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1 Introduction

Scheme48 is an implementation of Scheme based on a byte-code virtual machine with
design goals of simplicity and cleanliness. To briefly enumerate some interesting aspects of
it, Scheme48 features:

e an advanced module system based on Jonathan Rees’s W7 security kernel with well-
integrated interaction between macros and modules;

e a virtual machine written in a dialect of Scheme itself, Pre-Scheme, for which a compiler
is written with Scheme48;

e a sophisticated, user-level, preémptive multithreading system with numerous high-level
concurrency abstractions;

e a composable, lock-free shared-memory thread synchronization mechanism known as
optimistic concurrency; and

e an advanced user environment that is well-integrated with the module and thread
systems to facilitate very rapid development of software systems scaling from small to
large and single-threaded to multi-threaded.

It was originally written by Jonathan Rees and Richard Kelsey in 1986 in response to the
fact that so many Lisp implementations had started out simple and grown to be complex
monsters of projects. It has been used in a number of research areas, including:

e mobile robots at Cornell [Donald 92];

e a multi-user collaboration system, sometimes known as a ‘MUD’ (‘multi-user dun-
geon’) or ‘MUSE’ (‘multi-user simulation environment’), as well as general research in
capability-based security [Museme; Rees 96]; and

e advanced distributed computing with higher-order mobile agents at NEC’s Princeton
research lab [Cejtin et al. 95].

The system is tied together in a modular fashion by a configuration language that permits
quite easy mixing and matching of components, so much so that Scheme48 can be used
essentially as its own OS, as it was in Cornell’s mobile robots program, or just as easily
within another, as the standard distribution is. The standard distribution is quite portable
and needs only a 32-bit byte-addressed POSIX system.

The name ‘Scheme48’ commemorates the time it took Jonathan Rees and Richard Kelsey
to originally write Scheme48 on August 6th & 7th, 1986: forty-eight hours. (It has been
joked that the system has expanded to such a size now that it requires forty-eight hours to
read the source.)

1.1 This manual

This manual begins in the form of an introduction to the usage of Scheme48, suitable
for those new to the system, after which it is primarily a reference material, organized by
subject. Included in the manual is also a complete reference manual for Pre-Scheme, a
low-level dialect of Scheme for systems programming and in which the Scheme48 virtual
machine is written; see Chapter 9 [Pre-Scheme], page 154.

This manual is, except for some sections pilfered and noted as such from the official but
incomplete Scheme48 reference manual, solely the work of Taylor Campbell, on whom all
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responsibility for the content of the manual lies. The authors of Scheme48 do not endorse
this manual.

1.2 Acknowledgements

Thanks to Jonathan Rees and Richard Kelsey for having decided so many years ago
to make a simple Scheme implementation with a clean design in the first place, and for
having worked on it so hard for so many years (almost twenty!); to Martin Gasbichler and
Mike Sperber, for having picked up Scheme48 in the past couple years when Richard and
Jonathan were unable to work actively on it; to Jeremy Fincher for having asked numerous
questions about Scheme48 as he gathered knowledge from which he intended to build an
implementation of his own Lisp dialect, thereby inducing me to decide to write the manual
in the first place; to Jorgen Schéfer, for having also asked so many questions, proofread
various drafts, and made innumerable suggestions to the manual.
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2 User environment

2.1 Running Scheme48

Scheme48 is run by invoking its virtual machine on a dumped heap image to resume a
saved system state. The common case of invoking the default image, ‘scheme48.image’,
which contains the usual command processor, run-time system, éc., is what the scheme48
script that is installed does. The actual virtual machine executable itself, scheme48vm,
is typically not installed into an executable directory such as ‘/usr/local/bin/’ on
Unix, but in the Scheme48 library directory, which is, by default on Unix installations
of Schemed48, ‘/usr/local/1lib/’. However, both scheme48 and scheme48vm share the
following command-line options; the only difference is that scheme48 has a default ‘=i’
argument.

‘~h heap-size’
The size of Scheme48’s heap, in cells. By default, the heap size is 3 megacells,
or 12 megabytes, permitting 6 megabytes per semispace — Scheme48 uses a
simple stop & copy garbage collector.! Since the current garbage collector
cannot resize the heap dynamically if it becomes consistently too full, users on
machines with much RAM may be more comfortable with liberally increasing
this option.

‘-s stack-size’

The stack size, in cells. The default stack size is 10000 bytes, or 2500 cells.
Note that this is only the size of the stack cache segment of memory for fast
stack frame storage. When this overflows, there is no error; instead, Scheme48
simply copies the contents of the stack cache into the heap, until the frames
it copied into the heap are needed later, at which point they are copied back
into the stack cache. The ‘-s’ option therefore affects only performance, not
the probability of fatal stack overflow errors.

‘-i image-filename’
The filename of the suspended heap image to resume. When running the
scheme48 executable, the default is the regular Scheme48 image; when run-
ning the virtual machine directly, this option must be passed explicitly. For
information on creating custom heap images, see Section 2.4.11 [Image-building
commands|, page 20, and also see Section 4.8 [Suspending and resuming heap
images|, page 77.

‘-a argument ...’

Command-line arguments to pass to the heap image’s resumer, rather than
being parsed by the virtual machine. In the usual Scheme48 command processor
image, these arguments are put in a list of strings that will be the initial focus
value (see Section 2.4.4 [Focus value], page 12).

3 )

-u Muffles warnings on startup about undefined imported foreign bindings.

1 The Scheme48 team is also working on a new, generational garbage collector, but it is not in the standard
distribution of Scheme48 yet.
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The usual Scheme48 image may accept an argument of batch, using the ‘-a’ switch to
the virtual machine. This enters Scheme48 in batch mode, which displays no welcoming
banner, prints no prompt for inputs, and exits when an EOF is read. This may be used to
run scripts from the command-line, often in the exec language (see Section 2.4.10 [Command
programs|, page 19), by sending text to Scheme48 through Unix pipes or shell heredocs.
For example, this Unix shell command will load the command program in the file ‘foo.scm’
into the exec language environment and exit Scheme48 when the program returns:

echo ,exec ,load foo.scm | scheme48 -a batch

This Unix shell command will load ‘packages.scm’ into the module language environment,
open the tests structure into the user environment, and call the procedure run-tests with
zero arguments:

scheme48 -a batch <<END
,config ,load packages.scm
,open tests

(run-tests)

END

Scheme48 also supports [SRFI 22| and [SRFI 7] by providing R5RS and [SRFI 7] script
interpreters in the location where Scheme48 binaries are kept as scheme-r5rs and scheme-
srfi-7. See the [SRFI 22] and [SRFI 7] documents for more details. Scheme48’s command
processor also has commands for loading [SRFI 7] programs, with or without a [SRFI 22]
script header; see Section 2.4.7 [SRFI 7], page 16.

2.1.1 Command processor introduction

The Scheme48 command processor is started up on resumption of the usual Scheme48
image. This is by default what the scheme48 script installed by Scheme48 does. It will first
print out a banner that contains some general information about the system, which will
typically look something like this:

Welcome to Scheme 48 1.3 (made by root on Sun Jul 10 10:57:03 EDT 2005)
Copyright (c) 1993-2005 by Richard Kelsey and Jonathan Rees.

Please report bugs to scheme-48-bugs@s48.org.

Get more information at http://www.s48.org/.

Type ,?7 (comma question-mark) for help.

After the banner, it will initiate a REPL (read-eval-print loop). At first, there should be a
simple ‘>’ prompt. The command processor interprets Scheme code as well as commands.
Commands operate the system at a level above or outside Scheme. They begin with a
comma, and they continue until the end of the line, unless they expect a Scheme expression
argument, which may continue as many lines as desired. Here is an example of a command
invocation:

> ,set load-noisily on
This will set the load-noisily switch (see Section 2.4.2 [Command processor switches],
page 11) on.
Note: If a command accepts a Scheme expression argument that is followed by more

arguments, all of the arguments after the Scheme expression must be put on the same line
as the last line of the Scheme expression.
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Certain operations, such as breakpoints and errors, result in a recursive command proces-
sor to be invoked. This is known as pushing a command level. See Section 2.4.5 [Command
levels|, page 13. Also, the command processor supports an object inspector, an interactive
program for inspecting the components of objects, including continuation or stack frame
objects; the debugger is little more than the inspector, working on continuations. See
Section 2.4.9 [Inspector], page 18.

Evaluation of code takes place in the interaction environment. (This is what R5RS’s
interaction-environment returns.) Initially, this is the user environment, which by de-
fault is a normal R5RS Scheme environment. There are commands that set the interaction
environment and evaluate code in other environments, too; see Section 2.4.6 [Module com-
mands|, page 15.

The command processor’s prompt has a variety of forms. As above, it starts out with
as a simple >’. Several factors can affect the prompt. The complete form of the prompt is
as follows:

e It begins with an optional command level (see Section 2.4.5 [Command levels|, page 13)
number: at the top level, there is no command level number; as command levels are
pushed, the number is incremented, starting at 1.

e Optionally, the name of the interaction environment follows the command level num-
ber: if the interaction environment is the user environment, there is no name printed
here; named environments are printed with their names; unnamed environments (usu-
ally created using the ,new-package command; see Section 2.4.6 [Module commands],
page 15) are printed with their numeric identifiers. If a command level number preceded
an environment name, a space is printed between them.

e If the command processor is in the regular REPL mode, it ends with a ‘>’ and a space
before the user input area; if it is in inspector mode (see Section 2.4.9 [Inspector],
page 18), it ends with a ‘:” and a space before the user input area.

For example, this prompt denotes that the user is in inspector mode at command level
3 and that the interaction environment is an environment named frobozz:
3 frobozz:

This prompt shows that the user is in the regular REPL mode at the top level, but in
the environment for module descriptions (see Section 2.4.6 [Module commands], page 15):

config>

For a complete listing of all the commands in the command processor, see Section 2.4
[Command processor], page 10.

2.2 Emacs integration

Emacs is the canonical development environment for Scheme48. The ‘scheme.el’ and
‘cmuscheme.el’ packages provide support for editing Scheme code and running inferior
Scheme processes, respectively. Also, the ‘scheme48.el’ package provides more support
for integrating directly with Scheme48.? ‘scheme.el’ and ‘cmuscheme.el’ come with GNU
Emacs; ‘schemed8.el’ is available separately from

2 ‘scheme48.el’ is based on the older ‘cmuscheme48.el’, which is bundled with Scheme48 in the ‘emacs/’

directory. Since ‘cmuscheme48.el’ is older and less developed, it is not documented here.
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http://www.emacswiki.org/cgi-bin/wiki/download/scheme48.el.
To load ‘scheme48.el’ if it is in the directory emacs-dir, add these lines to your ‘. emacs’:

(add-to-1list ’load-path "emacs-dir/")
(autoload ’scheme48-mode "scheme48"
"Major mode for improved Scheme48 integration."
t)
(add-hook ’hack-local-variables-hook
(lambda ()
(if (and (boundp ’scheme48-package)
scheme48-package)
(progn (scheme48-mode)
(hack-local-variables-prop-line)))))

The add-hook call sets Emacs up so that any file with a scheme48-package local variable
specified in the file’s —*- line or Local Variables section will be entered in Scheme48 mode.
Files should use the scheme48-package variable to enable Scheme48 mode; they should
not specify Scheme48 mode explicitly, since this would fail in Emacs instances without
‘scheme48.el’. That is, put this at the tops of files:

;35 —%— Mode: Scheme; scheme48-package: ... —*-
Avoid this at the tops of files:
;33 —%— Mode: Scheme48 -x*-

There is also SLIME48, the Superior Lisp Interaction Mode for Emacs with Scheme48.
It provides a considerably higher level of integration the other Emacs packages do, although
it is less mature. It is at

http://mumble.net/~campbell/scheme/slime48.tar.gz;
there is also a Darcs repository? at
http://mumble.net/~campbell/darcs/slime48/.

Finally, ‘paredit.el’ implements pseudo-structural editing facilities for S-expressions:
it automatically balances parentheses and provides a number of high-level operations on
S-expressions. ‘Paredit.el’ is available on the web at

http://mumble.net/ campbell/emacs/paredit.el.

‘cmuscheme.el’ defines these:

run-scheme [scheme-prog] [Emacs command]
Starts an inferior Scheme process or switches to a running one. With no argument,
this uses the value of scheme-program-name to run the inferior Scheme system; with
a prefix argument scheme-prog, this invokes scheme-prog.

scheme-program-name [Emacs variable]
The Scheme program to invoke for inferior Scheme processes.

3 Darcs is a revision control system; see
http://www.darcs.net/

for more details.


http://www.emacswiki.org/cgi-bin/wiki/download/scheme48.el
http://mumble.net/~campbell/scheme/slime48.tar.gz
http://mumble.net/~campbell/darcs/slime48/
http://mumble.net/~campbell/emacs/paredit.el
http://www.darcs.net/

Chapter 2: User environment 7

Under scheme48-mode with ‘scheme.el’, ‘cmuscheme.el’, and ‘scheme48.el’, these
keys are defined:

C-M-f — forward-sexp

C-M-b — backward-sexp

C-M-k — kill-sexp

C-(DEL) (not C-M-(DEL)) — backward-kill-sexp

C-M-q — indent-sexp

C-M-@ — mark-sexp

C-M-(8PC) — mark-sexp
S-expression manipulation commands. C-M-f moves forward by one
S-expression; C-M-b moves backward by one. C-M-k kills the S-expression
following the point; C-({DEL) kills the S-expression preceding the point.
C-M-q indents the S-expression following the point. C-M-@ & C-M-SPC),
equivalent to one another, mark the S-expression following the point.

C-c z — switch-to-scheme
Switches to the inferior Scheme process buffer.

C-c C-1 — scheme48-load-file
Loads the file corresponding with the current buffer into Scheme48. If that file
was not previously loaded into Scheme48 with C-c C-1, Scheme48 records the
current interaction environment in place as it loads the file; if the file was pre-
viously recorded, it is loaded into the recorded environment. See Section 2.4.3
[Emacs integration commands|, page 12.

C-c C-r — scheme48-send-region

C-c M-r — scheme48-send-region-and-go
C-c C-r sends the currently selected region to the current inferior Scheme pro-
cess. The file of the current buffer is recorded as in the C-c C-1 command,
and code is evaluated in the recorded package. C-c M-r does similarly, but
subsequently also switches to the inferior Scheme process buffer.

C-M-x — scheme48-send-definition

C-c C-e — scheme48-send-definition

C-c M-e — scheme48-send-definition-and-go
C-M-x (GNU convention) and C-c C-e send the top-level definition that the
current point is within to the current inferior Scheme process. C-c C-e does
similarly, but subsequently also switches to the inferior Scheme process buffer.
C-c c-e and C-c M-e also respect Scheme48’s file/environment mapping.

C-x C-e — scheme48-send-last-sexp
Sends the S-expression preceding the point to the inferior Scheme process. This
also respects Scheme48’s file/environment mapping.

2.3 Using the module system

Schemed48 is deeply integrated with an advanced module system. For complete detail of
its module system, see Chapter 3 [Module system], page 23. Briefly, however:
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Packages are top-level environments suitable for evaluating expressions and definitions,
either interactively, from files loaded on-the-fly, or as the bodies of modules. They can
also access bindings exported by structures by opening the structures.

Structures are libraries, or implementations of interfaces, exporting sets of bindings
that packages can access. Underlying structures are usually packages, in which the
user can, in some cases, interactively evaluate code during development.

Scheme48’s usual development system, the command processor, provides a number of
commands for working with the module system. For complete details, see Section 2.4.6
[Module commands|, page 15. Chief among these commands are ,open and ,in. ‘,open
struct ...’ makes all of the bindings from each of struct ... available in the interaction
environment. Many of the sections in this manual describe one or more structures with the
name they are given. For example, in order to use, or open, the multi-dimensional array
library in the current interaction environment, one would enter

,open arrays
to the command processor. ‘,in struct’ sets the interaction environment to be the package

underlying struct. For instance, if, during development, the user decides that the package
of the existing structure foo should open the structure bar, he might type

,in foo
,open bar
Module descriptions, or code in the module configuration language (see Section 3.2

[Module configuration language|, page 24) should be loaded into the special environment for
that language with the ,config command (see Section 2.4.6 [Module commands|, page 15).
E.g., if ‘packages.scm’ contains a set of module descriptions that the user wishes to load,
among which is the definition of a structure frobozz which he wishes to open, he will
typically send the following to the command processor prompt:

,config ,load packages.scm
,open frobozz

Note: These are commands for the interactive command processor, not special directives
to store in files to work with the module system. The module language is disjoint from
Scheme; for complete detail on it, see Chapter 3 [Module system|, page 23.

2.3.1 Configuration mutation

(This section was derived from work copyrighted (C) 1993-2005 by Richard Kelsey,
Jonathan Rees, and Mike Sperber.)

During program development, it is often desirable to make changes to packages and
interfaces. In static languages, it is usually necessary to re-compile and re-link a program
in order for such changes to be reflected in a running system. Even in interactive Common
Lisp systems, a change to a package’s exports often requires reloading clients that have
already mentioned names whose bindings change. In those systems, once read resolves a
use of a name to a symbol, that resolution is fixed, so a change in the way that a name
resolves to a symbol can be reflected only by re-reading all such references.

The Scheme48 development environment supports rapid turnaround in modular program
development by allowing mutations to a program’s configuration and giving a clear seman-
tics to such mutation. The rule is that variable bindings in a running program are always
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resolved according to the current structure and interface bindings, even when these bindings
change as a result of edits to the configuration. For example, consider the following:

(define-interface foo-interface (export a c))
(define-structure foo foo-interface
(open scheme)
(begin (define a 1)
(define (b x) (+ a x))
(define (c y) (* (b a) y))))
(define-structure bar (export d)
(open scheme foo)
(begin (define (d w) (+ (b w) a))))

This program has a bug. The variable named b, which is free in the definition of d, has
no binding in bar’s package. Suppose that b was intended to be exported by foo, but was
mistakenly omitted. It is not necessary to re-process bar or any of foo’s other clients at
this point. One need only change foo-interface and inform the development system of
that change (using, say, an appropriate Emacs command), and foo’s binding of b will be
found when the procedure d is called and its reference to b actually evaluated.

Similarly, it is possible to replace a structure; clients of the old structure will be modified
so that they see bindings from the new one. Shadowing is also supported in the same way.
Suppose that a client package C opens a structure mumble that exports a name x, and
mumble’s implementation obtains the binding of x from some other structure frotz. C will
see the binding from frotz. If one then alters mumble so that it shadows bar’s binding of x
with a definition of its own, procedures in C that refer to x will subsequently automatically
see mumble’s definition instead of the one from frotz that they saw earlier.

This semantics might appear to require a large amount of computation on every variable
reference: the specified behaviour appears to require scanning the package’s list of opened
structures and examining their interfaces — on every variable reference evaluated, not just at
compile-time. However, the development environment uses caching with cache invalidation
to make variable references fast, and most of the code is invoked only when the virtual
machine traps due to a reference to an undefined variable.

2.3.2 Listing interfaces

The list-interfaces structure provides a utility for examining interfaces. It is usually
opened into the config package with ,config ,open list-interfaces in order to have
access to the structures & interfaces easily.

list-interface struct-or-interface — unspecified [procedure]
Lists all of the bindings exported by struct-or-interface along with their static types
(see Section 3.4 [Static type system], page 30). For example,

> ,config ,open list-interfaces
> ,config (list-interface condvars)

condvar-has-value? (proc (:condvar) :value)
condvar-value (proc (:condvar) :value)
condvar? (proc (:value) :boolean)

make-condvar (proc (&rest :value) :condvar)
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maybe-commit-and-set-condvar! (proc (:condvar :value) :boolean)
maybe-commit-and-wait-for-condvar (proc (:condvar) :boolean)

set-condvar-has-value?! (proc (:condvar :value) :unspecific)
set-condvar-value! (proc (:condvar :value) :unspecific)

2.4 Command processor

The Scheme48 command processor is the main development environment. It incorporates
a read-eval-print loop as well as an interactive inspector and debugger. It is well-integrated
with the module system for rapid dynamic development, which is made even more conve-
nient with the Emacs interface, cmuscheme48; see Section 2.2 [Emacs integration|, page 5.

2.4.1 Basic commands

There are several generally useful commands built-in, along with many others described
in subsequent sections:

,help [command]
,help command [command]
N [command]
,? command [command]

Requests help on commands. ,? is an alias for ,help. Plain ‘,help’ lists a synopsis
of all commands available, as well as all switches (see Section 2.4.2 [Command pro-
cessor switches], page 11). ‘,help command’ requests help on the particular command

command.
,exit [command]
,exit status [command]
,exit-when-done [command]
,exit-when-done status [command]

Exits the command processor. ‘,exit’ immediately exits with an exit status of 0.
‘,exit status’ exits with the status that evaluating the expression status in the
interaction environment produces. ,exit-when-done is like ,exit, but it waits until
all threads complete before exiting.

,80 expression [command]
,go is like ,exit, except that it requires an argument, and it evaluates expression in
the interaction environment in a tail context with respect to the command processor.
This means that the command processor may no longer be reachable by the garbage
collector, and may be collected as garbage during the evaluation of expression. For
example, the full Scheme48 command processor is bootstrapped from a minimal one
that supports the ,go command. The full command processor is initiated in an
argument to the command, but the minimal one is no longer reachable, so it may be
collected as garbage, leaving only the full one.
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,run expression [command]
Evaluates expression in the interaction environment. Alone, this command is not
very useful, but it is required in situations such as the inspector (see Section 2.4.9 [In-
spector], page 18) and command programs (see Section 2.4.10 [Command programs],
page 19).

;undefine name [command]
Removes the binding for name in the interaction environment.

JJload filename . .. [command]
Loads the contents each filename as Scheme source code into the interaction environ-
ment. Each filename is translated first (see Section 4.1.3 [Filenames|, page 39). The
given filenames may be surrounded or not by double-quotes; however, if a filename
contains spaces, it must be surrounded by double-quotes. The differences between
the ,1load command and Scheme’s load procedure are that ,load does not require
its arguments to be quoted, allows arbitrarily many arguments while the load pro-
cedure accepts only one filename (and an optional environment), and works even in
environments in which load is not bound.

,translate from to [command]
A convenience for registering a filename translation without needing to open the
filenames structure. For more details on filename translations, see Section 4.1.3
[Filenames|, page 39; this command corresponds with the filename structure’s set-
translation! procedure. As with ,load, each of the filenames from and to may be
surrounded or not by double-quotes, unless there is a space in the filenames, in which
case it must be surrounded by double-quotes.

2.4.2 Switches

The Scheme48 command processor keeps track of a set of switches, user-settable config-
urations.

,set switch [command]
,set switch {on|off| 7} [command]
,unset switch [command]
,set 7 [command]
‘,set switch’ & ‘,set switch on’ set the switch switch on. ‘,unset switch’ &
‘,set switch off’ turn switch off. ‘,set switch 7’ gives a brief description of

switch’s current status. ‘,set 7’ gives information about all the available switches
and their current state.

The following switches are defined. Each switch is listed with its name and its default
status.

ask-before-loading (off)
If this is on, Scheme48 will prompt the user before loading modules’ code. If it
is off, it will quietly just load it.
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batch (off)

Batch mode is intended for automated uses of the command processor. With
batch mode on, errors cause the command processor to exit, and the prompt is
not printed.

break-on-warnings (off)
If the break-on-warnings switch is on, warnings (see Section 4.2 [Condition
system], page 51) signalled that reach the command processor’s handler will
cause a command level (see Section 2.4.5 [Command levels|, page 13) to be
pushed, similarly to breakpoints and errors.

inline-values (off)
Inline-values tells whether or not certain procedures may be integrated in-
line.

levels (on)
Errors will push a new command level (see Section 2.4.5 [Command levels],
page 13) if this switch is on, or they will just reset back to the top level if
levels is off.

load-noisily (off)
Loading source files will cause messages to be printed if load-noisily is on;
otherwise they will be suppressed.

2.4.3 Emacs integration commands

There are several commands that exist mostly for Emacs integration (see Section 2.2
[Emacs integration|, page 5); although they may be used elsewhere, they are not very useful
or convenient without cmuscheme48.

,Jfrom-file filename [command]
,end [command]
‘,from-file filename’ proclaims that the code following the command, until an
,end command, comes from filename — for example, this may be due to an appro-
priate Emacs command, such as C-c 1 in cmuscheme48 —; if this is the first time
the command processor has seen code from filename, it is registered to correspond
with the interaction environment wherein the ,from-file command was used. If it
is not the first time, the code is evaluated within the package that was registered for

filename.

,Jforget filename [command]
Clears the command processor’s memory of the package to which filename corre-
sponds.

2.4.4 Focus value

The Scheme48 command processor maintains a current focus value. This is typically the
value that the last expression evaluated to, or a list of values if it returned multiple values.
If it evaluated to either zero values or Scheme48’s ‘unspecific’ token (see Section 4.1 [System
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features|, page 35), the focus value is unchanged. At the initial startup of Scheme48, the
focus value is set to the arguments passed to Scheme48’s virtual machine after the ‘-a’
argument on the command-line (see Section 2.1 [Running Scheme48|, page 3). The focus
value is accessed through the ## syntax; the reader substitutes a special quotation (special
so that the compiler will not generate warnings about a regular quote expression containing
a weird value) for occurrences of ##. Several commands, such as ,inspect and ,dis, either
accept an argument or use the current focus value. Also, in the inspector (see Section 2.4.9
[Inspector], page 18), the focus object is the object that is currently being inspected.

> (cons 1 2)

(1. 2)
> ##
(1. 2)

> (begin (display "Hello, world!") (newline))
Hello, world!

> #it

(1. 2)
> (cdr ##)
2

> (define x 5)
no values returned

> (+ ## x)

7

> (values 1 2 3)

; 3 values returned
1

2

3

> #i#t

(1 2 3)

2.4.5 Command levels

The Scheme48 command processor maintains a stack of command levels, or recursive
invocations of the command processor. Each command level retains information about
the point from the previous command level at which it was pushed: the threads that
were running — which the command processor suspends —, including the thread of that
command level itself; the continuation of what pushed the level; and, if applicable, the
condition (see Section 4.2 [Condition system], page 51) that caused the command level to
be pushed. Each command level has its own thread scheduler, which controls all threads
running at that level, including those threads’ children.

Some beginning users may find command levels confusing, particularly those who are
new to Scheme or who are familiar with the more simplistic interaction methods of other
Scheme systems. These users may disable the command level system with the levels switch
(see Section 2.4.2 [Command processor switches|, page 11) by writing the command ‘, set
levels off’.
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,push [command]
,pop Fonnnanﬂ
,resume command
,resume level [command]
,reset [command]
,reset level [command]

‘,push’ pushes a new command level. ‘,pop’ pops the current command level. C-d/"D,
or EOF, has the same effect as the ,pop command. Popping the top command level
inquires the user whether to exit or to return to the top level. ‘,resume level’ pops
all command levels down to level and resumes all threads that were running at level
when it was suspended to push another command level. ‘,reset level’ resets the
command processor to level, terminating all threads at that level but the command
reader thread. ,resume & ,reset with no argument use the top command level.

,condition [command]

,threads [command]
‘,condition’ sets the focus value to the condition that caused the command level
to be pushed, or prints ‘no condition’ if there was no relevant condition. ‘,threads’
invokes the inspector on the list of threads of the previous command level, or on
nothing if the current command level is the top one.

> ,push

1> ,push

2> ,pop

1> ,reset

Top level

> ,open threads formats
> ,push

1> ,push

2> (spawn (lambda ()
(let loop O

(sleep 10000) ; Sleep for ten seconds.
(format #t "“&foo~%")
(loop)))
’my-thread)
2>
foo
,push
3> ,threads

; 2 values returned
[0] ’#{Thread 4 my-thread}
[1] ’#{Thread 3 command-loop}
3: q
> (#{Thread 4 my-thread} #{Thread 3 command-loopl})
3> ,resume 1

foo
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2>

foo

,push

3> ,reset 1
Back to 1> ,pop
>

2.4.6 Module commands

Scheme48’s command processor is well-integrated with its module system (see Chap-
ter 3 [Module system], page 23). It has several dedicated environments, including the user
package and the config package, and can be used to evaluate code within most packages in
the Scheme48 image during program development. The config package includes bindings
for Scheme48’s configuration language; structure & interface definitions may be evaluated
in it. The command processor also has provisions to support rapid development and mod-
ule reloading by automatically updating references to redefined variables in compiled code
without having to reload all of that code.

,open struct . .. [command]
Opens each struct into the interaction environment, making all of its exported bind-
ings available. This may have the consequence of loading code to implement those
bindings. If there was code evaluated in the interaction environment that referred
to a previously undefined variable for whose name a binding was exported by one of
these structures, a message is printed to the effect that that binding is now available,
and the code that referred to that undefined variable will be modified to subsequently
refer to the newly available binding.

,JJoad-package struct [command]

,reload-package struct [command]
,load-package and ,reload-package both load the code associated with the pack-
age underlying struct, after ensuring that all of the other structures opened by that
package are loaded as well. ,load-package loads the code only if has not already
been loaded; ,reload-package unconditionally loads it.

,user [command]
,user command-or-exp [command]
,config [command]
,config command-or-exp [command]
,Jfor-syntax [command]
Jfor-syntax command-or-exp [command]
,hew-package [command]
,in structure [command]

]

,in structure command-or-exp [command
These all operate on the interaction environment. ‘,user’ sets it to the user package,
which is the default at initial startup. ‘,user command-or-exp’ temporarily sets the
interaction environment to the user package, processes command-or-exp, and reverts
the interaction environment to what it was before ,user was invoked. The ,config &
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,for-syntax commands are similar, except that they operate on the config package
and the package used for the user package’s macros (see Section 3.3 [Macros in concert
with modules]|, page 28). ‘,new-package’ creates a temporary, unnamed package with
a vanilla R5RS environment and sets the interaction environment to it. That new
package is not accessible in any way except to the user of the command processor, and
it is destroyed after the user switches to another environment (unless the user uses the
,structure command; see below). ‘,in structure’ sets the interaction environment
to be structure’s package; structure is a name whose value is extracted from the
config package. ‘,in structure command-or-exp’ sets the interaction environment
to structure temporarily to process command-or-exp and then reverts it to what it
was before the use of ,in. Note that, within a structure, the bindings available are
exactly those bindings that would be available within the structure’s static code, ¢.e.
code in the structure’s begin package clauses or code in files referred to by files
package clauses.

,user-package-is struct [command]

,config-package-is struct [command]
,user-package-is & ,config-package-is set the user & config packages, respec-
tively, to be struct’s package. Struct is a name whose value is accessed from the
current config package.

,structure name interface [command]
This defines a structure named name in the config package that is a view of interface
on the current interaction environment.

2.4.7 SRFI 7

Scheme48 supports [SRFI 7] after loading the srfi-7 structure by providing two com-
mands for loading [SRFI 7] programs:

JJoad-srfi-7-program name filename [command]

JJoad-srfi-7-script name filename [command]
These load [SRFI 7] a program into a newly constructed structure, named name,
which opens whatever other structures are needed by features specified in the pro-
gram. ,load-srfi-7-program loads a simple [SRFI 7] program; ,load-srfi-7-
script skips the first line, intended for [SRFI 22| Unix scripts.

2.4.8 Debugging commands

There are a number of commands useful for debugging, along with a continuation in-
spector, all of which composes a convenient debugger.

,bound? name [command]
;,where [command]
,where procedure [command]

,bound? prints out binding information about name, if it is bound in the interaction
environment, or ‘Not bound’ if name is unbound. ,where prints out information
about what file and package its procedure argument was created in. If procedure is
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not passed, ,where uses the focus value. If ,where’s argument is not a procedure,
it informs the user of this fact. If ,where cannot find the location of its argument’s
creation, it prints ‘Source file not recorded.’

,expand [command]
,expand exp [command]
,dis [command]
,dis proc [command]

,expand prints out a macro-expansion of exp, or the focus value if exp is not pro-
vided. The expression to be expanded should be an ordinary S-expression. The ex-
pansion may contain ‘generated names’ and ‘qualified names.” These merely contain
lexical context information that allow one to differentiate between identifiers with
the same name. Generated names look like #{Generated name unique-numeric-
id}. Qualified names appear to be vectors; they look like #(>> introducer-macro
name unique-numeric-id), where introducer-macro is the macro that introduced
the name.

,dis prints out a disassembly of its procedure, continuation, or template argument. If
proc is passed, it is evaluated in the interaction environment; if not, ,dis disassembles
the focus value. The disassembly is of Scheme48’s virtual machine’s byte code.*

,condition [command]

,threads [command]
For the descriptions of these commands, see Section 2.4.5 [Command levels], page 13.
These are mentioned here because they are relevant in the context of debugging.

,trace [command]
,trace name ... [command]
,untrace [command]
,untrace name ... [command]
Traced procedures will print out information about when they are entered and when
they exit. ‘,trace’ lists all of the traced procedures’ bindings. ‘,trace name ...’ sets

each name in the interaction environment, which should be bound to a procedure,
to be a traced procedure over the original procedure. ,untrace’ resets all traced

procedures to their original, untraced procedures. ‘,untrace name ...’ untraces each
individual traced procedure of name ... in the interaction environment.
,preview [command]

Prints a trace of the previous command level’s suspended continuation. This is anal-
ogous with stack traces in many debuggers.

,debug [command]
Invokes the debugger: runs the inspector on the previous command level’s saved
continuation. For more details, see Section 2.4.9 [Inspector|, page 18.

4 A description of the byte code is forthcoming, although it does not have much priority to this manual’s
author. For now, users can read the rudimentary descriptions of the Scheme48 virtual machine’s byte
code instruction set in ‘vm/interp/arch.scm’ of Scheme48’s Scheme source.
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,proceed [command]

,proceed exp [command]
Returns to the continuation of the condition signalling of the previous command
level. Only certain kinds of conditions will push a new command level, however
— breakpoints, errors, and interrupts, and, if the break-on-warnings switch is on,
warnings —; also, certain kinds of errors that do push new command levels do not
permit being proceeded from. In particular, only with a few VM primitives may
the ,proceed command be used. If exp is passed, it is evaluated in the interaction
environment to produce the values to return; if it is not passed, zero values are
returned.

2.4.9 Inspector

Scheme48 provides a simple interactive object inspector. The command processor’s
prompt’s end changes from ‘>’ to ‘:” when in inspection mode. The inspector is the basis
of the debugger, which is, for the most part, merely an inspector of continuations. In the
debugger, the prompt is ‘debug:’. In the inspector, objects are printed followed by menus
of their components. Entries in the menu are printed with the index, which optionally
includes a symbolic name, and the value of the component. For example, a pair whose car

is the symbol a and whose cdr is the symbol b would be printed by the inspector like this:
’(a . b)

[0: car] ’a
[1: cdr] °’b

The inspector maintains a stack of the focus objects it previously inspected. Selecting a
new focus object pushes the current one onto the stack; the u command pops the stack.

Jinspect [command]

Jinspect exp [command]
Invokes the inspector. If exp is present, it is evaluated in the user package and its
result is inspected (or a list of results, if it returned multiple values, is inspected). If
exp is absent, the current focus value is inspected.

The inspector operates with its own set of commands, separate from the regular in-
teraction commands, although regular commands may be invoked from the inspector as
normal. Inspector commands are entered with or without a preceding comma at the in-
spector prompt. Multiple inspector commands may be entered on one line; an input may
also consist of an expression to be evaluated. If an expression is evaluated, its value is
selected as the focus object. Note, however, that, since inspector commands are symbols,
variables cannot be evaluated just by entering their names; one must use either the ,run
command or wrap the variables in a begin.

These inspector commands are defined:

menu [inspector command|

m [inspector command]
Menu prints a menu for the focus object. M moves forward in the current menu if there
are more than sixteen items to be displayed.



Chapter 2: User environment 19

u [inspector command]
Pops the stack of focus objects, discarding the current one and setting the focus object
to the current top of the stack.

qa [inspector command|
Quits the inspector, going back into the read-eval-print loop.

template [inspector command|
Attempts to coerce the focus object into a template. If successful, this selects it as the
new focus object; if not, this prints an error to that effect. Templates are the static
components of closures and continuations: they contain the code for the procedure,
the top-level references made by the procedure, literal constants used in the code,
and any inferior templates of closures that may be constructed by the code.

d [inspector command|
Goes down to the parent of the continuation being inspected. This command is valid
only in the debugger mode, i.e. when the focus object is a continuation.

2.4.10 Command programs

The Scheme48 command processor can be controlled programmatically by command
programs, programs written in the exec language. This language is essentially a mirror
of the commands but in a syntax using S-expressions. The language also includes all of
Scheme. The exec language is defined as part of the exec package.

,exec [command]

,exec command [command]
Sets the interaction environment to be the exec package. If an argument is passed, it
is set temporarily, only to run the given command.

Commands in the exec language are invoked as procedures in Scheme. Arguments should
be passed as follows:

e Identifiers, such as those of structure names in the config package, should be passed as
literal symbols. For instance, the command ‘,in frobbotz’ would become in the exec
language (in ’frobbotz).

e Filenames should be passed as strings; e.g., ‘,dump frob.image’ becomes (dump
"frob.image").

e Commands should be represented in list values with the car being the command name
and the cdr being the arguments. Note that when applying a command an argument
that is a command invocation is often quoted to produce a list, but the list should
not include any quotation; for instance, ‘,in mumble ,undefine frobnicate’ would
become (in ’mumble ’ (undefine frobnicate)), even though simply ,undefine
frobnicate’ would become (undefine ’frobnicate).

The reason for this is that the command invocation in the exec language is different
from a list that represents a command invocation passed as an argument to another
command; since commands in the exec language are ordinary procedures, the arguments
must be quoted, but the quoted arguments are not themselves evaluated: they are
applied as commands.
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An argument to a command that expects a command invocation can also be a pro-
cedure, which would simply be called with zero arguments. For instance, (config
(lambda () (display (interaction-environment)) (newline))) will call the given
procedure with the interaction environment set to the config package.

e Expressions must be passed using the run command. For example, the equivalent of
‘,user (+ 1 2)7 in the exec language would be (user ’ (run (+ 1 2))).

Command programs can be loaded by running the ,load command in the exec package.
Scripts to load application bundles are usually written in the exec language and loaded into
the exec package. For example, this command program, when loaded into the exec package,
will load ‘foo.scm’ into the config package, ensure that the package frobbotzim is loaded,
and open the quuxim structure in the user package:

(config ’(load "foo.scm"))
(load-package ’frobbotzim)
(user ’(open quuxim))

2.4.11 Image-building commands

Since Scheme48’s operation revolves about an image-based model, these commands pro-
vide a way to save heap images on the file system, which may be resumed by invoking the
Scheme48 virtual machine on them as in Section 2.1 [Running Scheme48|, page 3.

,build resumer filename [command]
,dump filename [command]
,dump filename message [command]

,build evaluates resumer, whose value should be a unary procedure, and builds a heap
image in filename that, when resumed by the virtual machine, will pass the resumer
all of the command-line arguments after the ‘-a’ argument to the virtual machine.
The run-time system will have been initialized as with usual resumers (see Section 4.8
[Suspending and resuming heap images|, page 77), and a basic condition handler will
have been installed by the time that the resumer is called. On Unix, resumer must
return an integer exit status for the process. ,dump dumps the Scheme48 command
processor, including all of the current settings, to filename. If message is passed, it
should be a string delimited by double-quotes, and it will be printed as part of the
welcome banner on startup; its default value, if it is not present, is " (suspended
image)".

2.4.12 Resource statistics and control

Schemed8 provides several devices for querying statistics about various resources and
controlling resources, both in the command processor and programmatically.

,collect [command]
Forces a garbage collection and prints the amount of space in the heap before and
after the collection.
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,2time expression [command]
Evaluates expression and prints how long it took. Three numbers are printed: run
time, GC time, and real time. The run time is the amount of time in Scheme code;
the GC time is the amount of time spent in the garbage collector; and the real time
is the actual amount of time that passed during the expression’s evaluation.

,Jkeep [command]
,Jkeep kind ... [command]
,fAush [command]
,Aush kind ... [command]

Scheme48 maintains several different kinds of information used for debugging infor-
mation. ‘,keep’ with no arguments shows what kinds of debugging data are preserved
and what kinds are not. ‘,keep kind ...’ requests that the debugging data of the
given kinds should be kept; the ,flush command requests the opposite. ‘,flush’ with
no arguments flushes location names and resets the debug data table. The following
are the kinds of debugging data:

names procedure names

maps environment maps used by the debugger to show local variable names
files filenames where procedures were defined

source source code surrounding continuations, printed by the debugger

tabulate if true, will store debug data records in a global table that can be easily
flushed; if false, will store directly in compiled code

,flush can also accept location-names, which will flush the table of top-level vari-
ables’ names (printed, for example, by the ,bound? command); file-packages,
which will flush the table that maps filenames to packages in which code from those
files should be evaluated; or table, in which case the table of debug data is flushed.

Removing much debug data can significantly reduce the size of Scheme48 heap images,
but it can also make error messages and debugging much more difficult. Usually, all
debug data is retained; only for images that must be small and that do not need to
be debuggable should the debugging data flags be turned off.

The spatial structure exports these utilities for displaying various statistics about the
heap:

space — unspecified [procedure]
vector-space [predicate] — unspecified [procedure]
record-space [predicate] — unspecified [procedure]

Space prints out a list of the numbers of all objects and the number of bytes allocated
for those objects on the heap, partitioned by the objects’ primitive types and whether
or not they are immutable (pure) or mutable (impure). Vector-space prints the
number of vectors and the number of bytes used to store those vectors of several
different varieties, based on certain heuristics about their form. If the predicate
argument is passed, it gathers only vectors that satisfy that predicate. Record-space
prints out, for each record type in the heap, both the number of all instances of
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that record type and the number of bytes used to store all of those instances. Like
vector-space, if the predicate argument is passed, record-space will consider only
those records that satisfy the predicate.

All of these three procedures first invoke the garbage collector before gathering statis-
tics.

The traverse structure provides a simple utility for finding paths by which objects refer
to one another.

traverse-breadth-first object — unspecified [procedure]

traverse-depth-first object — unspecified [procedure]
These traverse the heap, starting at object, recording all objects transitively re-
ferred to. Traverse-breadth-first uses a FIFO-queue-directed breadth-first graph
traversal, while traverse-depth-first uses a LIFO-stack-directed depth-first graph
traversal. The traversal halts at any leaves in the graph, which are distinguished by
an internal leaf predicate in the module. See below on set-leaf-predicate! on how
to customize this and what the default is.

The traversal information is recorded in a global resource; it is not thread-safe, and
intended only for interactive usage. The record can be reset by passing some simple
object with no references to either traverse-breadth-first or traverse-depth-
first; e.g., (traverse-depth-first #f).

trail object — unspecified [procedure]
After traversing the heap from an initial object, (trail object) prints the path
of references and intermediate objects by which the initial object holds a transitive
reference to object.

set-leaf-predicate! predicate — unspecified [procedure]

usual-leaf-predicate object — boolean [procedure]
Set-leaf-predicate! sets the current leaf predicate to be predicate. Usual-leaf-
predicate is the default leaf predicate; it considers simple numbers (integers and
flonums), strings, byte vectors, characters, and immediate objects (true, false, nil,
and the unspecific object) to be leaves, and everything else to be branches.
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3 Module system

Scheme48 has an advanced module system that is designed to interact well with macros,
incremental compilation, and the interactive development environment’s (see Chapter 2
[User environment|, page 3) code reloading facilities for rapid program development. For
details on the integration of the module system and the user environment for rapid code
reloading, see Section 2.3 [Using the module system], page 7.

3.1 Module system architecture

The fundamental mechanism by which Scheme code is evaluated is the lexical environ-
ment. Scheme48’s module system revolves around this fundamental concept. Its purpose is
to control the denotation of names in code® in a structured, modular manner. The module
system is manipulated by a static configuration language, described in the next section; this
section describes the concepts in the architecture of the module system.

The package is the entity internal to the module system that maps a set of names to
denotations. For example, the package that represents the Scheme language maps lambda
to a descriptor for the special form that the compiler interprets to construct a procedure,
car to the procedure that accesses the car of a pair, &c. Packages are not explicitly
manipulated by the configuration language, but they lie underneath structures, which are
described below. A package also contains the code of a module and controls the visibility
of names within that code. It also includes some further information, such as optimizer
switches. A structure is a view on a package; that is, it contains a package and an interface
that lists all of the names it exports to the outside. Multiple structures may be constructed
atop a single package; this mechanism is often used to offer multiple abstraction levels to
the outside. A module is an abstract entity: it consists of some code, the namespace visible
to the code, and the set of abstractions or views upon that code.

A package contains a list of the structures whose bindings should be available in the code
of that package. If a structure is referred to in a such a list of a package, the package is said
to open that structure. It is illegal for a package to open two structures whose interfaces
contain the same name.? Packages may also modify the names of the bindings that they
import. They may import only selected bindings, exclude certain bindings from structures,
rename imported bindings, create alias bindings, and add prefixes to names.

Most packages will open the standard scheme structure, although it is not implicitly
opened, and the module system allows not opening scheme. It may seem to be not very
useful to not open it, but this is necessary if some bindings from it are intended to be
shadowed by another structure, and it allows for entirely different languages from Scheme
to be used in a package’s code. For example, Scheme48’s byte code interpreter virtual
machine is implemented in a subset of Scheme called Pre-Scheme, which is described in a
later chapter in this manual. The modules that compose the VM all open not the scheme
structure but the prescheme structure. The configuration language itself is controlled by the

1 This is in contrast to, for example, Common Lisp’s package system, which controls the mapping from
strings to names.

2 The current implementation, however, does not detect this. Instead it uses the left-most structure in the
list of a package’s open clause; see the next section for details on this.



Chapter 3: Module system 24

module system, too. In another example, from Scsh, the Scheme shell, there is a structure
scsh that contains all of the Unix shell programming facilities. However, the scsh structure
necessarily modifies some of the bindings related to I/O that the scheme structure exports.
Modules could not open both scheme and scsh, because they both provide several bindings
with the same names, so Scsh defines a more convenient scheme-with-scsh structure that
opens both scheme, but with all of the shadowed bindings excluded, and scsh; modules that
use Scsh would open neither scsh nor scheme: they instead open just scheme-with-scsh.

Interfaces are separated from structures in order that they may be retised and com-
bined. For example, several different modules may implement the same abstractions dif-
ferently. The structures that they include would, in such cases, reiise the same interfaces.
Also, it is sometimes desirable to combine several interfaces into a compound interface;
see the compound-interface form in the next section. Furthermore, during interactive
development, interface definitions may be reloaded, and the structures that use them will
automatically begin using the new interfaces; see Section 2.3 [Using the module system],
page 7.

Scheme48’s module system also supports parameterized modules. Parameterized mod-
ules, sometimes known as generic modules, higher-order modules or functors, are essentially
functions at the module system level that map structures to structures. They may be in-
stantiated or applied arbitrarily many times, and they may accept and return arbitrarily
many structures. Parameterized modules may also accept and return other parameterized
modules.

3.2 Module configuration language

Scheme48’s module system is used through a module configuration language. The con-
figuration language is entirely separate from Scheme. Typically, in one configuration, or set
of components that compose a program, there is an ‘interfaces.scm’ file that defines all of
the interfaces used by the configuration, and there is also a ‘packages.scm’ file that defines
all of the packages & structures that compose it. Note that modules are not necessarily
divided into files or restricted to one file: modules may include arbitrarily many files, and
modules’ code may also be written in-line to structure expressions (see the begin package
clause below), although that is usually only for expository purposes and trivial modules.

Structures are always created with corresponding package clauses. Each clause specifies
an attribute of the package that underlies the structure or structures created using the
clauses. There are several different types of clauses:

open structure . . . [package clause]
access structure . . . [package clause]
Open specifies that the package should open each of the listed structures, whose pack-
ages will be loaded if necessary. Access specifies that each listed structure should be
accessible using the (structure-ref structure identifier) special form, which
evaluates to the value of identifier exported by the accessed structure structure.
Structure-ref is available from the structure-refs structure. Each structure
passed to access is not opened, however; the bindings exported thereby are avail-
able only using structure-ref. While the qualified structure-ref mechanism is no
longer useful in the presence of modified structures (see below on modify, subset, &
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with-prefix), some old code still uses it, and access is also useful to force that the
listed structures’ packages be loaded without cluttering the namespace of the package
whose clauses the access clause is among.

for-syntax package-clause . . . [package clause]
Specifies a set of package clauses for the next floor of the reflective tower; see Sec-
tion 3.3 [Macros in concert with modules], page 28.

files file-specifier . . . [package clause]

begin code . .. [package clause]
Files and begin specify the package’s code. Files takes a sequence of namelists for
the filenames of files that contain code; see Section 4.1.3 [Filenames|, page 39. Begin
accepts in-line program code.

optimize optimizer-specifier . . . [package clause]

integrate [on7] [package clause]
Optimize clauses request that specified compiler optimizers be applied to the code.
(Actually, ‘optimizer’ is a misnomer. The optimize clause may specify arbitrary
passes that the compiler can be extended with.) Integrate clauses specify whether
or not integrable procedures from other modules, most notably Scheme primitives
such as car or vector-ref, should actually be integrated in this package. This is by
default on. Most modules should leave it on for any reasonable performance; only a
select few, into which code is intended to be dynamically loaded frequently and in
which redefinition of imported procedures is common, need turn this off. The value
of the argument to integrate clauses should be a literal boolean, i.e. #t or #£; if no
argument is supplied, integration is enabled by default.

Currently, the only optimizer built-in to Scheme48 is the automatic procedure in-
tegrator, or auto-integrate, which attempts stronger type reconstruction than is
attempted with most code (see Section 3.4 [Static type system]|, page 30) and selects
procedures below a certain size to be made integrable (so that the body will be com-
piled in-line in all known call sites). Older versions of Scheme48 also provided another
optimizer, flat-environments, which would flatten certain lexical closure environ-
ments, rather than using a nested environment structure. Now, however, Scheme48’s
byte code compiler always flattens environments; specifying flat-environments in
an optimize clause does nothing.

A configuration is a sequence of definitions. There are definition forms for only structures
and interfaces.

define-structure name interface package-clause . . . [configuration form]

define-structures ((name interface) . ..) package-clause . . . [configuration form]
Define-structure creates a package with the given package clauses and defines name
to be the single view atop it, with the interface interface. Define-structure also
creates a package with the given package clauses; upon that package, it defines each
name to be a view on it with the corresponding interface.
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define-module (name parameter . ..) definition . .. result [configuration form]

def name ... (parameterized-module argument . . .) [configuration form)]
Define-module defines name to be a parameterized module that accepts the given
parameters.

define-interface name interface [configuration form]

Defines name to be the interface that interface evaluates to. Interface may either be
an interface constructor application or simply a name defined to be an interface by
some prior define-interface form.

export export-specifier . . . [interface constructor]
Export constructs a simple interface with the given export specifiers. The export
specifiers specify names to export and their corresponding static types. Each export-
specifier should have one of the following forms:

symbol in which case symbol is exported with the most general value type;

(symbol type)
in which case symbol is exported with the given type; or

((symbol ...) type)
in which case each symbol is exported with the same given type

For details on the valid forms of type, see Section 3.4 [Static type system], page 30.
Note: All macros listed in interfaces must be explicitly annotated with the type
:syntax; otherwise they would be exported with a Scheme value type, which would
confuse the compiler, because it would not realize that they are macros: it would
instead treat them as ordinary variables that have regular run-time values.

compound-interface interface . .. [interface constructor]
This constructs an interface that contains all of the export specifiers from each inter-
face.

Structures may also be constructed anonymously; this is typically most useful in passing
them to or returning them from parameterized modules.

structure interface package-clauses [structure constructor]

structures (interface . ..) package-clauses [structure constructor]
Structure creates a package with the given clauses and evaluates to a structure over
it with the given interface. Structures does similarly, but it evaluates to a number
of structures, each with the corresponding interface.

subset structure (name . ..) [structure constructor]
with-prefix structure name [structure constructor]
modify structure modifier . . . [structure constructor]
These modify the interface of structure. Subset evaluates to a structure that exports
only name ..., excluding any other names that structure exported. With-prefix
adds a prefix name to every name listed in structure’s interface. Both subset and
with-prefix are syntactic sugar for the more general modify, which applies the
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modifier commands in a strictly right-to-left or last-to-first order. Note: These all
denote new structures with new interfaces; they do not destructively modify existing
structures’ interfaces.

prefix name [modifier command|
expose name . .. [modifier command|
hide name ... [modifier command|
[ ]

]

alias (from to) ... modifier command
rename (from to) ... [modifier command
Prefix adds the prefix name to every exported name in the structure’s interface.
Expose exposes only name . ..; any other names are hidden. Hide hides name .. ..

Alias exports each to as though it were the corresponding from, as well as each
from. Rename exports each to as if it were the corresponding from, but it also hides
the corresponding from.

Examples:

(modify structure
(prefix foo:)
(expose bar baz quux))

makes only foo:bar, foo:baz, and foo:quux, available.

(modify structure
(hide baz:quux)
(prefix baz:)
(rename (foo bar)
(mumble frotz))
(alias (gargle mumph)))

exports baz:gargle as what was originally mumble, baz:mumph as an alias for what
was originally gargle, baz:frotz as what was originally mumble, baz:bar as what
was originally foo, not baz:quux — what was originally simply quux —, and every-
thing else that structure exported, but with a prefix of baz:.

There are several simple utilities for binding variables to structures locally and returning
multiple structures not necessarily over the same package (i.e. not with structures). These
are all valid in the bodies of define-module and def forms, and in the arguments to
parameterized modules and open package clauses.

begin body [syntax]
let ((name value) ...) body [syntax]
receive (name ...) producer body [syntax]
values value . .. [syntax]

These are all as in ordinary Scheme. Note, however, that there is no reasonable way
by which to use values except to call it, so it is considered a syntax; also note that
receive may not receive a variable number of values — i.e. there are no ‘rest lists’
—, because list values in the configuration language are nonsensical.

Finally, the configuration language also supports syntactic extensions, or macros, as in
Scheme.
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define-syntax name transformer-specifier [configuration form)]
Defines the syntax transformer name to be the transformer specified by transformer-
specifier. Transformer-specifier is exactly the same as in Scheme code; it is evaluated
as ordinary Scheme.

3.3 Macros in concert with modules

One reason that the standard Scheme language does not support a module system yet
is the issue of macros and modularity. There are several issues to deal with:

e that compilation of code that uses macros requires presence of those macros’ definitions,
which prevents true separate compilation, because those macros may be from other
modules;

e that a macro’s expansion must preserve referential transparency and hygiene, for ex-
ample in cases where it refers to names from within the module in which it was defined,
even if those names weren’t exported; and

e that a macro’s code may be arbitrary Scheme code, which in turn can use other modules,
so one module’s compile-time, when macros are expanded, is another’s run-time, when
the code used in macros is executed by the expander: this makes a tower of phases of
code evaluation over which some coherent control must be provided.

Scheme4&’s module system tries to address all of these issues coherently and comprehen-
sively. Although it cannot offer total separate compilation, it can offer incremental compi-
lation, and compiled modules can be dumped to the file system & restored in the process
of incremental compilation.?

Scheme48’s module system is also very careful to preserve non-local module references
from a macro’s expansion. Macros in Scheme48 are required to perform hygienic renaming in
order for this preservation, however; see Section 4.1.12 [Explicit renaming macros], page 49.
For a brief example, consider the delay syntax for lazy evaluation. It expands to a simple
procedure call:

(delay expression)
— (make-promise (lambda () expression))

However, make-promise is not exported from the scheme structure. The expansion works
correctly due to the hygienic renaming performed by the delay macro transformer: when
it hygienically renames make-promise, the output contains not the symbol but a special
token that refers exactly to the binding of make-promise from the environment in which the
delay macro transformer was defined. Special care is taken to preserve this information.
Had delay expanded to a simple S-expression with simple symbols, it would have generated
a free reference to make-promise, which would cause run-time undefined variable errors,
or, if the module in which delay was used had its own binding of or imported a binding
of the name make-promise, delay’s expansion would refer to the wrong binding, and there
could potentially be drastic and entirely unintended impact upon its semantics.

3 While such facilities are not built-in to Scheme48, there is a package to do this, which will probably be
integrated at some point soon into Scheme48.
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Finally, Scheme48’s module system has a special design for the tower of phases, called
a reflective tower.* Every storey represents the environment available at successive macro
levels. That is, when the right-hand side of a macro definition or binding is evaluated in an
environment, the next storey in that environment’s reflective tower is used to evaluate that
macro binding. For example, in this code, there are two storeys used in the tower:

(define (foo ...bar...)
(let-syntax ((baz ...quux...))
..zot...))

In order to evaluate code in one storey of the reflective tower, it is necessary to expand
all macros first. Most of the code in this example will eventually be evaluated in the first
storey of the reflective tower (assuming it is an ordinary top-level definition), but, in order
to expand macros in that code, the let-syntax must be expanded. This causes . . .quux. ..
to be evaluated in the second storey of the tower, after which macro expansion can proceed,
and long after which the enclosing program can be evaluated.

The module system provides a simple way to manipulate the reflective tower. There is
a package clause, for-syntax, that simply contains package clauses for the next storey in
the tower. For example, a package with the following clauses:

(open scheme foo bar)
(for-syntax (open scheme baz quux))

has all the bindings of scheme, foo, & bar, at the ground storey; and the environment in
which macros’ definitions are evaluated provides everything from scheme, baz, & quux.

With no for-syntax clauses, the scheme structure is implicitly opened; however, if there
are for-syntax clauses, scheme must be explicitly opened.® Also, for-syntax clauses
may be arbitrarily nested: reflective towers are theoretically infinite in height. (They are
internally implemented lazily, so they grow exactly as high as they need to be.)

Here is a simple, though contrived, example of using for-syntax. The while-loops
structure exports while, a macro similar to C’s while loop. While’s transformer unhygien-
ically binds the name exit to a procedure that exits from the loop. It necessarily, therefore,
uses explicit renaming macros (see Section 4.1.12 [Explicit renaming macros|, page 49) in
order to break hygiene; it also, in the macro transformer, uses the destructure macro to
destructure the input form (see Section 6.8 [Library utilities|, page 112, in particular, the
structure destructuring for destructuring S-expressions).

(define-structure while-loops (export while)
(open scheme)
(for-syntax (open scheme destructuring))
(begin
(define-syntax while
(lambda (form r compare)
(destructure (((WHILE test . body) form))
“(,(r *CALL-WITH-CURRENT-CONTINUATION)
(,(r ’LAMBDA) (EXIT)

4 This would be more accurately named ‘syntactic tower,” as it has nothing to do with reflection.

5 This is actually only in the default config package of the default development environment. The full
mechanism is very general.
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(,(r °LET) (r ’LOOP) O
(,(r ’IF) ,test
(,(r ’BEGIN)
,@body
(,(r ’LOCP))))))
(CALL-WITH-CURRENT-CONTINUATION LAMBDA LET IF BEGIN))))

This next while-example structure defines an example procedure foo that uses while.
Since while-example has no macro definitions, there is no need for any for-syntax clauses;
it imports while from the while-loops structure only at the ground storey, because it has
no macro bindings to evaluate the transformer expressions of:

(define-structure while-example (export foo)
(open scheme while-loops)
(begin
(define (foo x)
(while (> x 9)
(if (integer? (sqrt x))
(exit (expt x 2))
(set! x (- x 1)))))))

3.4 Static type system

Scheme48 supports a rudimentary static type system. It is intended mainly to catch
some classes of type and arity mismatch errors early, at compile-time. By default, there is
only extremely basic analysis, which is typically only good enough to catch arity errors and
the really egregious type errors. The full reconstructor, which is still not very sophisticated,
is enabled by specifying an optimizer pass that invokes the code usage analyzer. The only
optimizer pass built-in to Scheme48, the automatic procedure integrator, named auto-
integrate, does so.

The type reconstructor attempts to assign the most specific type it can to program terms,
signalling warnings for terms that are certain to be invalid by Scheme’s dynamic semantics.
Since the reconstructor is not very sophisticated, it frequently gives up and assigns very
general types to many terms. Note, however, that it is very lenient in that it only assigns
more general types: it will never signal a warning because it could not reconstruct a very
specific type. For example, the following program will produce no warnings:

(define (foo x y) (if x (+ y 1) (car y)))
Calls to foo that are clearly invalid, such as (foo #t ’a), could cause the type analyzer to

signal warnings, but it is not sophisticated enough to determine that foo’s second argument
must be either a number or a pair; it simply assigns a general value type (see below).

There are some tricky cases that depend on the order by which arguments are evaluated
in a combination, because that order is not specified in Scheme. In these cases, the relevant
types are narrowed to the most specific ones that could not possibly cause errors at run-time
for any order. For example,

(lambda (x) (+ (begin (set! x ’(3)) 5) (car x)))

will be assigned the type (proc (:pair) :number), because, if the arguments are evaluated
right-to-left, and x is not a pair, there will be a run-time type error.
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The type reconstructor presumes that all code is potentially reachable, so it may signal
warnings for code that the most trivial control flow analyzer could decide unreachable. For
example, it would signal a warning for (if #t 3 (car 7)). Furthermore, it does not account
for continuation throws; for example, though it is a perfectly valid Scheme program, the
type analyzer might signal a warning for this code:

(call-with-current-continuation
(lambda (k) (0 (k))))

The type system is based on a type lattice. There are several maximum or ‘top’ elements,
such as :values, :syntax, and :structure; and one minimum or ‘bottom’ element, :error.
This description of the type system makes use of the following notations: E : T means that
the term E has the type, or some compatible subtype of, T; and T, C T, means that T,
is a compatible subtype of T, — that is, any term whose static type is T, is valid in any
context that expects the type T, —.

Note that the previous text has used the word ‘term,” not ‘expression,” because static
types are assigned to not only Scheme expressions. For example, cond macro has the type
:syntax. Structures in the configuration language also have static types: their interfaces.
(Actually, they really have the type :structure, but this is a deficiency in the current
implementation’s design.) Types, in fact, have their own type: :type. Here are some
examples of values, first-class or otherwise, and their types:

cond : :syntax

(values 1 ’foo ’(x . y))
(some-values :exact-integer :symbol :pair)

:syntax : :type
3 : :exact-integer

(define-structure foo (export a b) ...)
foo : (export a b)

One notable deficiency of the type system is the absence of any sort of parametric
polymorphism.

join type ... [type constructor]

meet type ... [type constructor]
Join and meet construct the supremum and infimum elements in the type lattice of
the given types. That is, for any two disjoint types T, and T}, let T; be (join T,
T,) and T, be (meet T, Tp):

Tj C Ta and Tj C Tb

T,C T, and T, C T,
For example, (join :pair :null) allows either pairs or nil, i.e. lists, and (meet
:integer :exact) accepts only integers that are also exact.

(More complete definitions of supremum, infimum, and other elements of lattice the-
ory, may be found elsewhere.)
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ierror [type]
This is the minimal, or ‘bottom,” element in the type lattice. It is the type of, for
example, calls to error.

:values [type]

:arguments [type]
All Scheme expressions have the type :values. They may have more specific types
as well, but all expressions’ types are compatible subtypes of :values. :Values is a
maximal element of the type lattice. :Arguments is synonymous with :values.

:value [type]
Scheme expressions that have a single result have the type :value, or some compatible
subtype thereof; it is itself a compatible subtype of :values.

some-values type ... [type constructor]
Some-values is used to denote the types of expressions that have multiple results: if
E, ... E, have the types T, ... T,, then the Scheme expression (values E; ... E,)
has the type (some-values T; ... T,).

Some-values-constructed types are compatible subtypes of :values.

Some-values also accepts ‘optional’ and ‘rest’ types, similarly to Common Lisp’s
‘optional” and ‘rest’ formal parameters. The sequence of types may contain a &opt
token, followed by which is any number of further types, which are considered to
be optional. For example, make-vector’s domain is (some-values :exact-integer
&opt :value). There may also be a &rest token, which must follow the &opt to-
ken if there is one. Following the &rest token is one more type, which the rest
of the sequents in a sequence after the required or optional sequents must satisfy.
For example, map’s domain is (some-values :procedure (join :pair :null) &rest
(join :pair :null)): it accepts one procedure and at least one list (pair or null)

argument.
procedure domain codomain [type constructor]
proc (arg-type ...) result-type [type constructor]

Procedure type constructors. Procedure types are always compatible subtypes of
:value. Procedure is a simple constructor from a specific domain and codomain;
domain and codomain must be compatible subtypes of :values. Proc is a more con-
venient constructor. It is equivalent to (procedure (some-values arg-type ...)
result-type).
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:boolean [type]
:char [type]
:null [type]
:unspecific [type]
:pair [type]
:string [type]
:symbol [type]
:vector [type]
:procedure [type]
:input-port [type]
:output-port [type]

Types that represent standard Scheme data. These are all compatible subtypes of
:value. :Procedure is the general type for all procedures; see proc and procedure
for procedure types with specific domains and codomains.

:number [type]
:complex [type]
:real [type]
:rational [type]
:integer [type]

Types of the Scheme numeric tower. :integer C :rational C :real C :complex
C :number

:exact [type]
:inexact [type]
:exact-integer [type]
:inexact-real [type]

:Exact and :inexact are the types of exact and inexact numbers, respectively. They
are typically met with one of the types in the numeric tower above; :exact-integer
and :inexact-real are two conveniences for the most common meets.

:other [type]
:Other is for types that do not fall into any of the previous value categories. (:other
C :value) All new types introduced, for example by loophole (see Section 4.1.11
[Type annotations|, page 48), are compatible subtypes of :other.

variable type [type constructor]
This is the type of all assignable variables, where type C :value. Assignment to
variables whose types are value types, not assignable variable types, is invalid.

:syntax [type]

:structure [type]
:Syntax and :structure are two other maximal elements of the type lattice, along
with :values. :Syntax is the type of macros or syntax transformers. :Structure is
the general type of all structures.
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3.4.1 Types in the configuration language

Scheme48’s configuration language has several places in which to write types. However,
due to the definitions of certain elements of the configuration language, notably the export
syntax, the allowable type syntax is far more limited than the above. Only the following
are provided:

:values [type]
:value [type]
:arguments [type]
:syntax [type]
:structure [type]

All of the built-in maximal elements of the type lattice are provided, as well as the
simple compatible subtype :values, :value.

:boolean [type]
:char [type]
:null [type]
:unspecific [type]
:pair [type]
:string [type]
:symbol [type]
:vector [type]
:procedure [type]
:input-port [type]
:output-port [type]
:number [type]
:complex [type]
:real [type]
:rational [type]
:integer [type]
:exact-integer [type]

These are the only value types provided in the configuration language. Note the
conspicuous absence of :exact, :inexact, and :inexact-real.

procedure domain codomain [type constructor]

proc (arg-type ...) result-type [type constructor]
These two are the only type constructors available. Note here the conspicuous absence
of some-values, so procedure types that are constructed by procedure can accept
only one argument (or use the overly general :values type) & return only one result
(or, again, use :values for the codomain), and procedure types that are constructed
by proc are similar in the result type.
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4 System facilities

This chapter details many facilities that the Scheme48 run-time system provides.

4.1 System features

Scheme48 provides a variety of miscellaneous features built-in to the system.

4.1.1 Miscellaneous features

The structure features provides some very miscellaneous features in Scheme48.

immutable? object — boolean [procedure]

make-immutable! object — object [procedure]
All Scheme objects in Scheme48 have a flag determining whether or not they may be
mutated. All immediate Scheme objects (), #£f, &c.) are immutable; all fixnums
(small integers) are immutable; and all stored objects — vectors, pairs, &c. —
may be mutable. Immutable? returns #t if object may not be mutated, and make-
immutable!, a bit ironically, modifies object so that it may not be mutated, if it was
not already immutable, and returns it.

(immutable? #t) = #t

(define p (cons 1 2))

(immutable? p) = #f

(car p) =1

(set-car! p b5)

(car p) = 5

(define q (make-immutable! p))

(eq? p @) = #t

(car p) = 5

(immutable? q) = #t

(set-car! p 6) immutable pair
string-hash string — integer-hash-code [procedure]

Computes a basic but fast hash of string.

(string-hash "Hello, world!") = 1161

force-output port — unspecified [procedure]

Forces all buffered output to be sent out of port.

This is identical to the binding of the same name exported by the i/o structure (see
Section 4.5.1 [Ports], page 58).

current-noise-port — output-port [procedure]
The current noise port is a port for sending noise messages that are inessential to the
operation of a program.
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The silly structure exports a single procedure, implemented as a VM primitive for the
silly reason of efficiency, hence the name of the structure.! It is used in an inner loop of the
reader.

reverse-list->string char-list count — string [procedure]
Returns a string of the first count characters in char-Iist, in reverse. It is a serious
error if char-list is not a list whose length is at least count; the error is not detected
by the VM, so bogus pointers may be involved as a result. Use this routine with care
in inner loops.

The debug-messages structure exports a procedure for emitting very basic debugging
messages for low-level problems.

debug-message item ... — unspecified [procedure]
Prints item . . . directly to an error port,? eliding buffering and thread synchronization
on the Scheme side. Objects are printed as follows:

Fixnums (small integers) are written in decimal.

Characters are written literally with a #\ prefix. No naming translation is per-
formed, so the space and newline characters are written literally, not as #\space
or #\newline.

Records are written as #{type-name}, where type-name is the name of the
record’s type.

Strings and symbols are written literally.

Booleans and the empty list are written normally, i.e. as #t, #£, or ().
Pairs are written as (...).

Vectors are written as #(...).

Objects of certain primitive types are written as #{type}: procedures, templates,
locations, code (byte) vectors, and continuations.?

Everything else is printed as #{777}.

The code-quote structure exports a variant of quote that is useful in some sophisticated
macros.

code-quote object — object [special form)]
Evaluates to the literal value of object. This is semantically identical to quote, but
object may be anything, and the compiler will not signal any warnings regarding
its value, while such warnings would be signalled for quote expressions that do not
wrap readable S-expressions: arbitrary, compound, unreadable data may be stored in
code-quote. Values computed at compile-time may thus be transmitted to run-time
code. However, care should be taken in doing this.

I The author of this manual is not at fault for this nomenclature.
2 On Unix, this is stderr, the standard I/O error output file.

3 Continuations here are in the sense of VM stack frames, not escape procedures as obtained using call-
with-current-continuation.
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4.1.2 Various utilities

The util structure contains some miscellaneous utility routines extensively used inter-
nally in the run-time system. While they are not meant to compose a comprehensive library
(such as, for example, [SRFI 1]), they were found useful in building the run-time system
without introducing massive libraries into the core of the system.

unspecific — unspecific [procedure]
Returns Scheme48’s unspecific token, which is used wherever R5RS uses the term
‘unspecific’ or ‘unspecified.” In this manual, the term ‘unspecified’ is used to mean that
the values returned by a particular procedure are not specified and may be anything,
including a varying number of values, whereas ‘unspecific’ refers to Scheme48’s specific
‘unspecific’ value that the unspecific procedure returns.

reduce kons knil list — final-knil [procedure]
Reduces list by repeatedly applying kons to elements of list and the current knil value.
This is the fundamental list recursion operator.

(reduce kons knil
(cons elt ;
(cons elt ,

(...(cons elt x5 *0O))...0)))

(kons elt ;
(kons elt o
(...(kons elt y knil)...)))

Example:

(reduce append () ’((1 2 3) (45 6) (7 8 9)))
= (1234567389
(append ’(1 2 3)
(append ’(4 5 6)
(append ’(7 8 9) >())))
= (1234567 389)

fold combiner list accumulator — final-accumulator [procedure]
Folds list into an accumulator by repeatedly combining each element into an accu-
mulator with combiner. This is the fundamental list iteration operator.

(fold combiner
(list elt | elt 5 ... elt y)
accumulator)

(let* ((accum ; (combiner elt ; accumulator))
(accum 5 (combiner elt , accum 7))

(accum n (combiner elt n accum yn_1)))
accum y)

Example:
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(fold cons >() ’(a b c d))

= (d cb a)
(cons ’d (cons ’c (cons ’b (comns ’a *()))))
= (dcba)
fold->2 combiner list accumulator; accumulator, — [final-accumulator, [procedure]
final-accumulators]
fold->3 combiner list accumulator, accumulator, accumulators — [procedure]

[final-accumulator; final-accumulator, final-accumulators)
Variants of fold for two and three accumulators, respectively.

;55 Partition list by elements that satisfy pred? and those
;;; that do not.

(fold->2 (lambda (elt satisfied unsatisfied)
(if (pred? elt)
(values (cons elt satisfied) unsatisfied)
(values satisfied (cons elt unsatisfied))))
list
O 20D

filter predicate list — filtered-list [procedure]
Returns a list of all elements in list that satisfy predicate.

(filter odd? (314159265 35))
= (311595 35)

posq object list — integer or #£f [procedure]
posv object list — integer or #f [procedure]
position object list — integer or #f [procedure]

These find the position of the first element equal to object in list. Posq compares
elements by eq?; posv compares by eqv?; position compares by equal?.
(posq ’c ’(a b cde £))

= 2
(posv 1/2 ’(1 1/2 2 3/2))
=1
(position ’(d . e) ’((a . b) (b . c) (c.d) (d.e) (e . £)))
= 3
any predicate list — value or #f [procedure]
every predicate list — boolean [procedure]

Any returns the value that predicate returns for the first element in Iist for which
predicate returns a true value; if no element of list satisfied predicate, any returns
#f. Every returns #t if every element of list satisfies predicate, or #f if there exist
any that do not.

(any (lambda (x) (and (even? x) (sqrt x)))
(01 49 16))
= 2
(every odd? ’(1 357 9))
= #t
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sublist list start end — list [procedure]
Returns a list of the elements in list including & after that at the index start and
before the index end.

(sublist ’(abcdef ghi) 36) = (d e f)
last list — value [procedure]
Returns the last element in list. Last’s effect is undefined if list is empty.
(last ’(a b c)) = c
insert object list elt< — list [procedure]
Inserts object into the sorted list list, comparing the order of object and each element
by elt<.
(insert 3 (0 1 2 4 5) <) = (012345)

4.1.3 Filenames

There are some basic filename manipulation facilities exported by the filenames struc-
ture.*

*scheme-file-type* — symbol [constant]
*load-file-type* — symbol [constant]
xScheme-file-type* is a symbol denoting the file extension that Scheme48 assumes
for Scheme source files; any other extension, for instance in the filename list of a struc-
ture definition, must be written explicitly. *Load-file-type* is a symbol denoting
the preferable file extension to load files from. (*Load-file-type* was used mostly
in bootstrapping Scheme48 from Pseudoscheme or T long ago and is no longer very

useful.)
file-name-directory filename — string [procedure]
file-name-nondirectory filename — string [procedure]

File-name-directory returns the directory component of the filename denoted
by the string filename, including a trailing separator (on Unix, /). File-name-
nondirectory returns everything but the directory component of the filename
denoted by the string filename, including the extension.

(file-name-directory "/usr/local/lib/scheme48/scheme48.image")
= "/usr/local/lib/scheme48/"
(file-name-nondirectory "/usr/local/lib/scheme48/scheme48.image")
= "scheme48.image"
(file-name-directory "scheme48.image")
:> nn
(file-name-nondirectory "scheme48.image")
= "scheme48.image"

4 The facilities Scheme48 provides are very rudimentary, and they are not intended to act as a coherent
and comprehensive pathname or logical name facility such as that of Common Lisp. However, they
served the basic needs of Scheme48’s build process when they were originally created.
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Namelists are platform-independent means by which to name files. They are represented
as readable S-expressions of any of the following forms:

basename represents a filename with only a basename and no directory or file
type/extension;

(directory basename [type])
represents a filename with a single preceding directory component and an op-
tional file type/extension; and

((directory ...) basename [typel)
represents a filename with a sequence of directory components, a basename,
and an optional file type/extension.

Each atomic component — that is, the basename, the type/extension, and each individ-
ual directory component — may be either a string or a symbol. Symbols are converted to
the canonical case of the host operating system by namestring (on Unix, lowercase); the
case of string components is not touched.

namestring namelist directory default-type — string [procedure]
Converts namelist to a string in the format required by the host operating system.’
If namelist did not have a directory component, directory, a string in the underlying
operating system’s format for directory prefixes, is added to the resulting namestring;
and, if namelist did not have a type/extension, default-type, which may be a string or
a symbol and which should not already contain the host operating system’s delimiter
(usually a dot), is appended to the resulting namestring.

Directory or default-type may be #£f, in which case they are not prefixed or appended
to the resulting filename.

(namestring ’foo #f #f) = "foo"
(namestring ’foo "bar" ’baz) = "bar/foo.baz"
(namestring ’(rts defenum) "scheme" ’scm)

= "scheme/rts/defenum.scm"
(namestring ’((foo bar) baz quux) "zot" #f)

= "zot/foo/bar/baz.quux"
(namestring "zot/foo/bar/baz.quux" #f "mumble")

= "zot/foo/bar/baz.quux.mumble"

4.1.3.1 Filename translations

Scheme48 keeps a registry of filename translations, translations from filename prefixes to
the real prefixes. This allows abstraction of actual directory prefixes without necessitating
running Scheme code to construct directory pathnames (for example, in configuration files).

translations — string/string-alist [procedure]
Returns the alist of filename translations.

5 However, the current standard distribution of Scheme48 is specific to Unix: the current code implements
only Unix filename facilities.
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set-translation! from to — unspecified [procedure]
Adds a filename prefix translation, overwriting an existing one if one already existed.

translate filename — translated-filename [procedure]
Translates the first prefix of filename found in the registry of translations and returns
the translated filename.

(set-translation! "s48" "/home/me/scheme/scheme48/scheme")
(translate (namestring ’(bcomp frame) "s48" ’scm))
= "/home/me/scheme/scheme48/scheme/bcomp/frame.scm"
(translate (namestring "comp-packages" "s48" ’scm))
= "/home/me/scheme/scheme48/scheme/comp-packages.scm"
(translate "s48/frobozz")
= "/home/me/scheme/scheme48/scheme/frobozz"
(set-translation! "scheme48" "s48")
(translate (namestring ’((scheme48 big) filename) #f ’scm))
= scheme48/big/filename.scm
(translate (translate (namestring °’((scheme48 big) filename) #f ’scm)))
= "/home/me/scheme/scheme48/scheme/big/filename.scm"

One filename translation is built-in, mapping =scheme48/ to the directory of system files
in a Scheme48 installation, which on Unix is typically a directory in /usr/local/lib.

(translate "=scheme48/schemed8.image")
= /usr/local/scheme48/scheme48. image

4.1.4 Fluid/dynamic bindings

The fluids structure provides a facility for dynamically bound resources, like special
variables in Common Lisp, but with first-class, unforgeable objects.

Every thread (see Chapter 5 [Multithreading], page 79) in Scheme48 maintains a fluid
or dynamic environment. It maps fluid descriptors to their values, much like a lexical en-
vironment maps names to their values. The dynamic environment is implemented by deep
binding and dynamically scoped. Fluid variables are represented as first-class objects for
which there is a top-level value and possibly a binding in the current dynamic environ-
ment. KEscape procedures, as created with Scheme’s call-with-current-continuation,
also store & preserve the dynamic environment at the time of their continuation’s capture
and restore it when invoked.

The convention for naming variables that are bound to fluid objects is to add a prefix
of $ (dollar sign); e.g., $foo.

make-fluid top-level-value — fluid [procedure]
Fluid constructor.

fluid A — value [procedure]
set-fluid! fl value — unspecified [procedure]
fluid-cell-ref fluid-cell — value [procedure]
fluid-cell-set! fluid-cell value — unspecified [procedure]

Fluid returns the value that the current dynamic environment associates with fl, if
it has an association; if not, it returns fI’s top-level value, as passed to make-fluid
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to create fl. Set-fluid! assigns the value of the association in the current dynamic
environment for fl to value, or, if there is no such association, it assigns the top-level
value of fl to value. Direct assignment of fluids is deprecated, however, and may be
removed in a later release; instead, programmers should use fluids that are bound to
mutable cells (see Section 4.1.7 [Cells], page 45). Fluid-cell-ref and fluid-cell-
set! are conveniences for this; they simply call the corresponding cell operations after
fetching the cell that the fluid refers to by using fluid.

let-fluid fluid value thunk — values [procedure]

let-fluids fluid, value, fluid; value;, ... thunk — values [procedure]
These dynamically bind their fluid arguments to the corresponding value arguments
and apply thunk with the new dynamic environment, restoring the old one after thunk
returns and returning the value it returns.

(define $mumble (make-fluid 0))

(let ((a (fluid $mumble))
(b (let-fluid $mumble 1
(lambda () (fluid $mumble))))
(¢ (fluid $mumble))
(d (let-fluid $mumble 2
(lambda ()
(let-fluid $mumble 3
(lambda () (fluid $mumble)))))))
(list a b c d))
= (0103)

(let ((note (lambda (when)
(display when)
(display ": ")
(write (fluid $mumble))
(newline))))
(note ’initial)
(let-fluid $mumble 1 (lambda () (note ’let-fluid)))
(note ’after-let-fluid)
(let-fluid $mumble 1
(lambda ()
(note ’outer-let-fluid)
(let-fluid $mumble 2 (lambda () (note ’inner-let-fluid)))))
(note ’after-inner-let-fluid)
((call-with-current-continuation

(lambda (k)
(lambda ()
(let-fluid $mumble 1
(lambda ()

(note ’let-fluid-within-cont)
(let-fluid $mumble 2
(lambda () (note ’inner-let-fluid-within-cont)))
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(k (lambda () (note ’let-fluid-thrown)))))))))
(note ’after-throw))
initial: O
let-fluid: 1
after-let-fluid: O
outer-let-fluid: 1
inner-let-fluid: 2
let-fluid-within-cont: 1
inner-let-fluid-within-cont: 2
let-fluid-thrown: O
after-throw: O

e e I

4.1.5 ASCII character encoding

These names are exported by the ascii structure.

char->ascii char — ascii-integer [procedure]

ascii->char ascii-integer — character [procedure]
These convert characters to and from their integer ASCII encodings. Char->ascii
and ascii->char are similar to R5RS’s char->integer and integer->char, but
they are guaranteed to use the ASCII encoding. Scheme48’s integer->char and
char->integer deliberately do not use the ASCII encoding to encourage program-
mers to make use of only what R5RS guarantees.

(char->ascii #\a) = 97

(ascii->char 97) = #\a
ascii-limit — integer [constant]
ascii-whitespaces — ascii-integer-list [constant)]

Ascii-limit is an integer that is one greater than the highest number that char-
>ascii may return or ascii->char will accept. Ascii-whitespaces is a list of
the integer encodings of all characters that are considered whitespace: space (32),
horizontal tab (9), line-feed /newline (10), vertical tab (11), form-feed /page (12), and
carriage return (13).

4.1.6 Integer enumerations

Scheme48 provides a facility for integer enumerations, somewhat akin to C enums. The
names described in this section are exported by the enumerated structure.

Note: These enumerations are not compatible with the enumerated/finite type facility
(see Section 6.2 [Enumerated/finite types and sets], page 98).

define-enumeration enumeration-name (enumerand-name . . .) [syntax]
Defines enumeration-name to be a static enumeration. (Note that it is not a regular
variable. It is actually a macro, though its exact syntax is not exposed; it must
be exported with the :syntax type (see Section 3.4 [Static type system], page 30).)
Enumeration-name thereafter may be used with the enumeration operators described
below.
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enum enumeration-name enumerand-name — enumerand-integer [syntax]

components enumeration-name — component-vector [syntax]
Enum expands to the integer value represented symbolically by enumerand-name in
the enumeration enumeration-name as defined by define-enumeration. Components
expands to a literal vector of the components in enumeration-name as defined by
define-enumeration. In both cases, enumerand-name must be written literally as
the name of the enumerand; see name->enumerand for extracting an enumerand’s
integer given a run-time symbol naming an enumerand.

enumerand->name enumerand-integer enumeration-name — symbol [syntax]
name->enumerand enumerand-name enumeration-name — [syntax]
integer-enumerand
Enumerand->name expands to a form that evaluates to the symbolic name that the
integer value of the expression enumerand-integer is mapped to by enumeration-name
as defined by define-enumeration. Name->enumerand expands to a form that eval-
uates to the integer value of the enumerand in enumeration-name that is represented
symbolically by the value of the expression enumerand-name.

The enum-case structure provides a handy utility of the same name for dispatching on
enumerands.

enum-case [syntax]
(enum-case enumeration-name key
((enumerand-name ...) body)

[(else else-body)]l)

Matches key with the clause one of whose names maps in enumeration-name to the
integer value of key. Key must be an exact, non-negative integer. If no matching
clause is found, and else-body is present, enum-case will evaluate else-body; if else-
body is not present, enum-case will return an unspecific value.

Examples:
(define-enumeration foo
(bar
baz))

(enum foo bar)
(enum foo baz)

4
= O

(enum-case foo (enum foo bar)

((baz) ’x)
(else ’y))
-y

(enum-case foo (enum foo baz)
((bar) ’a)
((baz) ’b))
= Db
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(enumerand->name 1 foo) = baz
(name->enumerand ’bar foo) = 0
(components foo) = #(bar baz)

4.1.7 Cells

Scheme48 also provides a simple mutable cell data type from the cells structure. It
uses them internally for local, lexical variables that are assigned, but cells are available still
to the rest of the system for general use.

make-cell contents — cell [procedure]
cell? object — boolean [procedure]
cell-ref cell — value [procedure]
cell-set! cell value — unspecified [procedure]

Make-cell creates a new cell with the given contents. Cell? is the disjoint type
predicate for cells. Cell-ref returns the current contents of cell. Cell-set! assigns
the contents of cell to value.

Examples:
(define cell (make-cell 42))
(cell-ref cell) = 42
(cell? cell) = #t
(cell-set! cell ’frobozz)
(cell-ref cell) = frobozz

4.1.8 Queues

The queues structure exports names for procedures that operate on simple first-in, first-
out queues.

make-queue — queue [procedure]

queue? object — boolean [procedure]
Make-queue constructs an empty queue. Queue? is the disjoint type predicate for
queues.

queue-empty? queue — boolean [procedure]

empty-queue! queue — unspecified [procedure]

Queue-empty? returns #t if queue contains zero elements or #£f if it contains some.
Empty-queue! removes all elements from queue.

enqueue! queue object — unspecified [procedure]
dequeue! queue — value [procedure]
maybe-dequeue! queue — value or #£ [procedure]
queue-head queue — value [procedure]

Enqueue! adds object to queue. Dequeue! removes & returns the next object avail-
able from queue; if queue is empty, dequeue! signals an error. Maybe-dequeue! is
like dequeue!, but it returns #f in the case of an absence of any element, rather
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than signalling an error. Queue-head returns the next element available from queue
without removing it, or it signals an error if queue is empty.

queue-length queue — integer [procedure]
Returns the number of objects in queue.

on-queue? queue object — boolean [procedure]

delete-from-queue! queue object — unspecified [procedure]
On-queue? returns true if queue contains object or #f if not. Delete-from-queue!
removes the first occurrence of object from queue that would be dequeued.

queue->list queue — list [procedure]

list->queue list — queue [procedure]
These convert queues to and from lists of their elements. Queue->1ist returns a list
in the order in which its elements were added to the queue. List->queue returns a
queue that will produce elements starting at the head of the list.

Examples:
(define q (make-queue))
(enqueue! q ’foo)
(enqueue! q ’bar)

(queue->list q) = (foo bar)
(on-queue? q ’bar) = #t

(dequeue! q) = ’foo
(queue-empty? q) = #f
(delete-from-queue! queue ’bar)

(queue-empty? q) = #t

(enqueue! q ’frobozz)

(empty-queue! q)

(queue-empty? q) = #t

(dequeue! q) empty queue

Queues are integrated with Scheme48’s optimistic concurrency (see Section 5.2 [Opti-
mistic concurrency|, page 79) facilities, in that every procedure exported except for queue-
>1ist ensures fusible atomicity in operation — that is, every operation except for queue-
>1list ensures that the transaction it performs is atomic, and that it may be fused within
larger atomic transactions, as transactions wrapped within call-ensuring-atomicity &c.
may be.

4.1.9 Hash tables

Scheme48 provides a simple hash table facility in the structure tables.

make-table [hasher] — table [procedure]
make-string-table — string-table [procedure]
make-symbol-table — symbol-table [procedure]
make-integer-table — integer-table [procedure]

Hash table constructors. Make-table creates a table that hashes keys either with
hasher, if it is passed to make-table, or default-hash-function, and it compares
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keys for equality with eq?, unless they are numbers, in which case it compares with
eqv?. Make-string-table makes a table whose hash function is string-hash and
that compares the equality of keys with string=7. Make-symbol-table constructs a
table that hashes symbol keys by converting them to strings and hashing them with
string-hash; it compares keys’ equality by eq?. Tables made by make-integer-
table hash keys by taking their absolute value, and test for key equality with the =
procedure.

make-table-maker comparator hasher — table-maker [procedure]
Customized table constructor constructor: this returns a nullary procedure that cre-

ates a new table that uses comparator to compare keys for equality and hasher to
hash keys.

table? object — boolean [procedure]
Hash table disjoint type predicate.

table-ref table key — value or #f [procedure]

table-set! table key value — unspecified [procedure]
Table-ref returns the value associated with key in table, or #f if there is no such
association. If value is #f, table-set! ensures that there is no longer an association
with key in table; if value is any other value, table-set! creates a new association
or assigns an existing one in table whose key is key and whose associated value is
value.

table-walk proc table — unspecified [procedure]
Table-walk applies proc to the key & value, in that order of arguments, of every
association in table.

make-table-immutable! table — table [procedure]
This makes the structure of table immutable, though not its contents. Table-set!
may not be used with tables that have been made immutable.

default-hash-function value — integer-hash-code [procedure]

string-hash string — integer-hash-code [procedure]
Two built-in hashing functions. Default-hash-function can hash any Scheme value
that could usefully be used in a case clause. String-hash is likely to be fast, as it
is implemented as a VM primitive. String-hash is the same as what the features
structure exports under the same name.

4.1.10 Weak references

Schemed8 provides an interface to weakly held references in basic weak pointers and
populations, or sets whose elements are weakly held. The facility is in the structure weak.
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4.1.10.1 Weak pointers

make-weak-pointer contents — weak-pointer [procedure]
weak-pointer? object — boolean [procedure]
weak-pointer-ref weak-pointer — value or #f [procedure]

Make-weak-pointer creates a weak pointer that points to contents. Weak-pointer?
is the weak pointer disjoint type predicate. Weak-pointer-ref accesses the value
contained within weak-pointer, or returns #f if there were no strong references
to the contents and a garbage collection occurred. Weak pointers resemble cells (see
Section 4.1.7 [Cells], page 45), except that they are immutable and hold their contents
weakly, not strongly.

4.1.10.2 Populations (weak sets)

make-population — population [ ]

add-to-population! object population — unspecified [procedure]

population->list population — list [procedure]

walk-population proc population — unspecified [procedure]
Make-population constructs an empty population. Add-to-population! adds ob-
ject to the population population. Population->1list returns a list of the elements
of population. Note, though, that this can be dangerous in that it can create strong
references to the population’s contents and potentially leak space because of this.
Walk-population applies proc to every element in population.

4.1.11 Type annotations

Schemed8 allows optional type annotations with the loophole special form from the
loopholes structure.

loophole type expression — values [syntax]
This is exactly equivalent in semantics to expression, except the static type analyzer
is informed that the whole expression has the type type. For details on the form of
type, see Section 3.4 [Static type system]|, page 30.

Type annotations can be used for several different purposes:
e simply to give more information to the static type analyzer;
e to work as a simple abstract data type facility: passing a type name that does not
already exist creates a new disjoint value type; and
e to prevent the type system from generating warnings in the rare cases where it
would do so incorrectly, such as in the primitive-cwcc, primitive-catch, and
with-continuation devices (to be documented in a later edition of this manual).

To see an example of the second use, see ‘rts/jar-defrecord.scm’ in Scheme48’s source
tree.

Note: Type annotations do not damage the safety of Scheme’s type system. They affect
only the static type analyzer, which does not change run-time object representations; it
only checks type soundness of code and generates warnings for programs that would cause
run-time type errors.
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4.1.12 Explicit renaming macros

Scheme48 supports a simple low-level macro system based on explicitly renaming iden-
tifiers to preserve hygiene. The macro system is well-integrated with the module system;
see Section 3.3 [Macros in concert with modules], page 28.

Explicit renaming macro transformers operate on simple S-expressions extended with
identifiers, which are like symbols but contain more information about lexical context. In
order to preserve that lexical context, transformers must explicitly call a renamer procedure
to produce an identifier with the proper scope. To test whether identifiers have the same
denotation, transformers are also given an identifier comparator.

The facility provided by Scheme48 is almost identical to the explicit renaming macro
facility described in [Clinger 91].° It differs only by the transformer keyword, which
is described in the paper but not used by Scheme48, and in the annotation of auxiliary
names.

define-syntax name transformer [aux-names] [syntax]
Introduces a derived syntax name with the given transformer, which may be an
explicit renaming transformer procedure, a pair whose car is such a procedure and
whose cdr is a list of auxiliary identifiers, or the value of a syntax-rules expression.
In the first case, the added operand aux-names may, and usually should except in
the case of local (non-exported) syntactic bindings, be a list of all of the auxiliary
top-level identifiers used by the macro.

Explicit renaming transformer procedures are procedures of three arguments: an input
form, an identifier renamer procedure, and an identifier comparator procedure. The input
form is the whole form of the macro’s invocation (including, at the car, the identifier whose
denotation was the syntactic binding). The identifier renamer accepts an identifier as an
argument and returns an identifier that is hygienically renamed to refer absolutely to the
identifier’s denotation in the environment of the macro’s definition, not in the environment
of the macro’s usage. In order to preserve hygiene of syntactic transformations, macro
transformers must call this renamer procedure for any literal identifiers in the output. The
renamer procedure is referentially transparent; that is, two invocations of it with the same
arguments in terms of eq? will produce the same results in the sense of eq?.

For example, this simple transformer for a swap! macro is incorrect:

(define-syntax swap!
(lambda (form rename compare)
(let ((a (cadr form))
(b (caddr form)))
¢ (LET ((TEMP ,a))
(SET! ,a ,b)
(SET! ,b TEMP)))))
The introduction of the literal identifier temp into the output may conflict with one of the
input variables if it were to also be named temp: (swap! temp foo) or (swap! bar temp)
would produce the wrong result. Also, the macro would fail in another very strange way if

6 For the sake of avoiding any potential copyright issues, the paper is not duplicated here, and instead the
author of this manual has written the entirety of this section.
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the user were to have a local variable named let or set!, or it would simply produce invalid
output if there were no binding of 1let or set! in the environment in which the macro was
used. These are basic problems of abstraction: the user of the macro should not need to
know how the macro is internally implemented, notably with a temp variable and using the
let and set! special forms.

Instead, the macro must hygienically rename these identifiers using the renamer proce-
dure it is given, and it should list the top-level identifiers it renames (which cannot otherwise
be extracted automatically from the macro’s definition):

(define-syntax swap!
(lambda (form rename compare)
(let ((a (cadr form))
(b (caddr form)))
‘(,(rename ’LET) ((,(rename ’TEMP) ,a))

(,(rename ’SET!) ,a ,b)
(,(rename ’SET!) ,b ,(rename ’TEMP)))))

(LET SET!))

However, some macros are unhygienic by design, i.e. they insert identifiers into the
output intended to be used in the environment of the macro’s usage. For example, consider
a loop macro that loops endlessly, but binds a variable named exit to an escape procedure
to the continuation of the loop expression, with which the user of the macro can escape
the loop:

(define-syntax loop
(lambda (form rename compare)
(let ((body (cdr form)))
¢(, (rename ’CALL-WITH-CURRENT-CONTINUATION)

(, (rename ’LAMBDA) (EXIT) ; Literal, unrenamed EXIT.
(,(rename ’LET) , (rename ’L0O0P) ()
,@body

(, (rename ’LO0OP)))))))
(CALL-WITH-CURRENT-CONTINUATION LAMBDA LET))

Note that macros that expand to loop must also be unhygienic; for instance, this naive
definition of a loop-while macro is incorrect, because it hygienically renames exit auto-
matically by of the definition of syntax-rules, so the identifier it refers to is not the one
introduced unhygienically by loop:

(define-syntax loop-while
(syntax-rules ()
((LOOP-WHILE test body ...)
(LOOP (IF (NOT test)
(EXIT)) ; Hygienically renamed.
body ...))))

Instead, a transformer must be written to not hygienically rename exit in the output:

(define-syntax loop-while
(lambda (form rename compare)
(let ((test (cadr form))
(body (cddr form)))
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“(, (rename ’L0O0OP)
(, (rename ’IF) (,(rename ’NOT) ,test)
(EXIT)) ; Not hygienically renamed.
,@body)))
(LOOP IF NOT))

To understand the necessity of annotating macros with the list of auxiliary names they
use, consider the following definition of the delay form, which transforms (delay exp) into
(make-promise (lambda () exp)), where make-promise is some non-exported procedure
defined in the same module as the delay macro:

(define-syntax delay
(lambda (form rename compare)
(let ((exp (cadr form)))
¢(, (rename ’MAKE-PROMISE) (,(rename ’LAMBDA) () ,exp)))))

This preserves hygiene as necessary, but, while the compiler can know whether make-
promise is exported or not, it cannot in general determine whether make-promise is local,
i.e. not accessible in any way whatsoever, even in macro output, from any other modules.
In this case, make-promise is mot local, but the compiler cannot in general know this,
and it would be an unnecessarily heavy burden on the compiler, the linker, and related
code-processing systems to assume that all bindings are not local. It is therefore better” to
annotate such definitions with the list of auxiliary names used by the transformer:

(define-syntax delay
(lambda (form rename compare)
(let ((exp (cadr form)))
“(, (rename ’MAKE-PROMISE) (,(rename ’LAMBDA) () ,exp))))
(MAKE-PROMISE LAMBDA))

4.2 Condition system

As of version 1.3 (different from all older versions), Scheme48 supports two different
condition systems. One of them, the original one, is a simple system where conditions are
represented as tagged lists. This section documents the original one. The new condition
system is [SRFT 34, 35], and there is a complicated translation layer between the old one,
employed by the run-time system, and the new one, which is implemented in a layer high
above that as a library, but a library which is always loaded in the usual development
environment. See the [SRFI 34, 35] documents for documentation of the new condition sys-
tem. [SRFI 34] is available from the exceptions structure; SRFI 35, from the conditions
structure.

Note: The condition system changed in Scheme48 version 1.3. While the old one is still
available, the names of the structures that implement it changed. Signals is now simple-
signals, and conditions is now simple-conditions. The structure that signals now
names implements the same interface, but with [SRFI 34, 35] underlying it. The structure
that the name conditions now identifies [SRFI 35]. You will have to update all old code
that relied on the old signals and conditions structure either by using those structures’

7 However, the current compiler in Scheme48 does not require this, though the static linker does.
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new names or by invasively modifying all code to use [SRFI 34, 35]. Also, the only way
to completely elide the use of the SRFIs is to evaluate this in an environment with the
exceptions-internal and vm-exceptions structure open:

(begin (initialize-vm-exceptions! really-signal-condition)
;3 INITIALIZE-VM-EXCEPTIONS! returns a very large object,
;; which we probably don’t want printed at the REPL.
#t)

4.2.1 Signalling, handling, and representing conditions

Scheme48 provides a simple condition system.® Conditions are objects that describe

exceptional situations. Scheme48 keeps a registry of condition types, which just have ref-
erences to their supertypes. Conditions are simple objects that contain only two fields, the
type and the type-specific data (the stuff). Accessor procedures should be defined for par-
ticular condition types to extract the data contained within the ‘stuff’ fields of instances of of
those condition types. Condition types are represented as symbols. Condition handlers are
part of the system’s dynamic context; they are used to handle exceptional situations when
conditions are signalled that describe such exceptional situations. Signalling a condition
signals that an exceptional situation occurred and invokes the current condition handler on
the condition.

Scheme48’s condition system is split up into three structures:

simple-signals
Exports procedures to signal conditions and construct conditions, as well as
some utilities for common kinds of conditions.

handle Exports facilities for handling signalled conditions.

simple-conditions
The system of representing conditions as objects.

The simple-signals structure exports these procedures:

make-condition type-name stuff — condition [procedure]
The condition object constructor.

signal-condition condition — values (may not return) [procedure]

signal type-name stuff ... — values (may not return) [procedure]
Signal-condition signals the given condition. Signal is a convenience atop the
common conjunction of signal-condition and make-condition: it constructs a
condition with the given type name and stuff, whereafter it signals that condition
with signal-condition.

8 Note, however, that Scheme48’s condition system is likely to be superseded in the near future by [SRFI
34, SRFI 35].
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error message irritant ... — values (may not return) [procedure]
warn message irritant . .. — values (may not return) [procedure]
syntax-error message irritant ... — expression (may not return) [procedure]
call-error message irritant ... — values (may not return) [procedure]
note message irritant ... — values (may not return) [procedure]

Conveniences for signalling standard condition types. These procedures generally
either do not return or return an unspecified value, unless specified to by a user of
the debugger. Syntax-error returns the expression (quote syntax-error), if the
condition handler returns to syntax-error in the first place.

By convention, the message should be lowercased (i.e. the first word should not be
capitalized), and it should not end with punctuation. The message is typically not a
complete sentence. For example, these all follow Scheme48’s convention:

argument type error

wrong number of arguments
invalid syntax

ill-typed right-hand side

out of memory, unable to continue

These, on the other hand, do not follow the convention and should be avoided:
Argument type error:
An argument of the wrong type was passed.
possible type mismatch:

Luser is an idiot!

Elaboration on a message is performed usually by wrapping an irritant in a descriptive
list. For example, one might write:

(error "invalid argument"
> (not a pair)
‘(while calling ,frobbotz)
‘(received ,object))

This might be printed as:

Error: invalid argument
(not a pair)
(while calling #{Procedure 123 (frobbotz in ...)})
(received #(a b ¢ d))

The handle structure exports the following procedures:

with-handler handler thunk — values [procedure]
Sets up handler as the condition handler for the dynamic extent of thunk. Handler
should be a procedure of two arguments: the condition that was signalled and a
procedure of zero arguments that propagates the condition up to the next dynamically
enclosing handler. When a condition is signalled, handler is tail-called from the point
that the condition was signalled at. Note that, because handler is tail-called at that
point, it will return to that point also.
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Warning: With-handler is potentially very dangerous. If an exception occurs and
a condition is raised in the handler, the handler itself will be called with that new
condition! Furthermore, the handler may accidentally return to an unexpecting sig-
naller, which can cause very confusing errors. Be careful with with-handler; to be
perfectly safe, it might be a good idea to throw back out to where the handler was
initially installed before doing anything:

((call-with-current-continuation
(lambda (k)
(lambda O
(with-handler (lambda (c propagate)
(k (lambda () handler body)))
(lambda () body))))))

ignore-errors thunk — values or condition [procedure]

report-errors-as-warnings thunk message irritant ... — values [procedure]
Ignore-errors sets up a condition handler that will return error conditions to the
point where ignore-errors was called, and propagate all other conditions. If no
condition is signalled during the dynamic extent of thunk, ignore-errors simply
returns whatever thunk returned. Report-errors-as-warnings downgrades errors
to warnings while executing thunk. If an error occurs, a warning is signalled with the
given message, and a list of irritants constructed by adding the error condition to the
end of the list irritant . . ..

Finally, the simple-conditions structure defines the condition type system. (Note
that conditions themselves are constructed only by make-condition (and signal) from the
simple-signals structure.) Conditions are very basic values that have only two universally
defined fields: the type and the stuff. The type is a symbol denoting a condition type.
The type is specified in the first argument to make-condition or signal. The stuff field
contains whatever a particular condition type stores in conditions of that type. The stuff
field is always a list; it is created from the arguments after the first to make-condition
or signal. Condition types are denoted by symbols, kept in a global registry that maps
condition type names to their supertype names.

define-condition-type name supertype-names — unspecified [procedure]
Registers the symbol name as a condition type. Its supertypes are named in the list
supertype-names.

condition-predicate ctype-name — predicate [procedure]
Returns a procedure of one argument that returns #t if that argument is a condition
whose type’s name is ctype-name or #f if not.

condition-type condition — type-name [procedure]
condition-stuff condition — list [procedure]
Accessors for the two immutable fields of conditions.
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error? condition — boolean
warning? condition — boolean
note? condition — boolean
syntax-error? condition — boolean
call-error? condition — boolean
read-error? condition — boolean
interrupt? condition — boolean
Condition predicates for built-in condition types.

make-exception opcode reason arguments — exception
exception? condition — boolean

exception-opcode exception — integer-opcode
exception-reason exception — symbol
exception-arguments exception — list

95

Exceptions represent run-time errors in the Scheme48 VM. They contain information
about what opcode the VM was executing when it happened, what the reason for the

exception occurring was, and the relevant arguments.

4.2.2 Displaying conditions

The display-conditions structure is also relevant in this section.

display-condition condition port — unspecified
Prints condition to port for a user to read. For example:

(display-condition (make-condition ’error
"Foo bar baz"
’quux
’(zot mumble: frotz))
(current-output-port))
- Error: Foo bar baz
— quux
= (zot mumble: frotz)

&disclose-condition condition — disclosed

[procedure]

[method table]

Method table (see Section 4.4 [Generic dispatch system]|, page 57) for a generic proce-
dure (not exposed) used to translate a condition object into a more readable format.

See Section 4.6.2 [Writer], page 71.

limited-write object port max-depth max-length — unspecified

[procedure]

A utility for avoiding excessive output: prints object to port, but will never print more
than max-length of a subobject’s components, leaving a ——- after the last component,
and won’t recur further down the object graph from the vertex object beyond max-

depth, instead printing an octothorpe (#).
(let ((x (cons #f #£f)))
(set-car! x x)
(set-cdr! x x)
(limited-write x (current-output-port) 2 2))
A4 (@ # ) ) o)
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4.3 Bitwise manipulation

Scheme48 provides two structures for bit manipulation: bitwise integer operations, the
bitwise structure, and homogeneous vectors of bytes (integers between 0 and 255, inclu-
sive), the byte-vectors structure.

4.3.1 Bitwise integer operations

The bitwise structure exports these procedures:

bitwise-and integer ... — integer [procedure]

bitwise-ior integer ... — integer [procedure]

bitwise-xor integer ... — integer [procedure]

bitwise-not integer — integer [procedure]
Basic twos-complement bitwise boolean logic operations.

arithmetic-shift integer count — integer [procedure]

Shifts integer by the given bit count. If count is positive, the shift is a left shift;
otherwise, it is a right shift. Arithmetic-shift preserves integer’s sign.

bit-count integer — integer [procedure]
Returns the number of bits that are set in integer. If integer is negative, it is flipped
by the bitwise NOT operation before counting.

(bit-count #b11010010) = 4

4.3.2 Byte vectors

The structure byte-vectors exports analogues of regular vector procedures for byte
vectors, homogeneous vectors of bytes:

make-byte-vector length fill — byte-vector [procedure]
byte-vector byte ... — byte-vector [procedure]
byte-vector? object — boolean [procedure]
byte-vector-length byte-vector — integer [procedure]
byte-vector-ref byte-vector index — byte [procedure]

]

byte-vector-set! byte-vector index byte — unspecified [procedure
Fill and each byte must be bytes, i.e. integers within the inclusive range 0 to 255.
Note that make-byte-vector is not an exact analogue of make-vector, because the
fill parameter is required.

Old versions of Scheme48 referred to byte vectors as ‘code vectors’ (since they were used
to denote byte code). The code-vectors structure exports make-code-vector, code-
vector?, code-vector-length, code-vector-ref, and code-vector-set!, identical to
the analogously named byte vector operations.
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4.4 Generic dispatch system

Schemed8 supports a CLOS-style generic procedure dispatch system, based on type
predicates. The main interface is exported by methods. The internals of the system are
exposed by the meta-methods structure, but they are not documented here. The generic
dispatch system is used in Scheme48’s writer (see Section 4.6.2 [Writer|, page 71) and
numeric system.

Types in Schemed8’s generic dispatch system are represented using type predicates,
rather than having every object have a single, well-defined ‘class.” The naming convention
for simple types is to prefix the type name with a colon. The types support multiple inheri-
tance. Method specificity is determined based on descending order of argument importance.
That is, given two methods, M & N, such that they are both applicable to a given sequence
of arguments, and an index i into that sequence, such that i is the first index in M’s &
N’s lists of argument type specifiers, from left to right, where the type differs: if the type
for M’s argument at i is more specific than the corresponding type in N’s specifiers, M is
considered to be more specific than N, even if the remaining argument type specifiers in N
are more specific.

define-simple-type name (supertype . ..) predicate [syntax]
Defines name to be a simple type with the given predicate and the given supertypes.

singleton value — simple-type [procedure]
Creates a singleton type that matches only value.

define-generic proc-name method-table-name [prototype] [syntax]
Defines proc-name to be a generic procedure that, when invoked, will dispatch on its
arguments via the method table that method-table-name is defined to be and apply
the most specific method it can determine defined in the method-table-name method
table to its arguments. The convention for naming variables that will be bound to
method tables is to add an ampersand to the front of the name. Prototype is a
suggestion for what method prototypes should follow the shape of, but it is currently
ignored.

define-method method-table prototype body [syntax]
Adds a method to method-table, which is usually one defined by define-generic.’
Prototype should be a list whose elements may be either identifiers, in which case
that parameter is not used for dispatching, or lists of two elements, the car of which
is the parameter name and the cadr of which should evaluate to the type on which
to dispatch. As in many generic dispatch systems of similar designs, methods may
invoke the next-most-specific method. By default, the name next-method is bound
in body to a nullary procedure that calls the next-most-specific method. The name
of this procedure may be specified by the user by putting the sequence "next" next-
method-name in prototype, in which case it will be next-method-name that is bound
to that procedure. For example:

9 There is an internal interface, a sort of meta-object protocol, to the method dispatch system, but it is
not yet documented.
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(define-method &frob ((foo :bar) "next" frobozz)
(if (mumble? foo)
(frobozz) ; Invoke the next method.
(yargh blargle foo)))

A number of simple types are already defined & exported by the methods structure.
Entries are listed as type-name <- (supertype ...), predicate

:values <- (), (lambda (x) #t) — Abstract supertype of all run-time values
:value <- (:values), (lambda (x) #t) — Abstract supertype of all first-class values
:zero <- (:values), (lambda (x) #f) — Type that no objects satisfy

:number <- (:value), number?

:complex <- (:number), complex? — (This happens to be equivalent to :number.)
:real <- (:complex), real?

:rational <- (:real), rational?

:integer <- (:rational), integer?

rexact-integer <- (:integer), (lambda (x) (and (integer? x) (exact? x)))
:boolean <- (:value), boolean?

:symbol <- (:value), symbol?

:char <- (:value), char?

:null <- (:value), null?

:pair <- (:value), pair?

:vector <- (:value), vector?

:string <- (:value), string?

:procedure <- (:value), procedure?

:input-port <- (:value), input-port?

routput-port <- (:value), output-port?

teof-object <- (:value), eof-object?

:record <- (:value), record?
4.5 1/0 system

Scheme48 supports a sophisticated, non-blocking, user-extensible I/O system untied to
any particular operating system’s 1/O facilities. It is based in three levels: channels, ports,
and the facilities already built with both ports and channels in Scheme48, such as buffering.

4.5.1 Ports

While channels provide the low-level interface directly to the OS’s 1/0O facilities, ports
provide a more abstract & generalized mechanism for I/O transmission. Rather than be-
ing specific to channels or being themselves primitive I/O devices, ports are functionally
parameterized. This section describes the usual I/O operations on ports. The next section
describes the programmatic port parameterization mechanism, and the section following
that describes the most commonly used built-in port abstraction, ports atop channels.
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4.5.1.1 Port operations

The following names are exported by the i/o structure.

input-port? value — boolean [procedure]

output-port? value — boolean [procedure]
These return #t if their argument is both a port and either an input port or output
port, respectively, or #f if neither condition is true.

close-input-port port — unspecified [procedure]
close-output-port port — unspecified [procedure]
Closes port, which must be an input port or an output port, respectively.

char-ready? [port] — boolean [procedure]

output-port-ready? port — boolean [procedure]
Char-ready? returns a true value if there is a character ready to be read from port
and #£ if there is no character ready. Port defaults to the current input port if absent;
see below on current ports. Output-port-ready? returns a true value if port is ready
to receive a single written character and #f if not.

read-block block start count port [wait?] — count-read or EOF [procedure]
write-block block start count port — count-written [procedure]
write-string string port — char-count-written [procedure]

Read-block attempts to read count elements from port into block, which may be a
string or a byte vector, starting at start. If fewer than count characters or bytes are
available to read from port, and wait? is a true value or absent, read-block will wait
until count characters are available and read into block; if wait? is #f, read-block
immediately returns. Read-block returns the number of elements read into block, or
an end of file object if the stream’s end is immediately encountered. Write-block
writes count elements from block, which may be a string or a byte vector, starting
at start to port. Write-string is a convenience atop write-block for writing the
entirety of a string to a port.

newline [port] — unspecified [procedure]
Writes a newline character or character sequence to the output port port. Port
defaults to the current output port; see below on current ports.

disclose-port port — disclosed [procedure]
Returns a disclosed representation of port; see Section 4.6.2 [Writer|, page 71.

force-output port — unspecified [procedure]
Forces all buffered output in the output port port to be sent.

make-null-output-port — output-port [procedure]
Returns an output port that will ignore any output it receives.
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4.5.1.2 Current ports

Scheme48 keeps in its dynamic environment (see Section 4.1.4 [Fluid/dynamic bindings],
page 41) a set of ‘current’ ports. These include R5RS’s current input and output ports, as
well as ports for general noise produced by the system, and ports for where error messages
are printed. These procedures are exported by the i/o structure.

current-input-port — input-port [procedure]
current-output-port — output-port [procedure]
current-noise-port — output-port [procedure]
current-error-port — output-port [procedure]

These return the values in the current dynamic environment of the respective ports.
Current-input-port and current-output-port are also exported by the scheme

structure.
input-port-option arguments — input-port [procedure]
output-port-option arguments — output-port [procedure]

These are utilities for retrieving optional input and output port arguments from rest
argument lists, defaulting to the current input or output ports. For example, assuming
the newline character sequence is simply #\newline, newline might be written as:

(define (newline . maybe-port)
(write-char #\newline (output-port-option maybe-port)))

silently thunk — values [procedure]
This stifles output from the current noise port in the dynamic extent of thunk, which
is applied to zero arguments. Silently returns the values that thunk returns.

with-current-ports input output error thunk — values [procedure]
With-current-ports dynamically binds the current input, output, and error ports
to input, output, and error, respectively, in the dynamic extent of thunk, which is
applied to zero arguments. The current noise port is also bound to error. With-
current-ports returns the values that thunk returns.

Similarly to with-current-ports, the i/o-internal structure also exports these pro-
cedures:

call-with-current-input-port port thunk — values [procedure]
call-with-current-output-port port thunk — values [procedure]
call-with-current-noise-port port thunk — values [procedure]

These bind individual current ports for the dynamic extent of each thunk, which is
applied to zero arguments. These all return the values that thunk returns.

4.5.2 Programmatic ports

Ports are user-extensible; all primitive port operations on them — read-char, write-
block, éc. — are completely generalized. Abstractions for buffered ports are also available.
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4.5.2.1 Port data type

The ports structure defines the basis of the port data type and exports the following
procedures.

make-port handler status lock data buffer index limit pending-eof? — [procedure]
port
Port constructor. The arguments are all the fields of ports, which are described below.
Note that make-port is rarely called directly; usually one will use one of the buffered
port constructors instead.

port-handler port — port-handler procedure
port-buffer port — buffer or #£ procedure
port-lock port — value procedure

[ ]
rocedn]
port-status port — integer-status [procedure]
[ ]
[ ]
[ |
[ ]

port-data port — value procedure
port-index port — integer or #£f procedure
port-limit port — integer or #f procedure
port-pending-eof? port — boolean procedure

Accessors for the port fields:

handler  The handler is the functional parameterization mechanism: it provides
all the port’s operations, such as reading/writing blocks, disclosing (see
Section 4.6.2 [Writer|, page 71) the port, closing the port, éc. See Sec-
tion 4.5.2.2 [Port handlers], page 62.

buffer The buffer is used for buffered ports, where it is a byte vector (see Sec-
tion 4.3 [Bitwise manipulation], page 56). It may be any value for un-
buffered ports.

lock This misnamed field was originally used for a mutual exclusion lock, be-
fore optimistic concurrency was made the native synchronization mecha-
nism in Scheme48. It is now used as a ‘timestamp’ for buffered ports: it
is provisionally written to with a unique value when a thread resets the
index to reuse the buffer, and it is provisionally read from when reading
from the buffer. In this way, if the buffer is reset while another thread is
reading from it, the other thread’s proposal is invalidated by the different
value in memory than what was there when it logged the old timestamp
in its proposal.

status A mask from the port-status-options enumeration; see Section 4.5.3
[Miscellaneous I/O internals]|, page 66.

data Arbitrary data for particular kinds of ports. For example, for a port
that tracks line & column information (see Section 6.5 [I/O extensions],
page 108), this might be a record containing the underlying port, the line
number, and the column number.

index The current index into a buffered port’s buffer. If the port is not buffered,
this is #£.
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limit The limit of the index field for a buffered port’s buffer. When the index
field is equal to the 1imit field, the buffer is full. If the port is not
buffered, this is #£.

pending-eof?
For output ports, this is a boolean flag indicating whether the buffer has
been forced to output recently. For input ports, this is a boolean flag
indicating whether an end of file is pending after reading through the
current buffer.

set-port-lock! port value — unspecified [ ]
set-port-status! port status — unspecified [ ]
set-port-data! port data — unspecified [procedure]
[ |

[ |

]

set-port-index! port index — unspecified procedure
set-port-limit! port index — unspecified procedure
set-port-pending-eof?! port pending-eof? — unspecified [procedure
These assign respective fields of ports. The buffer and handler fields, however, are
immutable.
provisional-port-handler port — port-handler procedure
provisional-port-lock port — value procedure
provisional-port-status port — integer-status procedure
provisional-port-data port — value procedure
provisional-port-index port — integer or #£f procedure
provisional-port-limit port — integer or #f procedure

[ |
[ |
[ ]
[ ]
rocedn]
provisional-port-pending-eof? port — boolean [procedure]
[ ]
[ ]
[ ]
[ |
[ ]
[ ]

provisional-set-port-lock! port value — unspecified procedure
provisional-set-port-status! port status — unspecified procedure
provisional-set-port-data! port data — unspecified procedure
provisional-set-port-index! port index — unspecified procedure
provisional-set-port-limit! port index — unspecified procedure
provisional-set-port-pending-eof?! port pending-eof ? — procedure

unspecitfied
Provisional versions of the above port accessors & modifiers; that is, accessors &
modifiers that log in the current proposal, if there is one.

4.5.2.2 Port handlers

Port handlers store a port’s specific operations for the general port operations, such as
block reads and writes, buffer flushing, é&c. Port handler constructors, including make-
port-handler & the buffered port handlers in the next section, are available from the
i/o-internal structure.

make-port-handler discloser closer char-reader/writer [procedure]
block-reader/writer readiness-tester buffer-forcer — port-handler

Basic port handler constructor. The arguments are used for the port handler fields.

Each field contains a procedure. The expected semantics of each procedure depend on
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whether the port is for input or output. Input ports do not use the buffer-forcer
field. The first two fields are independent of the type of port:

discloser port — disclosed
Returns a disclosed representation of the port, i.e. a list whose car is the
‘type name’ of this handler (usually with a suffix of either ~input-port or
-output-port) followed by a list of all of the components to be printed,;
see Section 4.6.2 [Writer|, page 71.

closer port — ignored
Closes port. This operation corresponds with the close-input-port &
close-output-port procedures.

For input ports, the remaining fields are:

char-reader port consume? — char
Reads a single character from port. If consume? is true, the character
should be consumed from port; if consume? is #f, however, the character
should be left in port’s input stream. If consume? is true, this operation
corresponds with read-char; if it is #f, this operation corresponds with
peek-char.

block-reader port block start count wait? — count-written or EOF

Attempts to read count characters from port’s input stream into the
string or byte vector block, starting at start. In the case that an insuf-
ficient number of characters is available, if wait? is true, the procedure
should wait until all of the wanted characters are available; otherwise, if
wait? is #f, the block reader should immediately return. In either case,
it returns the number of characters that were read into block, or an end
of file object if it immediately reached the end of the stream. Buffered
ports will typically just copy elements from the buffer into block, rather
than reading from any internal I/O channel in port. This operation cor-
responds with read-block.

readiness-tester port — boolean
Returns a true value if there is a character available to be read in port or
#f if not. This operation corresponds with the char-ready? procedure.

For output ports, the remaining fields are:

char-writer port char — ignored
Writes the single character char to port. This operation corresponds with
write-char.

block-writer port block start count — count-written
Writes count characters to port from block, starting at start. Block may
be a string or a byte vector. This will usually involve copying contents of
block to port’s buffer, if it is buffered. This operation corresponds with
write-block.

readiness-tester port — boolean
Returns a true value if port is ready to receive a character and #£ if not.
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buffer-forcer port necessary? — ignored

For buffered ports, this is intended to force all buffered output to the
actual internal I/O channel of port. Necessary? tells whether or not it is
absolutely necessary to force all the output immediately; if it is #t, the
buffer forcer is required to force all output in the buffer before it returns.
If necessary? is #f, not only may it just register an I/O transaction
without waiting for it to complete, but it also should not signal an error
if port is already closed. For unbuffered ports, this operation need not
do anything at all.

4.5.2.3 Buffered ports & handlers

Along with bare port handlers, Scheme48 provides conveniences for many patterns of
buffered ports & port handlers. These names are exported by the i/o-internal struc-
ture. Buffered ports are integrated with Scheme48’s optimistic concurrency (see Section 5.2
[Optimistic concurrency]|, page 79) facilities.

Note: Although internally buffered ports are integrated with optimistic concurrency,
operations on buffered ports, like operations on channels, cannot be reliably fusibly atomic.

make-buffered-input-port handler data buffer index limit — [procedure]
input-port
make-buffered-output-port handler data buffer index limit — [procedure]

output-port
Constructors for buffered ports. Handler is the port’s handler, which is usually con-
structed with one of the buffered port handler constructors (see below). Data is
arbitrary data to go in the port’s data field. Buffer is a byte vector whose length
is greater than or equal to both index & limit. Index is the initial index into buffer
to go in the port’s index field. Limit is the limit in the port’s buffer, to go into the
port’s 1imit field; nothing will be written into buffer at or past limit.

make-unbuffered-input-port handler data — input-port [procedure]

make-unbuffered-output-port handler data — output-port [procedure]
Conveniences for ports that are explicitly not buffered. Only the relevant fields are
passed; all fields pertaining to buffering are initialized with #f.

make-buffered-input-port-handler discloser closer buffer-filler [procedure]
readiness-tester — port-handler
This creates a port handler for buffered input ports. The arguments are as follows:

discloser port-data — disclosed

closer port-data — ignored
Discloser & closer are like the similarly named regular port handler fields,
but they are applied directly to the port’s data, not to the port itself.

buffer-filler port wait? — committed?
Used to fill port’s buffer when it no longer has contents from which to read
in its current buffer. Wait? is a boolean flag, #t if the operation should
wait until the I/O transaction necessary to fill the buffer completes, or



Chapter 4: System facilities 65

#f if it may simply initiate an I/O transaction but not wait until it com-
pletes (e.g., use channel-maybe-commit-and-read, but not wait on the
condition variable passed to channel-maybe-commit-and-read). Buffer-
filler is called with a fresh proposal in place, and it is the responsibility
of buffer-filler to commit it. It returns a boolean flag denoting whether
the proposal was committed. The last call in buffer-filler is usually either
(maybe-commit) or a call to a procedure that causes that effect (e.g., one
of the operation on condition variables that commits the current proposal.
See Section 5.3 [Higher-level synchronization], page 85.)

readiness-tester port — [committed? ready?]
Called when char-ready? is applied to port and the buffer of port is
empty. Like buffer-filler, readiness-tester is applied with a fresh proposal
in place, which it should attempt to commit. Readiness-tester should
return two values, each a boolean flag: the first denotes whether or not
the current proposal was successfully committed, and, if it was successful,
whether or not a character is ready.

make-buffered-output-port-handler discloser buffer-emptier [procedure]
readiness-tester — port-handler
This creates a port handler for buffered output ports. Discloser & closer are as with
buffered input ports. The remaining fields are as follows:

buffer-emptier port necessary? — committed?
Buffer-emptier is used when port’s buffer is full and needs to be emptied.
It is called with a fresh proposal in place. It should reset port’s index
field, call note-buffer-reuse! to invalidate other threads’ transactions
on the recycled buffer, and attempt to commit the new proposal installed.
It returns a boolean flag indicating whether or not the commit succeeded.

readiness-tester port — [committed? ready?]
Readiness-tester is applied to port when its buffer is full (i.e. its index &
limit fields are equal) and output-port-ready? is applied to port. After
performing the test, it should attempt to commit the current proposal and
then return two values: whether it succeeded in committing the current
proposal, and, if it was successful, whether or not a character is ready to
be outputted.

default-buffer-size — integer [constant]
The default size for port buffers. This happens to be 4096 in the current version of
Scheme48.

note-buffer-reuse! port — unspecified [procedure]

check-buffer-timestamp! port — unspecified [procedure]

These are used to signal the resetting of a buffer between multiple threads. Note-
buffer-reuse! is called — in the case of an output port — when a buffer fills up, is
emptied, and flushed; or — in the case of an input port — when a buffer is emptied
and needs to be refilled. Note-buffer-reuse! logs in the current proposal a fresh
value to store in port. When that proposal is committed, this fresh value is stored in
the port. Other threads that were using port’s buffer call check-buffer-timestamp!,
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which logs a read in the current proposal. If another thread commits a buffer reuse
to memory, that read will be invalidated, invalidating the whole transaction.

4.5.3 Miscellaneous I/0O internals

All of these but port-status-options are exported by the i/o-internal structure;
the port-status-options enumeration is exported by the architecture structure, but it
deserves mention in this section.

port-status-options [enumeration]
(define-enumeration port-status-options
(input
output
open-for-input
open-for-output))

Enumeration of indices into a port’s status field bit set.

open-input-port? port — boolean [procedure]

open-output-port? port — boolean [procedure]
These return true values if port is both an input or output port, respectively, and
open.

open-input-port-status — integer-status [constant]

open-output-port-status — integer-status [constant]

The bitwise masks of enumerands from the port-status-options enumeration sig-
nifying an open input or output port, respectively.

make-input-port-closed! port — unspecified [procedure]

make-output-port-closed! port — unspecified [procedure]
These set the status of port, which must be an input or output port, respectively, to
indicate that it is closed.

eof-object — eof-object [procedure]
Returns the EOF object token. This is the only value that will answer true to R5RS’s
eof-object? predicate.

force-output-if-open port — unspecified [procedure]
This forces port’s output if it is an open output port, and does not block.

periodically-force-output! port — unspecified [procedure]

periodically-flushed-ports — port-Iist [procedure]
Periodically-force-output! registers port to be forced periodically. Only a weak
reference to port in this registry is held, however, so this cannot cause accidental space
leaks. Periodically-flushed-ports returns a list of all ports in this registry. Note
that the returned list holds strong references to all of its elements. Periodically-
flushed-ports does not permit thread context switches, or interrupts of any sort,
while it runs.
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4.5.4 Channels

Channels represent the OS’s native I/O transmission channels. On Unix, channels are
essentially boxed file descriptors, for example. The only operations on channels are block
reads & writes. Blocks in this sense may be either strings or byte vectors (see Section 4.3
[Bitwise manipulation|, page 56).

4.5.4.1 Low-level channel operations

The low-level base of the interface to channels described here is exported from the
channels structure.

channel? — boolean [procedure]
Disjoint type predicate for channels.

channel-id channel — value [procedure]
channel-status channel — integer-enumerand [procedure]
channel-os-index channel — integer [procedure]

Channel-id returns channel’s id. The id is some identifying characteristic of channels.
For example, file channels’ ids are usually the corresponding filenames; channels such
as the standard input, output, or error output channels have names like "standard
input" and "standard output". Channel-status returns the current status of chan-
nel; see the channel-status-option enumeration below. Channel-os-index returns
the OS-specific integer index of channel. On Unix, for example, this is the channel’s
file descriptor.

open-channel filename option close-silently? — channel [procedure]
Open-channel opens a channel for a file given its filename. Option specifies what
type of channel this is; see the channel-status-option enumeration below. Close-
silently? is a boolean that specifies whether a message should be printed (on Unix,
to stderr) when the resulting channel is closed after a garbage collector finds it
unreachable.

close-channel channel — unspecified [procedure]
Closes channel after aborting any potential pending I/O transactions it may have
been involved with.

channel-ready? channel — boolean [procedure]
If channel is an input channel: returns #t if there is input ready to be read from
channel or #f if not; if channel is an output channel: returns #t if a write would
immediately take place upon calling channel-maybe-write, i.e. channel-maybe-
write would not return #f, or #f if not.
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channel-maybe-read channel buffer start-index octet-count wait? — [procedure]
octet count read, error status cell, EOF object, or #£

channel-maybe-write channel buffer start-index octet-count — octet  [procedure]
count written, error status cell, or #£f

channel-abort channel — unspecified [procedure]

Ch