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1. Introduction

The core of the Scheme programming language is described in Revised® Report on the Algorithmic Language Scheme.
This manual assumes familiarity with Scheme and only contains information specific to MzScheme. (Many sections
near the front of this manual simply clarify MzScheme’s position with respect to the standard report.)

MzScheme (pronounced “miz scheme”, as in “Ms. Scheme”) is mostly R°RS-compliant. Certain parameters in
MzScheme can change features affecting R°RS-compliance; for example, case-sensitivity is initially enabled (see
§7.9.1.3).

MzScheme provides several notable extensions to R°RS Scheme:

e A module system for namespace and compilation management (see Chapter 5).

e An exception system that is used for all primitive errors (see Chapter 6).

e Pre-emptive threads (see Chapter 7).

e A class and object system (see Chapter 6 of PLT MzLib: Libraries Manual).

o A unit system for defining and linking program components (see Chapter 55 of PLT MzLib: Libraries Manual).

e Extensive Unicode and character-encoding support (see §1.2).

MzScheme can be run as a stand-alone application, or it can be embedded within other applications. Most of this
manual describes the language that is common to all uses of MzScheme. For information about running the stand-
alone version of MzScheme, see Chapter 17.

1.1 MrEd, DrScheme, and mzc

MrEd is an extension of MzScheme for graphical programming. MrEd is described separately in PLT MrEd: Graphi-
cal Toolbox Manual.

DrScheme is a development environment for writing MzScheme- and MrEd-based programs. DrScheme provides
debugging and project-management facilities, which are not provided by the stand-alone MzScheme application, and
a user-friendly interface with special support for using Scheme as a pedagogical tool. DrScheme is described in PLT
DrScheme: Development Environment Manual.

The mzc compiler takes MzScheme (or MrEd) source code and produces either platform-independent byte code com-
piled files (.zo files) or platform-specific native code libraries (.so, .dll, or .dylib files) to be loaded into MzScheme
(or MrEd). The mzc compiler is described in PLT mzc: MzScheme Compiler Manual.

MzScheme and its extensions are available with two different variants that use slightly different approaches to memory
management. The default variant is MzScheme3m; its “precise” memory management usually provides better overall
performance than the alternative. The alternative is MzSchemeCGC; its “conservative” memory management allows
it to cooperate more easily with extension and embedding code written in C. See Inside PLT MzScheme for more
information.
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1.2 Unicode, Locales, Strings, and Ports

As explained in the following subsections, MzScheme distinguishes characters from bytes and character strings from
byte strings. MzScheme’s notion of “character” corresponds to a Unicode scalar value (i.e., a Unicode code point that
is not a surrogate), and many operations assume the UTF-8 encoding when converting between characters and bytes.
For a handful of conversions, the user’s chosen locale determines an encoding, instead. The chosen locale also affects
string case folding and comparison for operations whose name includes locale.

1.2.1 Unicode

Unicode defines a standard mapping between sequences of integers and human-readable “characters.” More precisely,
Unicode distinguishes between glyphs, which are printed for humans to read, and characters, which are abstract entities
that map to glyphs, sometimes in a way that’s sensitive to surrounding characters. Furthermore, different sequences
of integers—or code points in Unicode terminology—sometimes correspond to the same character. The relationships
among code points, characters, and glyphs are subtle and complex.

Despite this complexity, most things that a literate human would call a “character” can be represented by a single code
point in Unicode (though it may also be represented by other sequences). For example, Roman letters, Cyrillic letters,
Chinese characters, and Hebrew consonants all fall into this category. The “code point” approximation of “character”
thus works well for many purposes, and MzScheme defines the char datatype to correspond to a Unicode code point.
(More precisely, a char corresponds to a Unicode scalar value, which excludes surrogate code points that are used to
encode other code points in certain contexts.) For the remainder of this manual, we use “character” interchangeably
with “code point” or “MzScheme’s char datatype.”

Besides printing and reading characters, humans also compare characters or character strings, and humans perform
operations such as changing characters to uppercase. To make programs geographically portable, humans must agree to
compare or upcase characters consistently, at least in certain contexts. The Unicode standard provides such a standard
mapping on code points, and this mapping is used to case-normalize symbols in MzScheme. In other contexts, global
agreement is unnecessary, and the user’s culture should determine the operation, such as when displaying a list of file
names. Cultural dependencies are captured by the user’s locale, which is discussed in the next section.

Most computing devices are built around the concept of byte (an integer from 0 to 255) instead of character. To
communicate character sequences among devices, then, requires an encoding of characters into bytes. UTF-8 is one
such encoding; due to its nice properties, the UTF-8 encoding is in many ways hard-wired into MzScheme’s primitives,
such as read-char. Encodings are discussed further in the following sections. For byte-based communication,
MzScheme supports byte strings as a separate datatype from character strings (see §3.6).

For official information on the Unicode standard, see http://www.unicode.org/. For a thorough but more accessible
introduction, see Unicode Demystified by Richard Gillam.

1.2.2 Locale

A locale captures information about a user’s culture-specific interpretation of character sequences. In particular, a
locale determines how strings are “alphabetized,” how a lowercase character is converted to an uppercase character,
and how strings are compared without regard to case. String operations such as string-ci? are not sensitive to the
current locale, but operations such as string—locale-ci? (see §3.5) produce results consistent with the current
locale.

Under Unix, a locale also designates a particular encoding of code-point sequences into byte sequences. MzScheme
generally ignores this aspect of the locale, with a few notable exceptions: command-line arguments passed to
MzScheme as byte strings are converted to character strings using the locale’s encoding; command-line strings passed
as byte strings to other processes (through subprocess) are converted to byte strings using the locale’s encoding;
environment variables are converted to and from strings using the locale’s encoding; filesystem paths are converted
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to and from strings (for display purposes) using the locale’s encoding; finally, MzScheme provides functions such as
string->bytes/locale to specifically invoke a locale-specific encoding.

A Unix user selects a locale by setting environment variables, such as LC_ALL. Under Windows and Mac OS X, the op-
erating system provides other mechanisms for setting the locale. Within MzScheme, the current locale can be changed
by setting the current—-1ocale parameter (see §7.9 and §7.9.1.11). The locale name within MzScheme is a string,
and the available locale names depend on the platform and its configuration, but the " " locale means the current user’s
default locale; under Windows and Mac OS X, the encoding for "" is always UTF-8, and locale-sensitive opera-
tions use the operating system’s native interface.! Setting the current locale to # f makes locale-sensitive operations
locale-insensitive, which means using the Unicode mapping for case operations and using UTF-8 for encoding.

1.2.3 Encodings and Ports

The UTF-8 encoding of characters to bytes has a number of important properties:

e Each code point from 0 to 127 (i.e., each ASCII character) is encoded by the corresponding byte from 0 to 127.

e Other code points are represented by a sequence of two to six bytes, where each byte is in the range 128 to 253.
Furthermore, the first byte in the sequence is between 192 and 253, and each subsequent byte is between 128
and 191.

e Not every sequence starting with 192-to-253 followed by 128-to-191 encodes a code point. The bytes 254 and
255 are never used to encode any code point.

e Every code-point sequence has a unique encoding in bytes, and every valid encoding in bytes has a unique
decoding into code points.

For a more complete description of UTF-§, see http://www.cl.cam.ac.uk/~mgk25/unicode.html.

Another useful encoding is Latin-1, where every code point from O to 255 is encoded by the corresponding byte, and
no other code points can be encoded.” Every byte sequence is therefore a valid encoding with a unique decoding, but
not every character string can be encoded.

MzScheme supports these two encodings through functions suchas bytes->string/utf-8and string->bytes/latin-1
(see §3.6). These functions accept an extra argument so that an un-encodable character or un-decodeable se-

quence is replaced by a specific character or byte, instead of raising an exception. MzScheme also provides
bytes->string/locale and string->bytes/locale; typically, a locale-specific encoding cannot encode

all characters, and not all byte sequences are valid encodings in the encoding.

All ports in MzScheme produce and consume bytes. When a port is provided to character-based operations, such as
read, the port’s bytes are interpreted as a UTF-8 encoding of characters. Moreover, when tracking position, line, and
column information for an input port, position and column are computed in terms of decoded characters, rather than
bytes.

Bytes streams that correspond to other encodings must be transformed to or from a UTF-8 byte stream, possibly using
a converter produced by bytes—convert (see §3.6). When an input port produces a sequence of bytes that is not a
valid UTF-8 encoding in a character-reading context, certain bytes in the sequence are converted to the character “?”
(see §11.1).

'In particular, setting the LC_ALL and LC_CTYPE environment variables do not affect the locale "" under Mac OS X. Use getenv and
current-locale to explicitly install the environment-specified locale, if desired.

2Technically, Latin-1 (as defined by ISO standard 8859) doesn’t include control characters in O to 31 and 127 to 159. Like much other software,
MzScheme uses an extended definition of Latin-1 that includes those control characters. Beware of encodings that claim to be Latin-1/ISO-8859-1
but that are actually Windows-1252, because Windows-1252 is an extension of Latin-1 that is not a subset of Unicode.
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1.3 Notation

Throughout this manual, the syntax for new forms is described using a pattern notation with ellipses. Plain, centered
ellipses (- - -) indicate zero or more repetitions of the preceding pattern. Ellipses with a “1”” superscript (- - -!) indicate
one or more repetitions of the preceding pattern.

For example:

(let-values (((variable ---) expr) ---)
body—-expr
1

The first set of ellipses indicate that any number of variables, possibly none, can be provided with a single expr.
The second set of ellipses indicate that any number of ( (variable ---) expr) combinations, possibly none,
can appear in the parentheses following the let-values syntax name. The last set of ellipses indicate that a
let—-values expression can contain any number of body—expr expressions, as long as at least one expression is
provided. In describing parts of the 1et-values syntax, the name variable is used to refer to a single binding
variable in a let —values expression.

Some examples contain simple ellipses (. . .), which is an identifier, albeit one that has special meaning in syntax
patterns and templates.

Square brackets (“[” and “]”’) are normally treated as parentheses by MzScheme, and this manual uses square brackets
as parentheses in example code. However, in describing a MzScheme procedure, this manual uses square brackets to
designate optional arguments. For example,

(regexp-match pattern string [start-k end-k])

describes the calling convention for a procedure regexp-match where the pattern and string arguments
are required, and the start—k and end-k arguments are optional (but start—k must be provided if end-k is
provided).

In grammar specifications for syntactic forms, variable and identifier are equivalent, but variable is often
used when the identifier corresponds to a location that holds a value at run time.
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2.1 Evaluation Order

In an application expression, the procedure expression and the argument expressions are always evaluated left-to-right.
Similarly, expressions for 1et and letrec bindings are evaluated in sequence from left to right.

2.2 Multiple Return Values

MzScheme supports the R°'RS values and call-with-values procedure, and also provides binding forms for
multiple-value expressions, discussed in §2.8.

Multiple return values are legal in MzScheme whenever the return value of an expression is ignored. For example,
all but the last expression in a begin form can legally return multiple values in any context. If a built-in procedure
takes a procedure argument, and the built-in procedure does not inspect the result of the supplied procedure, then the
supplied procedure can return multiple values. For example, the procedure supplied to for—each can return any
number of values, but the procedure supplied to map must return a single value.

When the number of values returned by an expression does not match the number of values expected by the expres-
sion’s context, the exn: fail:contract:arity exception is raised (at run time).

Examples:

(values 1)) ; = —1

(_
(— (values 1 2)) ; = error: returned 2 values to single-value context
(— (values)) ; = error: returned 0 values to single-value context
(call-with-values

(lambda () (values 1 2))

(lambda (x y) y)) ; = 2
(call-with-values

(lambda () (values 1 2))

(lambda z z)) ; = (1 2)
(call-with-values

(lambda () (let/cc k (k 3 4)))

(lambda (x y) y)) ; = 4
(call-with-values

(lambda () (values 'hello 1 2 3 4))
(lambda (s . 1)
(format ""s = "s" s 1))) ; = "hello = (1 2 3 4)"

2.3 Cond and Case

The else and => identifiers in a cond or case statement are handled specially only when they are not lexically
bound or module-bound:
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(cond [1 => addl]) ; = 2
(let ([=> 5]) (cond [1 => addl]l)) ; = #<primitive:addl>

2.4 When and Unless

The when and unless forms conditionally evaluate a single body of expressions:

e (when test-expr expr ---!) evaluates the expr body expressions only when test-expr returns a
true value.

e (unless test-expr expr ---!) evaluates the expr body expressions only when test-expr returns
#£.

The result of a when or unless expression is the result of the last body expression if the body is evaluated, or void
(see §3.1) if the body is not evaluated.

2.5 And and Or

In an and or or expression, the last test expression can return multiple values (see §2.2). If the last expression is
evaluated and it returns multiple values, then the result of the entire and or or expression is the multiple values.
Other sub-expressions in an and or or expression must return a single value.

2.6 Sequences

As a top-level form, begin wraps each sub-expression but the last with a prompt (see §6.5) using the default prompt
tag and an abort handler that re-aborts. This wrapping helps maintains the equivalence between wrapping a sequence
top-level forms with a begin and splicing the sequence into the enclosing context.

The begin0 form is like begin, but the value of the first expression in the form is returned instead of the value of
the last expression:

(let ([x 41])
(beginl0 x (set! x 9) (display x))) ; = displays 9 then returns 4

The first sub-expression in a begin0 expression is in tail position if and only if it is the only sub-expression.

2.7 Quote and Quasiquote

The quote form never allocates, so that the result of multiple evaluations of a single quote expression are always
eqg?. Nevertheless, a quoted cons cell, vector, or list is mutable; mutations to the result of a quote application are
visible to future evaluations of the quote expression.

The quasiquote form allocates only as many fresh cons cells, vectors, and boxes as are needed without analyzing
unquote and unquote-splicing expressions. For example, in

*(,1 2 3)
a single reader-allocated tail * (2 3) is used for every evaluation of the quasiquote expression.

The standard Scheme quasiquote has been extended so that unquote and unquote—-splicing work within
immediate boxes:
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‘#&(, (— 2 1) ,Q@(list 2 3)) ; = #&(1 2 3)

See §11.2.4 for more information about immediate boxes.

MzScheme defines the unquote and unquote-splicing identifiers as top-level syntactic forms that always
report a syntax error. The quasiquote form recognizes normal unquote and unquote-splicing uses via
module-identifier=7?. (See §12.3.1 for more information on identifier comparisons.)

2.8 Binding Forms

2.8.1 Definitions

A procedure definition

(define variable (lambda formals expr ~-1))

can be abbreviated

(define (variable . formals) expr o

In addition to this standard Scheme abbreviation, MzScheme supports an MIT-style generalization, so that a definition

(define header (lambda formals expr ---'))

can be abbreviated

(define (header . formals) expr -~-1))

even if header is itself a parenthesized procedure abbreviation. The general syntax of define is as follows:

(define variable expr)
(define (header . formals) expr ~~-1)

header is one of
variable
(header . formals)

formals is one of
variable
(variable ---)
(variable variable --- . variable)

Multiple values can be bound to multiple variables at once using define-values:

(define-values (variable ---) expr)

The number of values returned by expr must match the number of variables provided, and the variables must
be distinct. No procedure-definition abbreviation is available for define-values.

Examples:
(define x 1)
x ; = 1
(define (f x) (+ x 1))
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(£ 2) ; = 3

(define (((g x) y z) . w) (list x y z w))
(let ([h ((g 1) 2 3)])
(list (h 4 5) (h6))) ; = "((1L 2 3 (4 5)) (L 2 3 (6)))

define-values (x) 2)
= 2

define-values (x y) 7) ; = error: 1 value for 2-value context
define-values () 7) ; = error: 1 value for 0O-value context

(

X 7

(define-values (x y) (values 3 4))

x ; = 3
y ; = 4

(define-values (x y) (values 5 (addl x)))
y ; = 4

(define-values () (values)) ; same as (void)
(define x (values 7 8)) ; = error: 2 values for l-value context
(

(

2.8.2 Local Bindings

Local variables are bound with standard Scheme’s let, letx*, and letrec. MzScheme’s letrec form
guarantees sequential left-to-right evaluation of the binding expressions. (The letrec bound in the result of
(scheme-report—environment 5),however, is defined exactly as in RORS.)

Multiple values are bound to multiple local variables at once with let-values, let*-values, and
letrec-values. The syntax for let-values is:

(let-values (((variable ---) expr) ---) body-expr -~-])

As in define-values, the number of values returned by each expr must match the number of variables
declared in the corresponding clause. Each expr remains outside of the scope of all variables bound by the
let-values expression.

The syntax for let*-values and letrec-values is the same as for let-—values, and the binding semantics
for each form corresponds to the single-value binding form:

e Ina letx—values expression, the scope of the variables of each clause includes all of the remaining binding
clauses. The clause expressions are evaluated and bound to variables sequentially.
e Inaletrec-values expression, the scope of the variables of each clause includes all of the binding clauses.
The clause expressions are evaluated and bound to variables sequentially.
When a letrec or letrec-values expression is evaluated, each variable binding is initially assigned the special

undefined value (see §3.1); the undefined value is replaced after the corresponding expression is evaluated.

Examples:

define x 0)

(

(let ([x 5] [y x1) y) ; = O

(letx ([x 5] [y x]) y) ; = 5

(letrec ([x 5] [y x1) y) ; = 5

(letrec ([x y] [y 5]) x) ; = undefined
(let-values ([(x) 5] [(y) x1) y) i = O
(let-values ([(x y) (values 5 x)]) y) ; = 0
(let*x—values ([(x) 5] [(y) x]) y) ; = 5
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let*—values ([
letrec-values
letrec—-values
letrec—-values

x y) (values 5 x)1) y) ; = 0

[(x) 5] [(yv) x]) y) i = 5

[(x y) (values 5 x)]) y) ; = undefined

[ (odd even) (values

(lambda (n) (if (zero? n) #f (even (subl n))))

(lambda (n) (if (zero? n) #t (odd (subl n)))))1)

(
(
(
(

—~ o~ o~ —

(odd 17)) ; = #t

2.8.3 Assignments

The standard set! form assigns a value to a single global, local, or module variable. Multiple variables can be
assigned at once using set ! -values:

(set!-values (variable ---) expr)

The number of values returned by expr must match the number of variables provided.

The variables, which must be distinct, can be any mixture of global, local, and module variables. Assignments
are performed sequentially from the first variable to the last. If an error occurs in one of the assignments (perhaps
because a global variable is not yet bound), then the assignments for the preceding variables will have already
completed, but assignments for the remaining variables will never complete.

2.8.4 Fluid-Let

The syntax for a f1uid-1let expression is the same as for let:

(fluid-let ((variable expr) ---) body-expr b

Each variable must be either a local variable or a global or module variable that is bound before the fluid-1let
expression is evaluated. Before the body—exprs are evaluated, the bindings for the variables are set! to the
values of the corresponding exprs. Once the body—-exprs have been evaluated, the values of the variables are
restored. The value of the entire £1uid-1let expression is the value of the last body—-expr.

2.8.5 Syntax Expansion and Internal Definitions

All binding forms are syntax-expanded into define-values, let-values, letrec-values,define-syntaxes,
and letrec-syntaxes+values expressions. The set!-values form is expanded to let-values with
set!. See §12.6.1 for more information.

All define-values expressions that are inside only begin expressions are treated as top-level definitions.
Body define-values expressions in a module expression are handled specially as described in §5.1. Any
other define-values expression is either an internal definition or syntactically illegal. The same is true of
define-syntaxes expressions.

Internal definitions can appear at the start of a sequence of expressions, such as the start of a 1ambda, case-lambda,
or let body. At least one non-definition expression must follow a sequence of internal definitions. The first expression
in abegin0 expression cannot be an internal definition; for the purposes of internal definitions, the second expression
is the start of the sequence.

When a begin expression appears within a sequence, its content is inlined into the sequence (recursively, if the
begin expression contains other begin expressions). Like top-level begin expressions (and unlike other begin
expressions), a begin expression within an internal definition sequence can be empty.
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An internal define-values or define-syntaxes expression is transformed, along with the expressions fol-
lowing it, into a let rec—-syntaxes+values expression: the identifiers bound by the internal definitions become
the binding identifiers of the new letrec-syntaxes+values expression, and the expressions that follow the
definitions become the body of the new letrec-syntaxes+values expression.

Multiple adjacent definitions are collected into a single letrec—-syntaxes+values transformation, so that the
definitions can be mutually recursive, but the definitions expressions must be adjacent. A non-definition marks the
start of a sequence of expressions to be moved into the body of the newly created letrec-syntaxes+values
form.

Internal definitions are detected after a partial syntax expansion that stops at core forms, and thus exposes begin,
define-values, and define-syntaxes. Forms are expanded left to right, and whenever a definition is discov-
ered, a binding is introduced immediately for further expansion, so a definition can shadow variables when later forms
are expanded. Furthermore, when a define-syntaxes form is discovered, the right-hand side is immediately
evaluated, and the result is bound as syntax to the corresponding identifier(s); thus, a locally defined macro can be
used to generate later definitions in the same internal-definition context.

2.9 Case-Lambda

The case-lambda form creates a procedure that dispatches to a particular body of expressions based on the number
of arguments that the procedure receives. The case-1lambda form provides a mechanism for creating variable-arity
procedures with more control and efficiency than using a 1ambda “rest argument,” such as the x in (lambda (a
1
X) expr ---).

A case-lambda expression has the form:

(case—lambda
(formals expr . )

formals is one of
variable
(variable ---)
(variable --- . variable)

Each (formals expr ---') clause of a case-lambda expression is analogous to a 1ambda expression of the
form (lambda formals expr ---'). The scope of the variables in each clause’s formals includes only
the same clause’s exprs. The formals variables are bound to actual arguments in an application in the same way
that 1ambda variables are bound in an application.

When a case-1lambda procedure is invoked, one clause is selected and its exprs are evaluated for the application;
the result of the last expr in the clause is the result of the application. The clause that is selected for an application is
the first one with a forma1ls specification that can accommodate the number of arguments in the application.'

Examples:

(define f
(case—lambda
[ (x) x]
[(x y) (+ x y)]
[(a . any) al))
(f 1) ; = 1
(f12) ; = 3

It is possible that a clause in a case-1ambda expression can never be evaluated because a preceding clause always matches the arguments.

10
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(f 4567 ; =4
(f) ; = raises exn:fail:contract:arity

The result of a case-1lambda expression is a procedure, just like the result of a lambda expression. Thus, the
procedure? predicate returns #t when applied to the result of a case—1ambda expression.
2.10 Procedure Application

The “empty application” form () expands to the quoted empty list * ().

2.11 Variable Reference

The #%variable-reference form returns a value representing the address of a top-level or module variable:

(#%variable-reference variable)
(#%variable-reference (#%top . variable))

For either form, a syntax error is reported if variable is not bound to a top-level or module variable.

The result of a #$variable-reference expression is opaque, with no useful operation in MzScheme. See Inside
PLT MzScheme for information on its use in low-level extensions to MzScheme.

2.12 Forcing Expression Parsing

In certain contexts, the expansion and parsing of a syntactic form can differ depending on whether it is parsed as an
expression or a top-level form. For example, at the top level, begin acts as a splicing form that wraps each sub-
expression evaluation with a prompt (see §6.5), but no such prompts are inserted for begin parsed as a sequencing
expression.

The #%expression form wraps a datum so that it must be parsed as an expression:

(#%expression expr)

A fully-expanded expression eliminates #%$expression except as a top-level form.

11



3. Basic Data Extensions

3.1 Void and Undefined

MzScheme returns the unique void value — printed as #<void> — for expressions that have unspecified results in
R>RS. The procedure void takes any number of arguments and returns void:

e (void v ---) returns void.

e (void? v) returns #t if v is void, # £ otherwise.

Variables bound by letrec-values that are accessible but not yet initialized are bound to the unique undefined
value, printed as # <<undefined>.

3.2 Booleans

Unless otherwise specified, two instances of a particular MzScheme data type are equal? only when they are eq?.
Two values are eqv ? only when they are either eq?, both 4+nan. 0, or both = and have the same exactness and sign.
(The inexact numbers 0.0 and —0 . 0 are not eqv ?, although they are =.)

The andmap and ormap procedures apply a test procedure to the elements of a list, returning immediately when the
result for testing the entire list is determined. The arguments to andmap and ormap are the same as for map, but a
single boolean value is returned as the result, rather than a list:

e (andmap proc list ---') applies proc to elements of the 1ists from the first elements to the last,
returning #£ as soon as any application returns #£. If no application of proc returns # £, then the result of
the last application of proc is returned; more specifically, the application of proc to the last elements in the
1istsis in tail position with respect to the andmap call. If the 11 sts are empty, then #t is returned.

e (ormap proc list ---!) applies proc to elements of the 1ists from the first elements to the last. If
any application returns a value other than # £, that value is immediately returned as the result of the ormap
application. If all applications of proc return # £, then the result is # £; more specifically, if proc is applied to
the last elements of the 11sts, the application is in tail position with respect to the ormap call. If the 1ists
are empty, then #£ is returned.

Examples:

(andmap positive? (1 2 3)) ; = #t

(ormap eg? ’"(a b c) "(a b c)) ; = #t

(andmap positive? 7" (1 2 a)) ; = raises exn:fail:contract
(ormap positive? ' (1 2 a)) ; = #t

(andmap positive? " (1 -2 a)) ; = #f

(andmap + (1 2 3) (4 5 6)) ; = 9

(ormap + (1 2 3) (4 5 6)) ; = 5

12
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3.3 Numbers

A number in MzScheme is one of the following:

e a fixnum exact integer (30 bits' plus a sign bit)

a bignum exact integer (cannot be represented in a fixnum)

a fraction exact rational (represented by two exact integers)

e a flonum inexact rational (double-precision floating-point number)

a complex number; either the real and imaginary parts are both exact or inexact, or the number has an exact zero
real part and an inexact imaginary part; a complex number with an inexact zero imaginary part is a real number

MzScheme extends the number syntax of R3RS in three ways:

e All input radixes (#b, #0, #d, and #x) allow “decimal” numbers that contain a period or exponent marker. For
example, #b1 .1 is equivalent to 1. 5. In hexadecimal numbers, e and d always stand for a hexadecimal digit,
not an exponent marker.

e The mantissa of a number with an exponent marker can be expressed as a fraction. For example, 1/2e3 is
equivalent to 500.0,and 1/2e2+1/2e41i is equivalent to 50.0+5000.01.

e The following are inexact numerical constants: +inf .0 (infinity), —inf. 0 (negative infinity), +nan. 0 (not
a number), and —nan. 0 (same as +nan.0). These names can also be used within complex constants, as in
—inf.0+inf.0i. These names are case-insensitive.

The special inexact numbers +inf.0, —inf.0, and +nan. 0 have no exact form. Dividing by an inexact zero
returns +inf.0 or —inf. 0, depending on the sign of the dividend. The infinities are integers, and they answer #t
for both even? and odd?. The +nan. 0 value is not an integer and is not = to itself, but +nan.0 is eqv? to
itself.” Similarly, (= 0.0 —0.0) is #t,but (eqv? 0.0 —0.0) is #f.

All multi-argument arithmetic procedures operate pairwise on arguments from left to right.

The string—>number procedure works on all number representations and exact integer radix values in the range
2 to 16 (inclusive). The number—>string procedure accepts all number types and the radix values 2, 8, 10, and
16; however, if an inexact number is provided with a radix other than 10, the exn:fail:contract exception is
raised.

The addl and subl procedures work on any number:

e (addl z) returns z—+1.

e (subl z) returns z— 1.
The following procedures work on integers:

e (quotient/remainder nl n2) returns two values: (quotient nl n2) and (remainder nl
n2).

130 bits for a 32-bit architecture, 62 bits for a 64-bit architecture.
2This definition of eqv? technically contradicts R>RS, but R°RS does not address strange “numbers” like +nan. 0.

13
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e (integer-sqgrt n) returns the integer square-root of n. For positive n, the result is the largest positive
integer bounded by the (sgrt n). For negative n, the resultis (* (integer—sqrt (— n)) 0+1).

e (integer-sqgrt/remainder n) returns two values: (integer-sqrt n) and (— n (expt
(integer-sqgrt n) 2)).

The following procedures work on exact integers in their (semi-infinite) two’s complement representation:

(bitwise—ior n ---) returns the bitwise “inclusive or” of the ns. If no arguments are provided, the result

is 0.

e (bitwise-and n ---) returns the bitwise “and” of the ns. If no arguments are provided, the result is —1.

e (bitwise-xor n ---) returns the bitwise “exclusive or” of the ns. If no arguments are provided, the result
is 0.

e (bitwise—not n) returns the bitwise “not” of n.

(arithmetic-shift n m) returns the bitwise “shift” of n. The integer n is shifted left by m bits; i.e., m
new zeros are introduced as rightmost digits. If m is negative, n is shifted right by —m bits; i.e., the rightmost m
digits are dropped.

e (integer-length n) returns the number of bits in the representation of n after removing all leading zeros
(for non-negative n) or ones (for negative n).

The random procedure generates pseudo-random numbers:

e (random k) returns a random exact integer in the range 0 to k — 1 where k is an exact integer between 1 and
231 — 1, inclusive. The number is provided by the current pseudo-random number generator, which maintains
an internal state for generating numbers.’

e (random) returns a random inexact number between 0 and 1, exclusive, using the current pseudo-random
number generator.

e (random-seed k) seeds the current pseudo-random number generator with k, an exact integer between 0
and 23! — 1, inclusive. Seeding a generator sets its internal state deterministically; seeding a generator with a
particular number forces it to produce a sequence of pseudo-random numbers that is the same across runs and
across platforms.

e (pseudo-random-generator->vector generator) produces a vector that represents the complete
internal state of generator. The vector is suitable as an argument to vect or->pseudo-random-generator
to recreate the generator in its current state (across runs and across platforms).

e (vector->pseudo-random-generator vec) produces a pseudo-random number generator whose in-
ternal state corresponds to vec. The vector vec must contain six exact integers; the first three integers must
be in the range 0 to 4294967086, inclusive; the last three integers must be in the range 0 to 4294944442,
inclusive; at least one of the first three integers must be non-zero; and at least one of the last three integers must
be non-zero.

e (current-pseudo-random—generator) returns the current pseudo-random number generator, and
(current-pseudo-random—-generator generator) sets the current generator to generator.
See also §7.9.1.10.

e (make-pseudo-random-generator) returns a new pseudo-random number generator. The new gener-
ator is seeded with a number derived from (current-milliseconds).

3The random number generator uses a 54-bit version of L’Ecuyer’s MRG32k3a algorithm.

14
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e (pseudo-random-generator? v) returns #t if v is a pseudo-random number generator, # £ otherwise.

The following procedures convert between Scheme numbers and common machine byte representations:

e (integer-bytes->integer bytes signed? [big-endian?]) converts the machine-format num-
ber encoded in bytes to an exact integer. The bytes must contain either 2, 4, or 8 bytes. If signed? is
true, then the bytes are decoded as a two’s-complement number, otherwise it is decoded as an unsigned integer.
If big-endian? is true, then the first character’s ASCII value provides the most significant eight bits of the
number, otherwise the first character provides the least-significant eight bits, and so on. The default value of
big-endian?is the result of system-big-endian?.

e (integer—->integer-bytes n size-n signed? [big-endian? to-bytes|) converts the
exact integer n to a machine-format number encoded in a byte string of length size-n, which must be 2,
4, or 8. If signed? is true, then the number is encoded with two’s complement, otherwise it is encoded as an
unsigned bit stream. If big-endian? is true, then the most significant eight bits of the number are encoded
in the first character of the resulting byte string, otherwise the least-significant bits are encoded in the first byte,
and so on. The default value of big—endian? is the result of system-big-endian?®.

If to-bytes is provided, it must be a mutable byte string of length size—n; in that case, the encoding of n is
written into to—-bytes, and to-bytes is returned as the result. If to—-bytes is not provided, the result is a
newly allocated byte string.

If n cannot be encoded in a string of the requested size and format, the exn: fail:contract exception is
raised. If to-bytes is provided and it is not of length size-n, the exn:fail:contract exception is
raised.

e (floating-point-bytes->real bytes [big-endian?|) converts the IEEE floating-point number
encoded in bytes to an inexact real number. The bytes must contain either 4 or 8 bytes. If big-endian?
is true, then the first byte’s ASCII value provides the most significant eight bits of the IEEE representation,
otherwise the first byte provides the least-significant eight bits, and so on. The default value of big—-endian?
is the result of system-big-endian?.

e (real->floating-point-bytes x size-n |[big-endian? to-bytes]) converts the real
number x to its IEEE representation in a byte string of length size—n, whichmustbe 4 or 8. If big-endian?
is true, then the most significant eight bits of the number are encoded in the first byte of the resulting byte
string, otherwise the least-significant bits are encoded in the first character, and so on. The default value of
big-endian?is the result of system-big-endian?.

If to-bytes is provided, it must be a mutable byte string of length size—n; in that case, the encoding of n is
written into to-bytes, and to-bytes is returned as the result. If to-bytes is not provided, the result is a
newly allocated byte string.

If to-bytes is provided and it is not of length size-n, the exn:fail:contract exception is raised.

e (system-big-endian?) returns #t if the native encoding of numbers is big-endian for the machine run-
ning MzScheme, #£ if the native encoding is little-endian.

3.4 Characters

MzScheme characters range over Unicode scalar values (see §1.2.1), which includes characters whose values range
from #x0 to #x10FFFF, but not including #xD800 to #xDFFF. The procedure char—>1integer returns a charac-
ter’s code-point number, and integer—>char converts a code-point number to a character. If integer—>char
is given an integer that is either outside #x0 to #x10FFFF or in the excluded range #xD800 to #xDFFF, the
exn:fail:contract exception is raised.
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Character constants include special named characters, such as #\newline, plus octal representations (e.g., #\251),
and Unicode-style hexadecimal representations (e.g., #\u03BB). See §11.2.4 for more information on character con-
stants.

The character comparison procedures char=?, char<?, char-ci=?, etc. take two or more character arguments
and check the arguments pairwise (like the numerical comparison procedures). Two characters are eq? whenever they
are char=2. The expression (char<? charl char2) produces the same result as (< (char->integer
charl) (char->integer char?2)),etc. The case-independent —ci procedures compare characters after case-
folding with char—foldcase (described below).

The character predicates produce results consistent with the Unicode database* and (usually) SRFI-14. These proce-
dures are fully portable; their results do not depend on the current platform or locale.

e (char—-alphabetic? char) —returns #t if char’s Unicode general category is Lu, L1, Lt, Lm, or Lo,
#f otherwise.

e (char-lower-case? char) —returns #t if char has the Unicode “Lowercase” property.

e (char-upper—-case? char) —returns #t if char has the Unicode “Uppercase” property.

e (char-title-case? char) —returns #t if char’s Unicode general category is Lt, #f otherwise.

e (char—-numeric? char) —returns #t if char’s Unicode general category is Nd, #f otherwise.
e (char-symbolic? char) — returns #t if char’s Unicode general category is Sm, Sc, Sk, or So, #£f
otherwise.

e (char-punctuation? char) —returns #t if char’s Unicode general category is Pc, Pd, Ps, Pe, P1,
Pf,or Po, #f otherwise.

e (char—graphic? char) — returns #t if char’s Unicode general category is Mn, Mc, Me, or if
one of the following produces #t when applied to char: char-alphabetic?, char-numeric?,
char-symbolic?,or char-punctuation?.

e (char-whitespace? char) — returns #t if char’s Unicode general category is Zs, Z1, or Zp, or if
char is one of the following: #\tab, #\newline, #\vtab, #\page, #\return, or #\u0085.

e (char-blank? char) — returns #t if char’s Unicode general category is Zs or if char is #\tab.
(These correspond to horizontal whitespace.)

e (char-iso-control? char) — return #t if char is between #\u0000 and #\uOOL1F inclusive or
#\u007F and #\u009F inclusive.

e (char—general-category char) — returns a symbol representing the character’s Unicode general cat-
egory, which is * 1u, " 11, *1t, " 1m, ' 1o, 'mn, 'mc, 'me, 'nd, 'nl, "no, 'ps, 'pe, 'pi, 'pf, ' pd,
"pc, "po, "sc,"sm, "sk,’"so,"zs,’zp,’z1l,"cc,’cf,’cs,’co,or’ cn.

Character conversions are also consistent with the 1-to-1 code point mapping defined by Unicode. String procedures
(see §3.5) handle the case where Unicode defines a locale-independent mapping from the code point to a code-point
sequence (in addition to the 1-1 mapping on scalar values).

e (char-upcase char) produces a character according to the upcase mapping provided by the Unicode
database for char; if char has no upcase mapping, char—upcase produces char.

e (char-downcase char) produces a character according to the downcase mapping provided by the Uni-
code database for char; if char has no downcase mapping, char—downcase produces char.

4The current version of MzScheme uses Unicode version 4.1.
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e (char-titlecase char) produces a character according to the titlecase mapping provided by the Uni-
code database for char; if char has no titlecase mapping, char-titlecase produces char.

e (char—-foldcase char) produces a character according to the case-folding mapping provided by the Uni-
code database for char.

(make-known-char-range—1list) produces a list of three-element lists, where each three-element list rep-
resents a set of consecutive code points for which the Unicode standard specifies character properties. Each three-
element list contains two integers and a boolean; the first integer is a starting code-point value (inclusive), the second
integer is an ending code-point value (inclusive), and the boolean is #t when all characters in the code-point range
have identical results for all of the character predicates above. The three-element lists are ordered in the overall result
list such that later lists represent larger code-point values, and all three-element lists are separated from every other by
at least one code-point value that is not specified by Unicode.

(char-utf-8-length char) produces the same result as (bytes-length (string->bytes/utf-8
(string char))).

3.5 Strings

Since a string consists of a sequence of characters, a string in MzScheme is a Unicode code-point sequence. MzScheme
also provides byte strings, as well as functions to convert between byte strings and strings with respect to various
encodings, including UTF-8 and the current locale’s encoding. See §1.2 for an overview of Unicode, locales, and
encodings, and see §3.6 for more specific information on byte-string conversions.

A string can be mutable or immutable. = When an immutable string is provided to a procedure like
string-set!, the exn:fail:contract exception is raised. String constants generated by read are im-
mutable. (string->immutable-string string) returns an immutable string with the same content as
string, and it returns st ring itself if st ring is immutable. (See also immutable? in §3.10.)

(substring string start-k [end-k|) returns a mutable string, even if the string argument is im-
mutable. The end-k argument defaults to (string-length string); otherwise, substring is as specified
by R°RS.

(string-copy! dest-string dest-start-k src-string [src—start -k src—end—k] ) changes
the characters of dest—string from positions dest—start—k (inclusive) to dest —end—k (exclusive) to match
the characters in src-string from src-start-k (inclusive). If src—-start—k is not provided, it defaults to
0. If src—end-k is not provided, it defaults to (string-length src-string). The strings dest-string
and src-string can be the same string, and in that case the destination region can overlap with the source region;
the destination characters after the copy match the source characters from before the copy. If any of dest-start-k,
src-start-k, or src—end-k are out of range (taking into account the sizes of the strings and the source and des-
tination regions), the exn: fail:contract exception is raised.

When a string is created with make—-string without a fill value, it is initialized with the null character (#\nul) in
all positions.

The string comparison procedures string=?, string<?, string-ci=?, etc. take two or more string argu-
ments and check the arguments pairwise (like the numerical comparison procedures). String comparisons are per-
formed through pairwise comparison of characters; for the —ci operations, the two strings are first case-folded using
string-foldcase (described below). Comparisons using all of these functions are fully portable; the results do
not depend on the current platform or locale.

The following string-conversion procedures take into account Unicode’s locale-independent conversion rules that map

code-point sequences to code-point sequences (instead of simply mapping a 1-to-1 function on code points over the
string). In each case, the string produced by the conversion can be longer than the input string.
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e (string-upcase string) returns a string whose characters are the upcase conversion of the characters
in string.

e (string-downcase string) returns a string whose characters are the downcase conversion of the char-
acters in string.

e (string-titlecase string) returns a string where the first character in each sequence of cased char-
acters in st ring (ignoring case-ignorable characters) is converted to titlecase, and all other cased characters
are downcased.

e (string-foldcase string) returns a string whose characters are the case-fold conversion of the char-
acters in string.

Examples:
(string-upcase "abc!") ; = "ABC!"
(string-upcase "Stra\xDFe") ; = "STRASSE"

(string—-downcase "aBC!") ; = "abc!"

(string-downcase "Stra\xDFe") ; = "stra\xDFe"

(string-downcase "\u039A\uO391\uO39F\u03A3") H "\UO3BA\uO3bl\uO3BF\uO3C2"
(string-downcase "\uO0O3A3") ; = "\u03C3"

string-titlecase "aBC twO") ; = "Abc Two"
string-titlecase "y2k") ; = "Y2K"

string-titlecase "main stra\xDFe") ; = "Main Stra\xDFe"
string-titlecase "stra \xDFe") ; = "Stra Sse"

(
(
(
(

(string-foldcase "aBC!") ; = "abc!"
(string-foldcase "Stra\xDFe") ; = "strasse"
(string-foldcase "\u039A\u0391\u039F\u03A3") ; = "\u03BA\u03bl\u03BF\u03C3"

In addition to the character-based string procedures, MzScheme provides the following locale-sensitive procedures
(see also §1.2.2 and §7.9.1.11):

e (string-locale=? stringl stringZ2 sy
e (string-locale<? stringl stringZ2 Dy
e (string-locale>? stringl stringZ2 b
e (string—-locale-ci=? stringl string2 )
e (string-locale-ci<? stringl stringZ2 -0
e (string-locale-ci>? stringl stringZ2 -0

e (string-locale-upcase string) — may produce a string that is longer or shorter than string if
the current locale has complex case-folding rules.

(string-locale-downcase string) —like string-locale-upcase, may produce a string that
is longer or shorter than st ring

These procedures depend only on the current locale’s case-conversion and collation rules, and not on its encoding
rules.

MzScheme provides four Unicode-normalization procedures:
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e (string-normalize-nfd string) — returns a string that is the Unicode normalized form D of
string.

e (string-normalize-nfkd string) — returns a string that is the Unicode normalized form KD of
string.

e (string-normalize-nfc string) — returns a string that is the Unicode normalized form C of
string.

e (string-normalize-nfkc string) — returns a string that is the Unicode normalized form KC of
string.

For each of the normalization procedures, if the given string is already in the corresponding Unicode normal form, the
string may be returned directly as the result (instead of a newly allocated string).

3.6 Byte Strings

A byte string is like a string, but it a sequence of bytes instead of characters. A byte is an exact integer between 0 and
255 inclusive; (byte? v) produces #t if v is such an exact integer, # £ otherwise. Two bytes strings are equal?
if they are bytewise equal, and two byte strings are eqv ? only if they are eq?.

MzScheme provides byte-string operations in parallel to the character-string operations:

o (bytes? v)

e (bytes byte -

e (make-bytes k [byte])

e (bytes—-length bytes)

o (bytes—-ref bytes k)

e (bytes-set! bytes k byte)

o (bytes-fill! bytes byte)

e (subbytes bytes start-k [end-k])
e (bytes-append bytes ---1)

e (bytes—copy bytes)

o (bytes-copy! dest-bytes dest-start-k src—bytes[src—start—k src—end—kb
o (bytes->1list bytes)

e (list->bytes byte-1ist)

o (bytes->immutable-bytes bytes)
e (bytes=? bytesl bytesZ2 -0

e (bytes<? bytesl bytes2 sy

e (bytes>? bytesl bytesZ2 -
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A byte-string constant is written like a string, but prefixed with # (with no space between # and the opening double-
quote). A byte-string constant can contain escape sequences, as in #"\n", just like strings; an exn:fail:read
exception is raised if a ““\u” sequence appears within a byte string and the given hexadecimal value is larger than 255.

Like character strings, byte strings generated by read are immutable, and when an immutable string is provided to a
procedure like bytes—set !, the exn:fail:contract exception is raised.

The following procedures convert between byte strings and character strings:

e (bytes->string/utf-8 bytes [err—char start-k end-k|) — produces a string by decoding
the start—k to end-k substring of bytes as a UTF-8 encoding of Unicode code points. If err-char
is provided and not # £, then it is used for bytes that fall in the range #0200 to #0377 but are not part of a
valid encoding sequence. (This is consistent with reading characters from a port; see §11.1 for more details.)
If err-char is #£ or not provided, and if the start—k to end-k substring of bytes is not a valid UTF-
8 encoding overall, then the exn:fail:contract exception is raised. If start—k or end—k are not
provided, they default to 0 and (bytes-length bytes), respectively.

e (bytes->string/locale bytes [err—char start—k end-k]) — produces a string by decod-
ing the start—k to end-k substring of bytes using the current locale’s encoding (see also §1.2.2). If
err—char is provided and not #£, it is used for each byte in bytes that is not part of a valid encoding; if
err—char is # £ or not provided, and if the start—k to end—k substring of bytes is not a valid encoding
overall, then the exn: fail:contract exception is raised. If start-k or end—k are not provided, they
default to 0 and (bytes-length bytes), respectively.

e (bytes->string/latin-1 bytes [err—-char start-k end-k|) — produces a string by decod-
ing the start—k to end-k substring of bytes as a Latin-1 encoding of Unicode code points; i.e., each byte is
translated directly to a character using integer—>char, so the decoding always succeeds.” The err—char
argument is ignored, but for consistency with the other operations, it must be a character or #f if provided. If
start—k or end—-k are not provided, they default to O and (bytes—-length bytes), respectively.

e (string->bytes/utf-8 string [err-byte start-k end-k|) — produces a byte string by end-
ing the start -k to end—k substring of st ring via UTF-8 (always succeeding). The err—char argument
is ignored, but for consistency with the other operations, it must be a byte or # £ if provided. If start-k or
end-k are not provided, they defaultto 0 and (string-length string), respectively.

e (string->bytes/locale string |err-byte start-k end-k|) — produces a string by encod-
ing the start—k to end—-k substring of string using the current locale’s encoding (see also §1.2.2). If
err-byte is provided and not # £, it is used for each character in st ring that cannot be encoded for the cur-
rent locale; if err-byte is #£ or not provided, and if the start—k to end-k substring of st ring cannot
be encoded, then the exn:fail:contract exception is raised. If start—k or end-k are not provided,
they default to 0 and (string—-length string), respectively.

e (string->bytes/latin-1 string [err-byte start-k end-k|) — produces a string by en-
coding the start -k to end—k substring of st ring using Latin-1; i.e., each character is translated directly to
abyte using char->integer. If err-byteis provided and not #£, it is used for each character in st ring
whose value is greater than 255;° if err—byteis #f or not provided, and if the start -k to end—k substring
of st ring has a character with a value greater than 255, then the exn: fail:contract exception is raised.
If start—k or end—-k are not provided, they default to 0 and (string—-length string), respectively.

e (string-utf-8-length string [start-k end-k]) returns the length in bytes of the UTF-8 en-
coding of string’s substring from start—k to end-k, but without actually generating the encoded bytes.
If start—k is not provided, it defaults to 0, and end—k defaults to (string-length string).

3See also the Latin-1 footnote of §1.2.3.
6See also the Latin-1 footnote of §1.2.3.
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e (bytes-utf-8-length bytes [err—char start-k end-k]) returns the length in characters of
the UTF-8 decoding of bytes’s substring from start-k to end-k, but without actually generating the
decoded characters. If start—-k is not provided, it defaults to 0, and end-k defaults to (bytes—-length
bytes). If err-char is #£ and the substring is not a UTF-8 encoding overall, the result is # £. Otherwise,
err—char is used to resolve decoding errors as in bytes->string/ut£-8.

e (bytes-utf-8-ref bytes [skip-k err—char start-k end-k]) returns the skip-kth char-
acter in the UTF-8 decoding of bytes’s substring from start-k to end-k, but without actually gener-
ating the other decoded characters. If start—k is not provided, it defaults to 0, and end-k defaults to
(bytes—length bytes). If the substring is not a UTF-8 encoding up to the skip—kth character (when
err—char is #£), or if the substring decoding produces fewer than skip—-k characters, the result is #£. If
err—char is not # £, it is used to resolve decoding errors as in bytes—>string/ut£-8.

e (bytes-utf-8-index bytes [skip-k err—char start-k end-k]) returns the offset in bytes
into bytes at which the skip-kth character’s encoding starts in the UTF-8 decoding of bytes’s substring
from start-k to end—k (but without actually generating the other decoded characters). If start—-k is not
provided, it defaults to 0, and end—-k defaults to (bytes—length bytes). The resultis relative to the start
of bytes, not to start—k. If the substring is not a UTF-8 encoding up to the skip-kth character (when
err—char is #£), or if the substring decoding produces fewer than skip—k characters, the result is #£. If
err—char isnot # £, it is used to resolve decoding errors as in bytes—>string/utf-8.

A string converter can be used to convert directly from one byte-string encoding of characters to another byte-string
encoding.

e (bytes-open-converter from—-name-string to-name-string) — produces a string converter
to go from the encoding named by from—-name-string to the encoding named by to—name-string. If
the requested conversion pair is not available, # f is returned instead of a converter.

Certain encoding combinations are always available:

— (bytes-open-converter "UTF-8" "UTF-8") — the identity conversion, except that encoding
errors in the input lead to a decoding failure.
— (bytes-open-converter "UTF-8-permissive" "UTF-8") — the identity conversion, ex-

cept that any input byte that is not part of a valid encoding sequence is effectively replaced by
(char->integer #\?). (This handling of invalid sequences is consistent with the interpretation of

port bytes streams into characters; see §11.1.)

— (bytes—-open-converter "" "UTF-8") — converts from the current locale’s default encoding
(see §1.2.2) to UTF-8.

— (bytes-open-converter "UTF-8" "") — converts from UTF-8 to the current locale’s default
encoding (see §1.2.2).

— (bytes-open-converter "platform-UTF-8" "platform-UTF-16") — converts UTF-8

to UTF-16 under Unix and Mac OS X, where each UTF-16 code unit is a sequence of two bytes ordered
by the current platform’s endianess. Under Windows, the input can include encodings that are not valid
UTF-8, but which naturally extend the UTF-8 encoding to support unpaired surrogate code units, and
the output is a sequence of UTF-16 code units (as little-endian byte pairs), potentially including unpaired
surrogates.

— (bytes-open-converter "platform-UTF-8-permissive" "platform-UTF-16") —
like (bytes-open-converter "platform-UTF-8" "platform-UTF-16"), but an input
byte that is not part of a valid UTF-8 encoding sequence (or valid for the unpaired-surrogate extension
under Windows) is effectively replaced with (char->integer #\?).

— (bytes-open-converter "platform-UTF-16" "platform-UTF-8") — converts UTF-
16 (bytes orderd by the current platform’s endianness) to UTF-8 under Unix and Mac OS X. Under
Windows, the input can include UTF-16 code units that are unpaired surrogates, and the corresponding
output includes an encoding of each surrogate in a natural extension of UTF-8. Under Unix and Mac OS
X, surrogates are assumed to be paired: a pair of bytes with the bits #xD800 starts a surrogate pair, and
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the #x 03FF bits are used from the pair and following pair (independent of the value of the #xDCO0O0 bits).
On all platforms, performance may be poor when decoding from an odd offset within an input byte string.

A newly opened byte converter is registered with the current custodian (see §9.2), so that the converter is closed
when the custodian is shut down. A converter is not registered with a custodian (and does not need to be
closed) if it is one of the guaranteed combinations not involving " " under Unix, or if it is any of the guaranteed
combinations (including " ") under Windows and Mac OS X.

The set of available encodings and combinations varies by platform, depending on the iconv library that is
installed. Under Windows, iconv.dll or libiconv.dll must be in the same directory as libmzsch VERS.dII (where
VERS is a version number),’ in the user’s path, in the system directory, or in the current executable’s directory
at run time, and the DLL must either supply _.errno or link to msvert.dll for _errno; otherwise, only the
guaranteed combinations are available.

e (bytes-close-converter bytes—-converter) — closes the given converter, so that it can no longer
be used with bytes—convert or bytes—convert—end.

e (bytes—-convert bytes-converter src-bytes [src—start—k src—end-k dest-bytes dest-start-—k
dest-end-k]) converts the bytes from src—-start—k to src—end-k in src-bytes. If dest-bytes
is supplied and not #f, the converted byte are written into dest-bytes from dest-start-k to
dest-end-k. If dest-bytes is not supplied or is #£, then a newly allocated byte string holds the con-
version results, and the size of the result byte string is no more than (— dest-end-k start-start-k).

If src-start-k or dest-start—k is not provided, it defaults to 0. If src—end-k is not provided,
it defaults to (bytes-length src-bytes. If src-end-k is not provided or is #£, then it defaults
to (bytes—-length dest-bytes) when dest-bytes is a byte string or to an arbitrarily large integer
otherwise.

The result of bytes—convert is three values:

- result-bytes or dest-wrote—k — a byte string if dest-bytes is #£f or not provided, or the
number of bytes written into dest -bytes otherwise.

— src—read-k — the number of bytes successfully converted from src-bytes.

— ’'complete, ’ continues, ' aborts, or ' error — indicates how conversion terminated.

x ' complete: The entire input was processed, and src—read-k willbe equal to (— src-end-k
src-start-k).

* ' continues: Conversion stopped due to the limit on the result size or the space in dest-bytes;
in this case, fewer than (— dest-end-k dest-start-—k) bytes may be returned if more space
is needed to process the next complete encoding sequence in src—bytes.

* "aborts: The input stopped part-way through an encoding sequence, and more input bytes are
necessary to continue. For example, if the last byte of inputis #0303 fora "UTF-8-permissive"
decoding, the result is * abort s, because another byte is needed to determine how to use the #0303
byte.

* "error: The bytes starting at (+ src—-start—-k src-read-k) bytesin src—-bytes do not
form a legal encoding sequence. This result is never produced for some encodings, where all byte
sequences are valid encodings. For example, since "UTF-8-permissive" handles an invalid
UTF-8 sequence by dropping characters or generating “?”, every byte sequence is effectively valid.

Applying a converter accumulates state in the converter (even when the third result of bytes—convert is
" complete). This state can affect both further processing of input and further generation of output, but only
for conversions that involve “shift sequences” to change modes within a stream. To terminate an input sequence
and reset the converter, use bytes—-convert—-end.

e (bytes-convert-end bytes-converter [dest—bytes dest-start-k dest—end—k]) —
like bytes—convert, but instead of converting bytes, this procedure generates an ending sequence for the
conversion (sometimes called a “shift sequence”), if any. Few encodings use shift sequences, so this function

TIn PLT’s software distributions for Windows, a suitable iconv.dll is included with libmzsch VERS.dII.
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will succeed with no output for most encodings. In any case, successful output of a (possibly empty) shift
sequence resets the converter to its initial state.

The result of bytes—convert—-end is two values:

— result-bytes or dest-wrote—k — a byte string if dest-bytes is #£f or not provided, or the
number of bytes written into dest -bytes otherwise.

— "complete or ' continues — indicates whether conversion completed. If ' complete, then an
entire ending sequence was produced. If / cont inues, then the conversion could not complete due to
the limit on the result size or the space in dest-bytes, and the first result is either an empty byte string
or 0.

e (bytes-converter? v) returns #t if v is a byte converter produced by bytes—-open—-converter,
# £ otherwise.

e (locale-string—-encoding) returns a string for the current locale’s encoding (i.e., the encoding normally
identified by ""). See also system-language+country in §15.5.

3.7 Symbols

For information about symbol parsing and printing, see §11.2.4 and §11.2.5, respectively.

MzScheme provides two ways of generating an uninterned symbol, i.e., a symbol that is not eq?, eqv?, or equal?
to any other symbol, although it may print the same as another symbol:

e (string->uninterned-symbol string) islike (string->symbol string), but the resulting
symbol is a new uninterned symbol. Calling string->uninterned-symbol twice with the same string
returns two distinct symbols.

e (gensym [symbol/string]) creates an uninterned symbol with an automatically-generated name. The
optional symbol/string argument is a prefix symbol or string.

Regular (interned) symbols are only weakly held by the internal symbol table. This weakness can never affect the
result of an eqg?, eqv?, or equal? test, but a symbol may disappear when placed into a weak box (see §13.1) used
as the key in a weak hash table (see §3.14), or used as an ephemeron key (see §13.2).

3.8 Keywords

A symbol-like datum that starts with a hash and colon (“#:”) is parsed as a keyword constant. Keywords behave like
symbols — two keywords are eq? if and only if they print the same — but they are a distinct set of values.

e (keyword? v) returns #t if v is a keyword, # £ otherwise.

e (keyword->string keyword) returns a string for the di splayed form of keyword, not including the
leading #:.

e (string->keyword string) returnsakeyword whose displayed form is the same as that of st ring,
but with a leading #: .

Like symbols, keywords are only weakly held by the internal keyword table; see §3.7 for more information.
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3.9 Vectors

When a vector is created with make—-vector without a fill value, it is initialized with O in all positions. A vector
can be immutable, such as a vector returned by syntax—e, but vectors generated by read are mutable. (See also
immutable? in §3.10.)

(vector—->immutable-vector vec) returns an immutable vector with the same content as vec, and it returns
vec itself if vec is immutable. (See also immutable? in §3.10.)

(vector-immutable v ---!) islike (vector v ---l) except that the resulting vector is immutable. (See
also immutable? in §3.10.)

3.10 Lists

A cons cell can be mutable or immutable. When an immutable cons cell is provided to a procedure like set-cdr!,
the exn:fail:contract exception is raised. Cons cells generated by read are always mutable.

The global variable null is bound to the empty list.

(reverse! 1list) isthesameas (reverse list),but 1ist isdestructively reversed using set-cdr! (i.e.,
each cons cell in 11 st is mutated).

(append! list ---1) islike (append Ilist), but it destructively appends the 1ists (i.e., except for the last
11ist, the last cons cell of each 11 st is mutated to append the lists; empty lists are essentially dropped).

(list* v ---1) is similar to (1ist v ---!) but the last argument is used directly as the cdr of the last pair
constructed for the list:

(listx 1 2 3 4) ; = "(1 2 3 . 4)
(cons—immutable vl v2) returns an immutable pair whose car is vI and cdr is v2.
(list—immutable v ---')islike (1ist v ---!), but using immutable pairs.
(list+—immutable v ---!) islike (list* v ---1), but using immutable pairs.
(immutable? v) returns #t if v is an immutable cons cell, string, vector, box, or hash table, # £ otherwise.
The list-ref and list—-tail procedures accept an improper list as a first argument. If either procedure
is applied to an improper list and an index that would require taking the car or cdr of a non-cons-cell, the

exn:fail:contract exception is raised.

The member, memv, and memqg procedures accept an improper list as a second argument. If the membership search
reaches the improper tail, the exn: fail:contract exception is raised.

The assoc, assv, and assq procedures accept an improperly formed association list as a second argument. If
the association search reaches an improper list tail or a list element that is not a pair, the exn:fail:contract
exception is raised.

3.11 Boxes

MzScheme provides boxes, which are records that have a single field:

e (box v) returns a new mutable box that contains v.
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e (box—immutable v) returns a new immutable box that contains v.
e (unbox box) returns the content of box. For any v, (unbox (box v)) returns v.
e (set-box! mutable-box v) setsthe content of mutable-box to v.

e (box? v) returns #t if v is a box, # £ otherwise.

Two boxes are equal? if the contents of the boxes are equal?.

A box returned by syntax-e (see §12.2.2) is immutable; if set-box! is applied to such a box, the
exn:fail:contract exception is raised. A box produced by read (via #&) is mutable. (See also immutable?
in §3.10.)

3.12 Procedures

See §4.6 for information on defining new procedure types.

3.12.1 Arity

MzScheme’s procedure—arity procedure returns the input arity of a procedure:

e (procedure-arity proc) returns information about the number of arguments accepted by the procedure
proc. The result a is either:

— an exact non-negative integer = the procedure always takes exactly a arguments;

— an arity-at-least® instance = the procedure takes (arity-at-least-value a) or more
arguments; or

— a list containing integers and arity-at-least instances = the procedure takes any number of argu-
ments that can match one of the arities in the list.

e (procedure—arity—-includes? proc k) returns #t if the procedure can accept n arguments (where
k is an exact, non-negative integer), # £ otherwise.

Examples:

procedure-arity cons) ; = 2
procedure-arity list) ; = #<struct:arity—at—least>
arity-at—-least? (procedure-arity list)) ; = #t

arity-at-least-value (procedure—arity list)) ; = 0
arity-at-least-value (procedure—arity (lambda (x . y) x))) ; = 1
procedure-arity (case—-lambda [(x) 0] [(x y) 11)) ; = "(1 2)

(
(
(
(
(
(
(procedure—-arity-includes? cons 2) ; = #t

(procedure—-arity-includes? display 3) ; = #f

When compiling a 1ambda or case—-1lambda expression, MzScheme looks for a ' method-arity—error prop-
erty attached to the expression (see §12.6.2). If it is present with a true value, and if no case of the procedure accepts
zero arguments, then the procedure is marked so that an exn:fail:contract:arity exception involving the
procedure will hide the first argument, if one was provided. (Hiding the first argument is useful when the procedure
implements a method, where the first argument is implicit in the original source). The property affects only the format
of exn:fail:contract:arity exceptions, not the result of procedure-arity.

8The arity-at-1least structure type is transparent to all inspectors (see §4.5).
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3.12.2 Primitives

A primitive procedure is a built-in procedure that is implemented in low-level language. Not all built-in procedures

are primitives, but almost all R°RS procedures are primitives, as are most of the procedures described in this manual.
e (primitive? v) returns #t if v is a primitive procedure or # £ otherwise.

e (primitive-result-arity prim-proc) returns the arity of the result of the primitive procedure
prim-proc (as opposed to the procedure’s input arity as returned by arity; see §3.12.1). For most primi-
tives, this procedure returns 1, since most primitives return a single value when applied. For information about
arity values, see §3.12.1.

e (primitive-closure? v) returns #t if v is internally implemented as a primitive closure rather than a
simple primitive procedure, #f otherwise. This information is intended for use by the mze compiler.
3.12.3 Procedure Names
See §6.2.3 for information about the names of primitives, and the names inferred for 1ambda and case—lambda
procedures.
3.12.4 Closure Equality

(procedure-closure-contents-eq? procl, procZ2) return #t if the procedures procl and proc2
refer to the same code closed over the same values, where each value is compared with eq?.

Inlining and other compiler optimizations limit the usefulness of this procedure, because code can be duplicated or
merged. Since the amount of duplication from inlining is limited, however, procedure-closure—contents-eq?
is useful for some caching purposes.

Example:

(let ([f #£f])
;7 Using set! likely prevents inlining:
(set! f (lambda (x) (lambda () x)))
(procedure-closure-contents-eq? (f "a) (f 'a)) ; = #t, probably
(procedure-closure—-contents—-eq? (f ’"a) (f 'b))) ; = #f, definitely

(let ([f (lambda (x) (lambda () x))])

(procedure—-closure—contents—-eqg? (f "a) (f "a)))
;; = #f, probably, because inling likely duplicates f’s body

3.13 Promises

The force procedure can only be applied to values returned by delay, and promises are never implicitly forced.

(promise? v) returns #t if v is a promise created by delay, #f otherwise.

3.14 Hash Tables

(make-hash-table [flag-symbol flag-symbol]) creates and returns a new hash table. If provided, each
flag-symbol must one of the following:
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e ’'weak — creates a hash table with weakly-held keys (see §13.1).

e ’'equal — creates a hash table that compares keys using equal? instead of eq? (needed, for example, when
using strings as keys).

By default, key comparisons use eq?. If the second flag-symbol is redundant, the exn:fail:contract
exception is raised.

Two hash tables are equal ? if they are created with the same flags, and if they map the same keys to equal? values
(where “same key” means either eq? or equal?, depending on the way the hash table compares keys).

(make—-immutable-hash-table assoc-list [flag-symbol]) creates an immutable hash table. (See
also immutable? in §3.10.) The assoc—11ist must be a list of pairs, where the car of each pair is a key, and the
cdr is the corresponding value. The mappings are added to the table in the order that they appear in assoc-11ist, so
later mappings can hide earlier mappings. If the optional f1ag-symbol argument is provided, it must be ' equal,
and the created hash table compares keys with equal ?; otherwise, the created table compares keys with eq?.

(hash-table? v [flag-symbol flag-symbol]) returns #t if v was created by make-hash-table
or make-immutable-hash—table with the given flag-symbols (or more), #f otherwise. Each provided
flag-symbol must be a distinct flag supported by make-hash-table; if the second flag-symbol is redun-
dant, the exn: fail:contract exception is raised.

(hash-table-put! hash-table key-v v) maps key-v to v in hash-table, overwriting any existing
mapping for key—v. If hash—table is immutable, the exn: fail:contract exception is raised.

(hash-table-get hash-table key-v [failure-thunk—-or-valuel) returns the value for key-v
in hash-table. If no value is found for key-v, then failure-thunk—-or—-value determines the re-
sult: if failure-thunk-or-value is not provided, the exn:fail:contract exception is raised; if
failure-thunk—-or—-value is a procedure, it is called (through a tail call) with no arguments to produce the
result; finally, if failure-thunk-or-value is provided and not a procedure, it is used as the result.

(hash-table-remove! hash-table key-v) removes the value mapping for key-v if it exists in
hash-table. If hash-tableisimmutable, the exn:fail:contract exception is raised.

(hash-table-map hash-table proc) applies the procedure proc to each element in hash-table, accu-
mulating the results into a list. The procedure proc must take two arguments: a key and its value. See the caveat
below about concurrent modification.

(hash-table-for-each hash-table proc) appliesthe procedure procto each elementin hash—table
(for the side-effects of proc) and returns void. The procedure proc must take two arguments: a key and its value.
See the caveat below about concurrent modification.

(hash-table—count hash-table) returns the number of keys mapped by hash-table. If hash—-table
is not created with ’ weak, then the result is computed in constant time and atomically. If hash—table is created
with " weak, see the caveat below about concurrent modification.

(hash-table-copy hash-table) returns a mutable hash table with the same mappings, same key-comparison
mode, and same key-holding strength as hash-table.

(eg-hash-code v) returns an exact integer; for any two eq? values, the returned integer is the same. Further-
more, for the result integer k and any other exact integer j, (= k 7) implies (eg? k 7J).

(equal-hash-code v) returns an exact integer; for any two equal? values, the returned integer is the same.
Furthermore, for the result integer k and any other exact integer j, (= k 7) implies (eq? k 7). If v contains a
cycle through pairs, vectors, boxes, and inspectable structure fields, then equal-hash-code applied to v will loop
indefinitely.
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Caveat concerning concurrent modification: A hash table can be manipulated with hash-table-get,
hash-table-put!, and hash-table-remove! concurrently by multiple threads, and the operations are pro-
tected by a