where to find the exit statement in
the Ada manual can find the predicate transformation of the exit statement
in the corresponding section of the predicate transformation chapter. We gave
the final chapters structures related to the problems of simplification and proof
construction.

Penelope has grown so large that each chapter is itself structured like a
reference work. Sections within chapters have a different structure. They are
tutorials that use the traditional approach to documentation: begin with a
problem statement or specification, discuss possible solutions, explain the design
of the preferred solution, then develop the implementation and its description.
A short introductory chapter describes the major parts of the program the
organization used to form the text. A “how to find it” section helps readers find
source code.

We have used the Penelope source not only for reference but also to introduce
new programmers to the project.

3



We used some of the cosmetic features of WEB; we found tables of variables,
functions, and files all useful to describe the organization of the code. When
working on Ada static semantic checking, we found it useful to include in the WEB
source some fragments of relevant documents. The fragments included visibility
and overloading rules from the Ada reference manual [20] and a presentation of
the Ada type system derived from Reference 26.

Evaluating WEB

Using WEB without help from its developer uncovered a number of problems.
Some problems relate to the criteria in References 8 and 9, but others do not.

We had no trouble with WEB’s fundamental mechanisms, the section and the
named module. They provide verisimilitude and flexible order of elaboration.
The small size of modules makes it feasible to develop code and documentation
in one place using an ordinary text editor. The order of fragments is the same
in the WEB source and in the published document, which simplifies polishing.

We found some of WEB’s cosmetic features inadequate, others superfluous.
Cosmetics should include appropriate media for presenting programs: not just
math and tables but also diagrams and figures [27, 3, 28]. Describing data
structures was hampered by TEX’s lack of support for diagrams and pictures.
TEX does make it easy to use mathematical notation, which helped considerably
in describing predicate transformation, the simplifier, and the proof system used
in the proof constructor.

Programmers complained more about prettyprinting than about all other
WEB problems combined. WEAVE ignores the programmer’s choice of indentation
and line breaks; it breaks and indents lines on the basis of the syntactic cate-
gories of tokens. (Programmers can force line breaks by inserting special control
sequences like @/ into their program text, but that’s about all.) We spent too
much time tinkering with prettyprinting, trying to make WEAVE’s output ac-
ceptable to everyone. We would have been better off with no prettyprinter, or
with a prettyprinter that changed only the typographic treatment of program
fragments without changing the placement of tokens on the page.

We used the index of identifiers during reviews only, usually to find function
definitions and to locate code that had been misplaced.

WEB formats interleaved documentation using TEX, which some programmers
already use for writing documents. WEB and TEX are integrated poorly. One
cannot lift pieces of WEAVE’s output and put them in other documents without
adjusting the TEX code. WEB works even less well with LATEX; LATEX constructs
cannot be used in WEB source, and getting WEAVE output to work in LATEX
documents requires tedious adjustments by hand. The other direction is easier;
we wrote project documents using LATEX, and, with some adjustments, we could
include excerpts from these documents in our code. We were accustomed to

4



writing LATEX documents, so it was annoying to be forced to switch to plain
TEX to write programs.

TEX’s input often looks very different from TEX’s output, especially when
mathematics is used. Similarly, WEB source looks very different from the typeset
document produced by WEAVE and TEX. When people use TEX to write papers,
it may be acceptable for the TEX input to be full of confusing hieroglyphics,
because the TEX input is almost never read—only the printed version is read.
WEB source is read frequently because programmers must edit it. Both the
difficulty of reading the source and the marked difference between source and
listing complicate editing.

WEAVE’s standard table of contents mechanism is a list of section names. (A
section is a named group of modules together with their interleaved documen-
tation.) This flat structure is inadequate for describing even a moderate-sized
program. Extra structure in the form of “parts” has been added to the book
version of TEX; a part contains several sections [6].

We changed WEAVE’s table of contents mechanism to make hierarchical or-
ganization possible. The new mechanism supports chapters, sections, and two
levels of subsections. We did so without changing WEAVE itself; instead we
changed the TEX macros that support WEAVE. The new macros recognize spe-
cial symbols at the beginnings of section names; these symbols indicate which
sections are really chapters, subsections, and so on. Using this hierarchy made
the table of contents an important guide to the code; the only practical way to
find a particular part of the editor code was to begin with the table of contents.

The WEAVE listing of Penelope is over 800 pages; its table of contents is
about 8 pages. We needed to extract and print parts of this document, but
WEAVE processes only complete documents. We extracted parts in two ways.
When we wanted just a few, small, closely related parts, we created a special
WEB file that held just those parts, and printed it. For something more general,
we used a shell script that removed parts of WEAVE’s output before passing the
rest to TEX. This script recognized the special symbols in the section names so
that, for example, we could include or exclude whole chapters by name, without
having to enumerate their contents. It would have been more expensive, and
no less awkward, to use standard mechanisms for extracting pages from TEX’s
output.

Special symbols in section names are an awkward way of indicating structure.
A more natural way of indicating structure, like the LATEX mechanism, would
have been welcome. Tools should make it easy to use the structure to help
readers extract excerpts from literate programs.

WEB works poorly with make [29]. TANGLE is designed to read and write a
complete program. Some TANGLEs can write multiple files, which can then be
compiled separately, but those files all get rewritten every time the WEB source
changes, and make therefore recompiles them all. This problem is familiar;

5



other preprocessors, like yacc [30], can also cause excessive recompilation. The
workaround described on page 265 of Reference 31 works for TANGLE.

WEB users may be tempted to break their WEB source into many files and
run them through TANGLE separately. Doing so defeats the purpose of writing
a literate program; separate compilation does not necessarily imply separate
explanation. For example, one would prefer to place a unit’s specification and
implementation in the same WEB source, even when they should be compiled
separately.

Our TANGLE [32] emits the #line directive of the C preprocessor, making
messages from compilers and debuggers refer to line numbers in the WEB source
instead of to those in TANGLE’s output. Not all compilers or all TANGLEs support
such mechanisms. Renumbering is essential for large programs.

Discussion

Most literate programming papers refer to programs that are polished, publish-
able “works of art.” Our primary goal in writing Penelope was not to write
a publishable program, nor to evaluate literate programming as a software en-
gineering technique, but to build a prototype editor embodying the results of
research in formal verification. Our experience has given us some subjective
impressions of the benefits of applying literate programming to team devel-
opment, as well as more specific conclusions about the difficulties of applying
literate programming.

There are few published techniques for writing literate programs, especially
for writing large ones. Most of our programmers complained about the awkward
tools and about the lack of guidance in their use. We were unable to develop
precise methods for writing literate programs or even clear criteria about what
constituted a literate program. Instead, we relied on peer review of programs,
rewriting them until the project members understood them. These programs
were rarely polished to the point necessary for publication; less polished presen-
tations were adequate.

One review of a literate program emphasizes the role of juxtaposed code
and documentation [9]. It cites several benefits of this juxtaposition, including
an incentive to explain and hence to understand what one is doing. During
peer reviews of Penelope, we insisted that explanations of programs include
explanations of design. Juxtaposing design documentation and code reduced
the overhead of maintenance because maintainers reading the code did not have
to look elsewhere for design documents.

We cannot say to what extent literate programming can replace standard
software development methodology. However, putting a clear description of
design in our source code helped make it possible for a changing team of pro-
grammers to develop it over a span of three years. We were able to apply
standard guidelines, like those in Reference 33, to describing Penelope’s design.

6



We believe literate programming helped us substantially. This belief is based
not on measurements but on our subjective comparisons of experience on this
project to other projects. A programmer who has used standard software devel-
opment systems at an international computer manufacturing company reports
that a key difference in Penelope was that the documentation was used, precisely
because of its proximity to the source code. The project manager, when at a
large software house, learned to expect technical staff first to criticize imple-
mentations for drifting away from the original intent, then to call for complete
rewrites. There have been no complaints about the quality of Penelope’s im-
plementation. The programmers have been surprised at how easily they have
extended and modified one another’s work. For example, an editor for con-
structing proofs was implemented by a programmer who then left the project.
The programmer who took over the job of maintaining the proof constructor
read the program in two hours and found herself well prepared to change the
code.

We do not ascribe Penelope’s success purely to literate programming; other
factors contributed. We began implementation with a clearly defined goal and
worked from detailed, sometimes formal, specifications. We had time to design
the system carefully and used a declarative programming language. We did not
have to develop a user interface but used the one provided by the Synthesizer
Generator [18].

We will continue to use literate programming for Penelope and for future
projects. WEB’s problems are such that we believe it will be cost-effective for
future projects to develop literate programming tools that address some of the
criticisms presented here.

Acknowledgments

Silvio Levy provided his CWEB implementation as a base for the WEB used to
implement the Penelope editor. The staff of the Ada Verification project at
Odyssey Research made possible the experience with Penelope on which this
paper is based. This paper has been much improved by comments from David
Hanson and from the anonymous referees. Stuart Feldman commented on this
paper and discussed ideas for better tools.

References

[1] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97–
111, 1984.

[2] Donald E. Knuth and Jon L. Bentley. Programming pearls: Literate pro-
gramming. Communications of the ACM, 29(5):364–368, May 1986.

7



[3] Donald E. Knuth. Programming pearls: A literate program. Communi-

cations of the ACM, 29(6):471–483, June 1986. Reviewed by M. Douglas
McIlroy.

[4] David R. Hanson. Literate programming: Printing common words. Com-

munications of the ACM, 30(7):593–599, July 1987. Reviewed by John
Gilbert.

[5] David Gries and Jon Bentley. Programming pearls: Abstract data types.
Communications of the ACM, 30(4):284–290, April 1987.

[6] Donald E. Knuth. TEX: The Program, volume B of Computers & Typeset-

ting. Addison-Wesley, 1986.

[7] Donald E. Knuth. METAFONT: The Program, volume D of Computers &

Typesetting. Addison-Wesley, 1986.

[8] Christopher J. Van Wyk. Literate programming: An assessment. Commu-

nications of the ACM, 33(3):361–365, March 1990.

[9] Harold Thimbleby. A review of Donald C. Lindsay’s text file difference
utility, diff. Communications of the ACM, 32(6):752–755, June 1989.

[10] Harold Thimbleby. Experiences of ‘literate programming’ using cweb (a
variant of Knuth’s WEB). Computer Journal, 29(3):201–211, 1986.

[11] Klaus Guntermann and Joachim Schrod. WEB adapted to C. TUGboat,
7(3):134–137, October 1986.

[12] Silvio Levy. WEB adapted to C, another approach. TUGBoat, 8(1):12–13,
April 1987.

[13] Wayne Sewell. How to MANGLE your software: the WEB system for Modula-2.
TUGboat, 8(2):118–128, July 1987.

[14] Norman Ramsey. Literate programming: Weaving a language-independent
WEB. Communications of the ACM, 32(9):1051–1055, September 1989.

[15] Norman Ramsey. Developing formally verified Ada programs. In Pro-

ceedings of the 5th International Workshop on Software Specification and

Design, pages 257–265, Pittsburgh, Pennsylvania, May 1989.

[16] Carla Marceau and C. Douglas Harper. An interactive approach to Ada
verification. In Proceedings of the 12th National Computer Security Con-

ference, pages 28–51, Baltimore, Maryland, October 1989.

[17] David Guaspari, Carla Marceau, and Wolfgang Polak. Formal verification
of Ada programs. IEEE Transactions on Software Engineering, 16(9):1058–
1075, September 1990.

8



[18] Thomas Reps and Tim Teitelbaum. The Synthesizer Generator Reference

Manual. Springer-Verlag, 1989.

[19] Thomas Reps. Generating Language-Based Environments. MIT Press,
1984.

[20] US Department of Defense. The Ada Programming Language Reference

Manual, 1983. ANSI/MILSTD 1815A.

[21] Wolfgang Polak. Predicate transformer semantics for Ada. Technical Re-
port 89-39, Odyssey Research Associates, September 1989.

[22] Carla Marceau and Geoffrey Hird. A verified software implementation of an
RS-232 repeater using Penelope. Technical Report 90-12, Odyssey Research
Associates, 1990.

[23] D. G. Weber and Roger L. Costello. Beyond A1 using Ada code verification.
Technical Report 89-9, Odyssey Research Associates, April 1989.

[24] Eric R. Anderson, Ben DiVitto, and Ruth M. Hart. ASOS: Information
security for real-time systems. In AFCEA West Intelligence Symposium,
1987.

[25] Wolfgang Polak. Program verification based on denotational semantics. In
ACM Symposium on Principles of Programming Languages, pages 149–158.
Association for Computing Machinery, 1981.

[26] H. Ganzinger and K. Ripken. Operator identification in Ada. ACM SIG-

PLAN Notices, 15(2):30–42, February 1980.

[27] Jon Bentley. More Programming Pearls: Confessions of a Coder, chapter
10 and 11, pages 101–126. Addison-Wesley, 1988.

[28] Robert Sedgewick. Algorithms. Addison-Wesley, second edition, 1988.

[29] Stuart I. Feldman. Make—a program for maintaining computer programs.
Software—Practice and Experience, 9:255–265, 1979.

[30] Steve C. Johnson. Yacc—yet another compiler compiler. Technical Re-
port 32, Computer Science, AT&T Bell Laboratories, Murray Hill, New
Jersey, 1975.

[31] Brian W. Kernighan and Rob Pike. The UNIX Programming Environment.
Prentice-Hall, Englewood Cliffs, NJ, 1984.

[32] Norman Ramsey. The Spidery WEB system of structured documentation.
Technical Report TR-226-89, Department of Computer Science, Princeton
University, August 1989.

9



[33] David Lorge Parnas and Paul C. Clements. A rational design process:
How and why to fake it. IEEE Transactions on Software Engineering,
SE-12(2):251–257, February 1986.

10


