Types of parsing

Top-down parsers

e start at the root of derivation tree and fill in
e picks a production and tries to match the input
e may require backtracking

e some grammars are backtrack-free (predictive)

Bottom-up parsers

e start at the leaves and fill in
e start in a state valid for legal first tokens

e as input is consumed, change state to encode possibilities
(recognize valid prefizes)

e use a stack to store both state and sentential forms

CMSC 430 Lecture 4, Page 1

Top-down parsing

A top-down parser starts with the root of the parse tree. It is labeled with
the start symbol or goal symbol of the grammar.

To build a parse, it repeats the following steps until the fringe of the parse
tree matches the input string.

1. At a node labeled A, select a production with A on its [hs and for each
symbol on its rhs, construct the appropriate child.

2. When a terminal is added to the fringe that doesn’t match the input
string, backtrack.

3. Find the next node to be expanded. (Must have a label in NT)

The key is selecting the right production in step 1.

= should be guided by input string

CMSC 430 Lecture 4, Page 2

Example grammar

This is a grammar for simple expressions:

<goal>
<expr>

<term>

<factor>

© 00 ~J O Ot = W N

Consider parsing the input string x - 2 * y

CMSC 430

<expr>

<expr> + <term>
<expr> - <term>
<term>

<term> * <tactor>
<term> / <factor>
<factor>

number

id

Lecture 4, Page 3

Backtracking parse example

One possible parse forx = 2 * y

Prod’n | Sentential form Input

— | <goal> Tx -2 *xy
1 <expr> Tx -2 *xy
3 <expr> - <term> Tx -2 %y
4 | <term> - <term> Tx = 2 %y
7 | <factor> - <term> Tx = 2%y
9 <id> - <term> Tx -2 %y
— | <id> - <term> x -2 %y
- [<1id> - <term> x - 12 xy
7 | <id> - <factor> x - 12 *xy
9 <id> - <num> x - 12 xy
- | <id> - <num> x -2 *xy
- | <id> - <term> x - 12 *xy
b | <id> - <term> * <factor> |x - 2 * y
7| <id> - <factor> * <factor>|x - 12 * y
9 | <id> - <num> * <factor> |x - 12 * y
— | <id> - <num> * <factor> |x - 2 Tx y
— | <id> - <num> * <factor> |x - 2 * |y

<id> - <num> * <id> x - 2 *x |y
— | <id> - <num> * <id> x - 2 %yl

CMSC 430 Lecture 4, Page 4

Example

Another possible parse for x - 2 * y

Prod'n | Sentential form Input
- | <goal> X -2 %y
1 <expr> Tx -2 %y
2 <expr> + <term> Tx -2 %y
2 <expr> + <term> + <term> X - 2%y
2 <expr> + <term> + <term> + <term> Tx -2 %y
2 <expr> + <term> + <term> + <term>+ ---|Jx - 2 * y
2 Tx -2 %y

If the parser makes the wrong choices, the expansion doesn’t terminate.

This isn’t a good property for a parser to have.

CMSC 430 Lecture 4, Page 5

Left recursion

Top-down parsers cannot handle left-recursion in a grammar.

Formally,

a grammar is left recursive if 3 A € NT such that 3 a derivation
A =7 A« for some string o.

Our simple expression grammar s left recursive.

CMSC 430 Lecture 4, Page 6

Eliminating left recursion

To remove left recursion, we can transform the grammar.

Consider the grammar fragment:

<foo> 1= <foo> «

| B

where ov and 3 do not start with <foo>.

We can rewrite this as:

<foo> = (B <bar>
<bar> = « <bar>
| €

where <bar> i1s a new non-terminal.

This fragment contains no left recursion.

CMSC 430 Lecture 4, Page 7

Example

Our expression grammar contains two cases of left recursion

<expr> = <expr> + <term>
| <expr> - <term>
| <term>

<term> ;= <term> * <factor>

<term> / <factor>
<factor>

Applying the transformation gives

<expr> = <term> <expr >
<expr’ > = + <term> <expr >
| - <term> <expr’ >
| €
<term> = <factor> <term’ >
<term’ > *x <factor> <term’' >

/ <factor> <term’ >
€

CMSC 430 Lecture 4, Page 8

Eliminating left recursion

A general technique for removing left recursion

arrange the non-terminals in some order
A, Ay, LA,
fori« 1ton
for j «— 1 to i-1
replace each production of the form
A; = Ajy with the productions
A =61y | doy | - | Oy,
WhGI'eAj = 51 I 52 | ‘ 5]<;
are all the current A, productions.
eliminate any immediate left recursion on A;
using the direct transformation

This assumes that the grammar has no cycles
(A =7 A) or e productions (A ::= €).

CMSC 430

Lecture 4, Page 9

How does this algorithm work?

1. impose an arbitrary order on the non-terminals

2. outer loop cycles through N1 in order

3. inner loop ensures that a production expanding A; has no non-terminal A;
with 7 <1

4. It forward substitutes those away

5. last step in the outer loop converts any direct recursion on A; to right
recursion using the simple transformation showed earlier

6. new non-terminals are added at the end of the order and only involve right
recursion

At the start of the ™" outer loop iteration

for all k < 2, A a production expanding Aj
that has A; in its rhs, for [< k.

At the end of the process (n < 7), the grammar has no remaining left
IreCursion.

CMSC 430 Lecture 4, Page 10

How much lookahead is needed?

We saw that top-down parsers may need to backtrack when they select the
wrong production

Do we need arbitrary lookahead to parse CFGs?

e in general, yes

Fortunately

e large subclasses of CFGs can be parsed with limited lookahead

e most programming language constructs can be expressed in a grammar
that falls in these subclasses

Among the interesting subclasses are LL(1) and LR(1).

CMSC 430 Lecture 4, Page 11

Recursive Descent Parsing

Properties

e top-down parsing algorithm
e parser built on procedure calls

e procedures may be (mutually) recursive
Algorithm

e write procedure for each non-terminal
e turn each production into clause
e insert call

— to procedure A() for non-terminal A

— to match(x) for terminal x

e start by invoking procedure for start symbol S

Example
A ::=aBc = A() { match(a); B(); match(c); }
CMSC 430 Lecture 4, Page 12

Recursive Descent Parsing

Example grammar

1 S = aA
; b
3 A = Sc
Parser
Helpers
SO A
tok; // current token if (tok == a)
match(a); AQ);
match(x) { else if (tok == b)
if (tok != x) match(b) ;
error(); else error();
tok = getToken(); 1

}

AO {
S(); match(c);

}

CMSC 430

Lecture 4, Page 13

Predictive Parsing

Basic idea

For any two productions A = « | 3, we would like a distinct way of
choosing the correct production to expand.

FIRST sets

For some rhs o € G, define FIRST(«v) as the set of tokens that appear as the
first symbol in some string derived from a.

That is, x € FIRST(«) iff @« =* a7y for some 7.

LL(1) property
Whenever two productions A = « and A ::= [both appear in the
grammar, we would like

FIRST(a) N FIRST(B) = e

This would allow the parser to make a correct choice with a lookahead of only
one symbol!

Pursuing this idea leads to predictive LL(1) parsers.

CMSC 430 Lecture 4, Page 14

Left Factoring

What if a grammar does not have the LL(1) property?

Sometimes, we can transform a grammar to have this property.

For each non-terminal A find the longest prefix
a common to two or more of its alternatives.

if a # €, then replace all of the A productions
Ax=af | afs | -+ | aB, | v
with

A= al | v

L=/ | Ba| - | B

where L is a new non-terminal.

Repeat until no two alternatives for a single
non-terminal have a common prefix.

CMSC 430

Lecture 4, Page 15

Example

Consider a right-recursive version of the expression grammar:

<goal> 1= <expr>

<expr> <term> + <expr>
<term> - <expr>
<term>

<term> 1= <factor> * <term>
<factor> / <term>
<factor>

<factor> ::= number

1d

To choose between productions 2, 3, & 4, the parser must see past the number
or id and look at the +, -, * or /.

© 00 ~J O Ot = W DN

FIRST(2) N FIRST(3) N FIRST(4) # ()

This grammar fails the test.

Note: This grammar is right-associative.

CMSC 430 Lecture 4, Page 16

Example

There are two nonterminals that must be left factored:

<expr> = <term> + <expr>
| <term> - <expr>
| <term>

<term> <factor> * <term>

<ftactor> / <term>
<factor>

Applying the transformation gives us:

<expr> = <term> <expr’ >
<expr > = + <expr>

| - <expr>

| €
<term> = <factor> <term’ >
<term’ > = * <term>

|/ <term>

| €

CMSC 430 Lecture 4, Page 17

Example

Substituting back into the grammar yields

<goal>
<expr>
<expr’ >

<term>

© 00 ~1 O Ut = W N+~

—_
-]

<factor>

—_
| —

Now, selection requires only a single token lookahead.

Note: This grammar is still right-associative.

CMSC 430

<term’ > ::

<expr>

<term> <expr’ >
+ <expr>

- <expr>

€

<factor> <term’ >
* <term>

/ <term>

€

number

1d

Lecture 4, Page 18

Example:

Sentential form Input

— | <goal> Tx -2 %y
1| <expr> Tx -2 *xy
2 | <term> <expr’ > Tx = 2 %y
6 | <factor> <term’ > <expr’ > Tx = 2 %y
11| <id> <term’ > <expr’ > Tx - 2 %y
— | <id> <term’ > <expr’ > x T- 2 *y
9| <id> e <expr’ > x - 2

4| <id> - <expr> x -2 %y
— | <id> - <expr> x - 12 *xy
2| <id> - <term> <expr’ > x - 12 *xy
6 | <id> - <factor> <term’ > <expr’ > x - 12 %y
10 | <id> - <num> <term’ > <expr’ > x - T2 xy
— | <id> - <num> <term’ > <expr’ > x -2 T*xy
7| <id> - <num> * <term> <expr > x -2 T*y
— | <id> - <num> * <term> <expr > x -2 * |y
6| <id> - <num> * <factor> <term’ > <expr’ > |x -2 * Ty
11| <id> - <num> * <id> <expr’ > x -2 x Ty
— | <id> - <num> * <id> <term’ > <expr’ > x -2 * y]
9| <id> - <num> * <id> <expr’ > x -2 *x y]
5| <id> - <num> * <id> x -2 * y|

The next symbol determined each choice correctly:.

CMSC 430 Lecture 4, Page 19

Generality

Question:

By eliminating left recursion and left factoring. can we transform an
arbitrary context free grammar to a form where it can be predictively
parsed with a single token lookahead?

Answer:

Given a context free grammar that doesn’t meet our conditions, it is
undecidable whether an equivalent grammar exists that does meet our
conditions.

Many context free languages do not have such a grammar.

{a"0b" | n > 1} U {a"1b"" | n > 1}

CMSC 430 Lecture 4, Page 20

The FIRST set

For a string of grammar symbols «, define FIRST () as

e the set of terminal symbols that begin strings derived from «

o if « =" ¢, then € € FIRST(av)

FIRST(cr) contains the set of tokens valid in the first position of «

To build FIRST(X):

. if X is a terminal, FIRST(X) is { X'}

if X ::= ¢, then € € FIRST(X)

if X =:=Y1Y5---Y} then put FIRST(Y7) in FIRST(X)

if X is a non-terminal and X ::= Y1Y5- - Y}, then a € FIRST(X) if
a € FIRST(Y;) and € € FIRST(Y;) forall 1 < j <4

(If € ¢ FIRST(Y7), then FIRST(Y;) is irrelevant, for 1 < 7)

= =

CMSC 430 Lecture 4, Page 21

Our example grammar

CMSC 430

o

10
11

(goal)
(expr)

(expr’)

(term)

(term’)

(factor)

(expr)

(term) (expr’)

+ (expr)
- (expr)

(factor) (term’)

* (term)
/ (term)

€

num
id

Lecture 4, Page 22

The FIRST construction

rule | 1 3 FIRST
goal | — num, id {num,id}
expr | - num, id {num, id}
expr | — +, - {e,+,-}
term | — num, id {num,id}
term’ | — *,/ {e,x,/}
factor| — num, id {num,id}
num | num - {num}
id | id - {id}
+ + — {+}
- -)
X * = {*}
/ / - {/}

CMSC 430

Lecture 4, Page 23

The FOLLOW set

For a non-terminal A, define FOLLOW(A) as

the set of terminals that can appear immediately to the right of A in some
sentential form

Thus, a non-terminal’s FOLLOW set specifies the tokens that can legally
appear after it

A terminal symbol has no FOLLOW set

To build FOLLOW(X):
1. place eof in FOLLOW((goal))
2.if A = aBf, then put {FIRST() — €} in FOLLOW(B)
3. if A := aB then put FOLLOW(A) in FOLLOW(B)
4.if A = aBf and € € FIRST(/3), then put FOLLOW(A) in FOLLOW(B)

CMSC 430 Lecture 4, Page 24

The FOLLOW construction

CMSC 430

rule | 1 2 3 4 FOLLOW
goal |eof| — - ~ {eof}
expr | — | — eof - {eof}
expr' | — | — eof —~ {eof}
term | — |+,- ~ eof {eof ,+,-}
term’ | — | — |eof,+,- = {eof ,+,-}
factor| -— *,/ — eof ,+, - {eof,+,—,*,/}

Lecture 4, Page 25

Using FIRST and FOLLOW

To build a predicative recursive-descent parser:

For each production A ::= « and lookahead token

e expand A using production if token € FIRST(«)

o if € € FIRST(«x) expand A using production if token € FOLLOW(A)

e all other tokens return error

If multiple choices, the grammar is not LL(1) (predicative).

id num + - * / eof
(goal) | g—e | g—e - - - - -
(expr) | e —te | e —te - - - - -
(expr’) - - e —+ele - - - - e —e
(term) |t — ft' | t — ft’ - - - - -
(term’) - - ' —e |t/ —e |t -ttt/ = /t|t —e€
(factor) | f — id | f — num — - - — -
CMSC 430

Lecture 4, Page 26

LL(1) grammars

Features

e input parsed from left to right

e leftmost derivation

e one token lookahead
Definition

A grammar G is LL(1) if and only if, for all non-terminals A, each distinct
pair of productions A ::= 3 and A ::= ~ satisfy the condition
FIRST(3) n FIRST(7) = ()

A grammar G is LL(1) if and only if for each set of productions
AIZ:Ozl|O{2""|Oén

1. FIRST(cv1), FIRST(v2), - - -, FIRST(cv,,) are all pairwise disjoint
2. if a; = ¢, then FIRST(cvj) n FOLLOW(A) =0, for all 1 < j < mn,i #j.

If G is efree, condition 1 is sufficient.

CMSC 430 Lecture 4, Page 27

LL(1) grammars

Provable facts about LL(1) grammars:

e 1o left recursive grammar is LL(1)
e 1o ambiguous grammar is LL(1)
e LL(1) parsers operate in linear time

e an cfree grammar where each alternative expansion for A begins with a
distinct terminal is a simple LL(1) grammar

Not all grammars are LL(1)
e S:=aS|a
is not LL(1)
FIRST(aS) = FIRST(a) = {a}

S =as’
S'i=aS" | €

accepts the same language and is LL(1)

CMSC 430 Lecture 4, Page 28

LL grammars

LL(1) grammars

e may need to rewrite grammar (left recursion, left factoring)

e resulting grammar larger, less maintainable

LL(k) grammars

e k-token lookahead, more powerful than LL(1) grammars

e example:

S = ac | abc is LL(2)
Not all grammars are LL(k)

e cxample:
S = a't where ¢ >
e cquivalent to dangling else problem

e problem - must choose production after k tokens of lookahead
Bottom-up parsers avoid this problem

CMSC 430 Lecture 4, Page 29

