Types of parsing

Top-down parsers

- start at the root of derivation tree and fill in
- picks a production and tries to match the input
- may require backtracking
- some grammars are backtrack-free (predictive)

Bottom-up parsers

- start at the leaves and fill in
- start in a state valid for legal first tokens
- as input is consumed, change state to encode possibilities (recognize valid prefixes)
- use a stack to store both state and sentential forms

Top-down parsing

A top-down parser starts with the root of the parse tree. It is labeled with the start symbol or goal symbol of the grammar.

To build a parse, it repeats the following steps until the fringe of the parse tree matches the input string.

- 1. At a node labeled A, select a production with A on its lhs and for each symbol on its rhs, construct the appropriate child.
- 2. When a terminal is added to the fringe that doesn't match the input string, backtrack.
- 3. Find the next node to be expanded. (Must have a label in NT)

The key is selecting the right production in step 1.

 \Rightarrow should be guided by input string

Example grammar

This is a grammar for simple expressions:

Consider parsing the input string x - 2 * y

Backtracking parse example

One possible parse for x - 2 * y

Prod'n	Sentential form	Input
	<goal></goal>	↑x - 2 * y
1	<expr></expr>	↑x - 2 * y
3	<expr $> - <$ term $>$	↑x - 2 * y
4	<term $>$ - $<$ term $>$	↑x - 2 * y
7	<factor $> - <$ term $>$	↑x - 2 * y
9	<id $>$ - $<$ term $>$	↑x - 2 * y
_	<id $>$ - $<$ term $>$	x ↑- 2 * y
_	<id> - <term></term></id>	x - \(\frac{1}{2} \ \ \ \ \ \ \ \
7	<id> - <factor></factor></id>	$x - \uparrow 2 * y$
9	<id $>$ - $<$ num $>$	$x - \uparrow 2 * y$
_	<id $>$ - $<$ num $>$	x - 2 ↑* y
_	<id> - <term></term></id>	x - \(\frac{1}{2} \ \ \ \ \ \ \ \
5	<id> - <term> * <factor></factor></term></id>	$x - \uparrow 2 * y$
7	<id> - < factor> * < factor> </id>	$x - \uparrow 2 * y$
9	<id $>$ - $<$ num $>$ * $<$ factor $>$	$x - \uparrow 2 * y$
_	<id> - <num> * <factor></factor></num>	x - 2 ↑* y
_	<id $>$ - $<$ num $>$ * $<$ factor $>$	$x - 2 * \uparrow y$
9	<id $>$ - $<$ num $>$ * $<$ id $>$	$x - 2 * \uparrow y$
_	< id > - < num > * < id >	x - 2 * y↑

Another possible parse for x - 2 * y

Prod'n	Sentential form	Input
	<goal></goal>	↑x - 2 * y
1	<expr></expr>	↑x - 2 * y
2	<expr> + <term></term></expr>	↑x - 2 * y
2	<pre><expr> + <term> + <term></term></term></expr></pre>	↑x - 2 * y
2	<pre><expr> + <term> + <term> + <term></term></term></term></expr></pre>	↑x - 2 * y
2	<expr> + <term> + <term> + <term> + ···</term></term></term></expr>	↑x - 2 * y
2		↑x - 2 * y

If the parser makes the wrong choices, the expansion doesn't terminate.

This isn't a good property for a parser to have.

Left recursion

Top-down parsers cannot handle left-recursion in a grammar.

Formally,

a grammar is left recursive if $\exists A \in NT$ such that \exists a derivation $A \Rightarrow^+ A\alpha$ for some string α .

Our simple expression grammar is left recursive.

Eliminating left recursion

To remove left recursion, we can transform the grammar.

Consider the grammar fragment:

$$< foo> ::= < foo> \alpha$$

 $\mid \beta$

where α and β do not start with <foo>.

We can rewrite this as:

$$<$$
foo> ::= β $<$ bar> $<$ bar> ::= α $<$ bar> \mid ϵ

where
 is a new non-terminal.

This fragment contains no left recursion.

Our expression grammar contains two cases of left recursion

Applying the transformation gives

```
<expr> ::= <term> <expr' > <expr' > ::= + <term> <expr' > | \epsilon | \epsilon
```

Eliminating left recursion

A general technique for removing left recursion

```
arrange the non-terminals in some order A_1, A_2, \ldots, A_n for i \leftarrow 1 to n for j \leftarrow 1 to i-1 replace each production of the form A_i ::= A_j \gamma with the productions A_i ::= \delta_1 \gamma \mid \delta_2 \gamma \mid \ldots \mid \delta_k \gamma, where A_j ::= \delta_1 \mid \delta_2 \mid \ldots \mid \delta_k are all the current A_j productions. eliminate any immediate left recursion on A_i using the direct transformation
```

This assumes that the grammar has no cycles $(A \Rightarrow^+ A)$ or ϵ productions $(A := \epsilon)$.

How does this algorithm work?

- 1. impose an arbitrary order on the non-terminals
- 2. outer loop cycles through NT in order
- 3. inner loop ensures that a production expanding A_i has no non-terminal A_j with j < i
- 4. It forward substitutes those away
- 5. last step in the outer loop converts any direct recursion on A_i to right recursion using the simple transformation showed earlier
- 6. new non-terminals are added at the end of the order and only involve right recursion

At the start of the i^{th} outer loop iteration

for all k < i, $\not\equiv$ a production expanding A_k that has A_l in its rhs, for l < k.

At the end of the process (n < i), the grammar has no remaining left recursion.

How much lookahead is needed?

We saw that top-down parsers may need to backtrack when they select the wrong production

Do we need arbitrary lookahead to parse CFGs?

• in general, yes

Fortunately

- large subclasses of CFGs can be parsed with limited lookahead
- most programming language constructs can be expressed in a grammar that falls in these subclasses

Among the interesting subclasses are LL(1) and LR(1).

Recursive Descent Parsing

Properties

- top-down parsing algorithm
- parser built on procedure calls
- procedures may be (mutually) recursive

Algorithm

- write procedure for each non-terminal
- turn each production into clause
- insert call
 - to procedure A() for non-terminal A
 - to match(\mathbf{x}) for terminal \mathbf{x}
- start by invoking procedure for start symbol S

Example

```
A ::= a B c \Rightarrow A() \{ match(a); B(); match(c); \}
```

Recursive Descent Parsing

Example grammar

Helpers

```
tok; // current token

match(x) {
  if (tok != x)
    error();
  tok = getToken();
}
```

Parser

```
S() {
   if (tok == a)
     match(a); A();
   else if (tok == b)
     match(b);
   else error();
}

A() {
   S(); match(c);
}
```

Predictive Parsing

Basic idea

For any two productions $A := \alpha \mid \beta$, we would like a distinct way of choosing the correct production to expand.

FIRST sets

For some $rhs \alpha \in G$, define $FIRST(\alpha)$ as the set of tokens that appear as the first symbol in some string derived from α .

That is, $x \in \text{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* x\gamma$ for some γ .

LL(1) property

Whenever two productions $A ::= \alpha$ and $A ::= \beta$ both appear in the grammar, we would like

$$FIRST(\alpha) \cap FIRST(\beta) = \epsilon$$

This would allow the parser to make a correct choice with a lookahead of only one symbol!

Pursuing this idea leads to predictive LL(1) parsers.

Left Factoring

What if a grammar does not have the LL(1) property?

Sometimes, we can transform a grammar to have this property.

For each non-terminal A find the longest prefix α common to two or more of its alternatives.

if $\alpha \neq \epsilon$, then replace all of the A productions $A ::= \alpha \beta_1 \mid \alpha \beta_2 \mid \cdots \mid \alpha \beta_n \mid \gamma$ with

$$A ::= \alpha L \mid \gamma$$

$$L ::= \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$$

where L is a new non-terminal.

Repeat until no two alternatives for a single non-terminal have a common prefix.

Consider a right-recursive version of the expression grammar:

To choose between productions 2, 3, & 4, the parser must see past the **number** or **id** and look at the +, -, *, or /.

$$FIRST(2) \cap FIRST(3) \cap FIRST(4) \neq \emptyset$$

This grammar fails the test.

Note: This grammar is right-associative.

There are two nonterminals that must be left factored:

Applying the transformation gives us:

$$< expr > ::= < term > < expr > >

 $< expr > ::= + < expr >

 $| \epsilon > < expr >$$$$$$$$$$$$$$$$$$

Substituting back into the grammar yields

Now, selection requires only a single token lookahead.

Note: This grammar is still right-associative.

	Sentential form	Input
	<goal></goal>	↑x - 2 * y
1	<expr></expr>	↑x - 2 * y
2	<term $>$ $<$ expr $'$ $>$	↑x - 2 * y
6	<factor $> <$ term $' > <$ expr $' >$	↑x - 2 * y
11	<id $>$ <term<math>'<$><$expr$'$></term<math>	↑x - 2 * y
	<id> $<$ term' $>$ $<$ expr' $>$	x ↑- 2 * y
9	$<$ id $> \epsilon <$ expr $' >$	x 1- 2
4	<id> - <expr></expr></id>	x ↑- 2 * y
	<pre><id> - <expr></expr></id></pre>	x - ↑2 * y
2	< id > - < term > < expr' >	x - ↑2 * y
6	< id > - < factor > < term' > < expr' >	x - ↑2 * y
10	<id $>$ - $<$ num $>$ $<$ term $'$ $>$ $<$ expr $'$ $>$	x - ↑2 * y
	<id $>$ - $<$ num $>$ $<$ term $'$ $>$ $<$ expr $'$ $>$	x - 2 ↑* y
7	<pre><id> - <num> * <term> <expr'></expr'></term></num></id></pre>	x -2 ↑* y
	<id> - <num> * <term> <expr'></expr'></term></num>	x -2 * ↑y
6	<id> - <num> * <factor> <term'> <expr'></expr'></term'></factor></num></id>	x -2 * ↑y
11	$ < exttt{id}>$ - $< exttt{num}>$ * $< exttt{id}>$ $< exttt{expr}'>$	x -2 * ↑y
	<id $>$ - $<$ num $>$ * $<$ id $>$ $<$ term $'$ $>$ $<$ expr $'$ $>$	x -2 * y↑
9	$ < exttt{id}>$ - $< exttt{num}>$ * $< exttt{id}>$ $< exttt{expr}'>$	x -2 * y↑
5	$ < exttt{id}>$ - $< exttt{num}>$ * $< exttt{id}>$	x -2 * y↑

The next symbol determined each choice correctly.

Generality

Question:

By eliminating left recursion and left factoring, can we transform an arbitrary context free grammar to a form where it can be predictively parsed with a single token lookahead?

Answer:

Given a context free grammar that doesn't meet our conditions, it is undecidable whether an equivalent grammar exists that does meet our conditions.

Many context free languages do not have such a grammar.

$$\{a^n 0b^n \mid n \geq 1\} \cup \{a^n 1b^{2n} \mid n \geq 1\}$$

The FIRST set

For a string of grammar symbols α , define FIRST(α) as

- \bullet the set of terminal symbols that begin strings derived from α
- if $\alpha \Rightarrow^* \epsilon$, then $\epsilon \in FIRST(\alpha)$

 $FIRST(\alpha)$ contains the set of tokens valid in the first position of α

To build FIRST(X):

- 1. if X is a terminal, FIRST(X) is $\{X\}$
- 2. if $X := \epsilon$, then $\epsilon \in FIRST(X)$
- 3. if $X ::= Y_1 Y_2 \cdots Y_k$ then put $FIRST(Y_1)$ in FIRST(X)
- 4. if X is a non-terminal and $X := Y_1 Y_2 \cdots Y_k$, then $a \in \text{FIRST}(X)$ if $a \in \text{FIRST}(Y_i)$ and $\epsilon \in \text{FIRST}(Y_j)$ for all $1 \leq j < i$ (If $\epsilon \notin \text{FIRST}(Y_1)$, then $\text{FIRST}(Y_i)$ is irrelevant, for 1 < i)

```
|\langle \text{goal} \rangle ::= \langle \text{expr} \rangle
        \langle \exp r \rangle ::= \langle \operatorname{term} \rangle \langle \exp r' \rangle
2
        \langle \exp r' \rangle ::= + \langle \exp r \rangle
     -\langle \exp r \rangle
6
        \langle \text{term} \rangle ::= \langle \text{factor} \rangle \langle \text{term}' \rangle
        \langle \text{term}' \rangle ::= * \langle \text{term} \rangle
        | \ \ / \langle \text{term} \rangle | \ \epsilon
9
10 \mid \langle factor \rangle ::= num
11
```

rule	1	2	3	4	FIRST	
goal		_	num,id	_	$\{num,id\}$	
expr	_		num,id		$\{\texttt{num,id}\}$	
expr'	_	ϵ	+,-	_	$\{\epsilon, +, -\}$	
term	_		num,id		$\{num,id\}$	
term'		ϵ	*,/	1	$\{\epsilon,*,/\}$	
factor	_	_	num,id	_	$\{\texttt{num,id}\}$	
num	num		_	_	$\{\mathtt{num}\}$	
id	id	_	_	_	$\{id\}$	
+	+		_	_	{+}	
_	_	_	_	_	{-}	
*	*		_	_	{*}	
/	/	_	_	_	{/}	

For a non-terminal A, define FOLLOW(A) as

the set of terminals that can appear immediately to the right of A in some sentential form

Thus, a non-terminal's FOLLOW set specifies the tokens that can legally appear after it

A terminal symbol has no FOLLOW set

To build FOLLOW(X):

- 1. place **eof** in FOLLOW($\langle \text{goal} \rangle$)
- 2. if $A := \alpha B\beta$, then put $\{FIRST(\beta) \epsilon\}$ in FOLLOW(B)
- 3. if $A := \alpha B$ then put FOLLOW(A) in FOLLOW(B)
- 4. if $A := \alpha B\beta$ and $\epsilon \in FIRST(\beta)$, then put FOLLOW(A) in FOLLOW(B)

rule	1	2	3	4	FOLLOW
goal	eof		_	_	{eof}
expr	_	_	eof	_	{eof}
expr'	_	_	eof		$\{ extsf{eof}\}$
term	_	+,-	_	eof	$\{ eof, +, - \}$
term'	_	_	eof,+,-	_	{eof,+,-}
factor	_	*,/	_	eof,+,-	{eof,+,-,*,/}

Using FIRST and FOLLOW

To build a predicative recursive-descent parser:

For each production $A := \alpha$ and lookahead token

- expand A using production if $token \in FIRST(\alpha)$
- if $\epsilon \in \text{FIRST}(\alpha)$ expand A using production if $token \in \text{FOLLOW}(A)$
- ullet all other tokens return error

If multiple choices, the grammar is not LL(1) (predicative).

	id	num	+	-	*	/	eof
$\langle \text{goal} \rangle$	$g \rightarrow e$	$g \rightarrow e$	_	_	_	_	_
$\langle \exp r \rangle$	$e \rightarrow te'$	$e \rightarrow te'$	_	_	_	_	_
$\langle \exp r' \rangle$	_	_	$e' \rightarrow +e$	$e' \rightarrow -e$	_	_	$e' \rightarrow \epsilon$
$\langle \text{term} \rangle$	$t \to ft'$	$t \to ft'$	_	_	_	_	_
$\langle \text{term'} \rangle$	_	_	$t' \to \epsilon$	$t' \to \epsilon$	$t' \rightarrow *t$	$t' \rightarrow /t$	$t' \to \epsilon$
$\langle factor \rangle$	$f o ext{id}$	$f o exttt{num}$	_	_	-	_	_

LL(1) grammars

Features

- input parsed from left to right
- leftmost derivation
- one token lookahead

Definition

A grammar G is LL(1) if and only if, for all non-terminals A, each distinct pair of productions $A := \beta$ and $A := \gamma$ satisfy the condition $FIRST(\beta) \cap FIRST(\gamma) = \emptyset$

A grammar G is LL(1) if and only if for each set of productions $A ::= \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$

- 1. FIRST (α_1) , FIRST (α_2) , \cdots , FIRST (α_n) are all pairwise disjoint
- 2. if $\alpha_i \Rightarrow^* \epsilon$, then $FIRST(\alpha_i) \cap FOLLOW(A) = \emptyset$, for all $1 \le j \le n, i \ne j$.

If G is ϵ -free, condition 1 is sufficient.

LL(1) grammars

Provable facts about LL(1) grammars:

- no left recursive grammar is LL(1)
- no ambiguous grammar is LL(1)
- *LL(1)* parsers operate in linear time
- an ϵ -free grammar where each alternative expansion for A begins with a distinct terminal is a simple LL(1) grammar

Not all grammars are LL(1)

- $S := aS \mid a$ is not LL(1) $FIRST(aS) = FIRST(a) = \{a\}$
- S := aS' $S' := aS' \mid \epsilon$ accepts the same language and is LL(1)

LL grammars

LL(1) grammars

- may need to rewrite grammar (left recursion, left factoring)
- resulting grammar larger, less maintainable

LL(k) grammars

- k-token lookahead, more powerful than LL(1) grammars
- example:

$$S := ac \mid abc \text{ is } LL(2)$$

Not all grammars are LL(k)

• example:

$$S ::= a^i b^j$$
 where $i \ge j$

- equivalent to dangling else problem
- \bullet problem must choose production after k tokens of lookahead

Bottom-up parsers avoid this problem