
The Nearly Complete
Scheme48 1.3 Reference Manual

Taylor Campbell

First Edition

This manual is for Scheme48 version 1.3.
Copyright c© 2004, 2005, 2006 Taylor Campbell. All rights reserved.
This manual includes material derived from works bearing the following notice:
Copyright c© 1993-2005 Richard Kelsey, Jonathan Rees, and Mike Sperber. All rights
reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
The name of the authors may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS “AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

i

Table of Contents

1 Introduction . 1
1.1 This manual . 1
1.2 Acknowledgements . 2

2 User environment . 3
2.1 Running Scheme48 . 3

2.1.1 Command processor introduction 4
2.2 Emacs integration . 5
2.3 Using the module system . 7

2.3.1 Configuration mutation . 8
2.3.2 Listing interfaces . 9

2.4 Command processor . 10
2.4.1 Basic commands . 10
2.4.2 Switches . 11
2.4.3 Emacs integration commands 12
2.4.4 Focus value . 12
2.4.5 Command levels . 13
2.4.6 Module commands . 15
2.4.7 SRFI 7 . 16
2.4.8 Debugging commands . 16
2.4.9 Inspector . 18
2.4.10 Command programs . 19
2.4.11 Image-building commands . 20
2.4.12 Resource statistics and control 20

3 Module system . 23
3.1 Module system architecture . 23
3.2 Module configuration language . 24
3.3 Macros in concert with modules . 28
3.4 Static type system . 30

3.4.1 Types in the configuration language 33

4 System facilities . 35
4.1 System features . 35

4.1.1 Miscellaneous features . 35
4.1.2 Various utilities . 36
4.1.3 Filenames . 39

4.1.3.1 Filename translations. 40
4.1.4 Fluid/dynamic bindings . 41
4.1.5 ASCII character encoding . 43
4.1.6 Integer enumerations . 43
4.1.7 Cells . 45

ii

4.1.8 Queues . 45
4.1.9 Hash tables . 46
4.1.10 Weak references . 47

4.1.10.1 Weak pointers . 47
4.1.10.2 Populations (weak sets) 48

4.1.11 Type annotations . 48
4.1.12 Explicit renaming macros . 48

4.2 Condition system . 51
4.2.1 Signalling, handling, and representing conditions

. 52
4.2.2 Displaying conditions . 55

4.3 Bitwise manipulation . 55
4.3.1 Bitwise integer operations . 56
4.3.2 Byte vectors. 56

4.4 Generic dispatch system . 56
4.5 I/O system . 58

4.5.1 Ports . 58
4.5.1.1 Port operations . 58
4.5.1.2 Current ports . 59

4.5.2 Programmatic ports . 60
4.5.2.1 Port data type . 60
4.5.2.2 Port handlers . 62
4.5.2.3 Buffered ports & handlers 64

4.5.3 Miscellaneous I/O internals . 66
4.5.4 Channels . 66

4.5.4.1 Low-level channel operations 67
4.5.4.2 Higher-level channel operations. 68

4.5.5 Channel ports . 69
4.6 Reader & writer . 70

4.6.1 Reader . 70
4.6.2 Writer . 71

4.6.2.1 Object disclosure. 72
4.7 Records . 73

4.7.1 Jonathan Rees’s define-record-type macro 73
4.7.2 Richard Kelsey’s define-record-type macro 74
4.7.3 Record types . 75
4.7.4 Low-level record manipulation 76

4.8 Suspending and resuming heap images 77
4.8.1 System initialization . 77
4.8.2 Manual system initialization . 78

iii

5 Multithreading . 79
5.1 Basic thread operations . 79
5.2 Optimistic concurrency . 79

5.2.1 High-level optimistic concurrency 80
5.2.2 Logging variants of Scheme procedures 81
5.2.3 Synchronized records . 81
5.2.4 Optimistic concurrency example 82
5.2.5 Low-level optimistic concurrency 84

5.3 Higher-level synchronization. 85
5.3.1 Condition variables . 85
5.3.2 Placeholders. 86
5.3.3 Value pipes . 86

5.4 Concurrent ML . 87
5.4.1 Rendezvous concepts . 87
5.4.2 Delayed rendezvous . 88

5.4.2.1 Negative acknowledgements 88
5.4.3 Rendezvous combinators . 88

5.4.3.1 Timing rendezvous . 89
5.4.4 Rendezvous communication channels 90

5.4.4.1 Synchronous channels 90
5.4.4.2 Asynchronous channels 90

5.4.5 Rendezvous-synchronized cells 91
5.4.5.1 Placeholders: single-assignment cells 91
5.4.5.2 Jars: multiple-assignment cells 92

5.4.6 Concurrent ML to Scheme correspondence 92
5.5 Pessimistic concurrency . 94
5.6 Custom thread synchronization . 94

6 Libraries . 97
6.1 Boxed bitwise-integer masks. 97

6.1.1 Mask types. 97
6.1.2 Masks . 97

6.2 Enumerated/finite types and sets . 98
6.2.1 Enumerated/finite types . 98
6.2.2 Sets over enumerated types . 100

6.3 Macros for writing loops . 101
6.3.1 Main looping macros . 101
6.3.2 Sequence types . 102
6.3.3 Synchronous sequences . 103
6.3.4 Examples . 104
6.3.5 Defining sequence types . 105
6.3.6 Loop macro expansion . 105

6.4 Library data structures . 106
6.4.1 Multi-dimensional arrays . 106
6.4.2 Red/black search trees . 107
6.4.3 Sparse vectors . 108

6.5 I/O extensions . 108
6.6 TCP & UDP sockets . 109

iv

6.6.1 TCP sockets . 109
6.6.2 UDP sockets . 110

6.7 Common-Lisp-style formatting . 110
6.8 Library utilities . 112

6.8.1 Destructuring . 112
6.8.2 Pretty-printing . 112
6.8.3 Strongly connected graph components 113
6.8.4 Nondeterminism . 113
6.8.5 Miscellaneous utilities . 113
6.8.6 Multiple value binding . 115
6.8.7 Object dumper . 116
6.8.8 Simple time access . 116

7 C interface . 118
7.1 Overview of the C interface . 118

7.1.1 Scheme structures . 118
7.1.2 C naming conventions . 118
7.1.3 Garbage collection . 119

7.2 Shared bindings between Scheme and C 119
7.2.1 Scheme shared binding interface 119
7.2.2 C shared binding interface . 120

7.3 Calling C functions from Scheme . 121
7.4 Dynamic loading of C modules . 123

7.4.1 Old dynamic loading interface 124
7.5 Accessing Scheme data from C . 125
7.6 Calling Scheme procedures from C . 127
7.7 Interacting with the Scheme heap in C 128

7.7.1 Keeping C data structures in the Scheme heap . . 129
7.7.2 C code and heap images. 129

7.8 Using Scheme records in C . 129
7.9 Raising exceptions from C . 131
7.10 Unsafe C macros . 131

8 POSIX interface . 134
8.1 Processes . 134
8.2 Signals . 135

8.2.1 Sending & receiving signals . 137
8.3 Process environment. 138
8.4 Users and groups . 139
8.5 Host OS and machine identification . 140
8.6 File system access . 140
8.7 Time . 145
8.8 I/O utilities . 145
8.9 Regular expressions . 147

8.9.1 Direct POSIX regular expression interface 147
8.9.2 High-level regular expression construction 148

8.9.2.1 Character sets . 148
8.9.2.2 Anchoring . 149

v

8.9.2.3 Composite expressions 149
8.9.2.4 Case sensitivity . 150
8.9.2.5 Submatches and matching 150

8.10 C to Scheme correspondence . 151

9 Pre-Scheme: A low-level dialect of Scheme
. 154
9.1 Differences between Pre-Scheme & Scheme 154
9.2 Type specifiers . 155
9.3 Standard environment . 156

9.3.1 Scheme bindings . 156
9.3.2 Tail call optimization . 158
9.3.3 Bitwise manipulation . 158
9.3.4 Compound data manipulation 158
9.3.5 Error handling . 159
9.3.6 Input & output . 160
9.3.7 Access to C functions and macros 161

9.4 More Pre-Scheme packages . 161
9.4.1 Floating point operation . 162
9.4.2 Record types . 162
9.4.3 Multiple return values . 163
9.4.4 Low-level memory manipulation 163

9.5 Invoking the Pre-Scheme compiler . 165
9.5.1 Loading the compiler . 165
9.5.2 Calling the compiler . 166

9.6 Example Pre-Scheme compiler usage . 167
9.7 Running Pre-Scheme as Scheme . 169

References. 170

Concept index . 172

Binding index . 176

Structure index . 187

Chapter 1: Introduction 1

1 Introduction

Scheme48 is an implementation of Scheme based on a byte-code virtual machine with
design goals of simplicity and cleanliness. To briefly enumerate some interesting aspects of
it, Scheme48 features:
• an advanced module system based on Jonathan Rees’s W7 security kernel with well-

integrated interaction between macros and modules;
• a virtual machine written in a dialect of Scheme itself, Pre-Scheme, for which a compiler

is written with Scheme48;
• a sophisticated, user-level, preëmptive multithreading system with numerous high-level

concurrency abstractions;
• a composable, lock-free shared-memory thread synchronization mechanism known as

optimistic concurrency ; and
• an advanced user environment that is well-integrated with the module and thread

systems to facilitate very rapid development of software systems scaling from small to
large and single-threaded to multi-threaded.

It was originally written by Jonathan Rees and Richard Kelsey in 1986 in response to the
fact that so many Lisp implementations had started out simple and grown to be complex
monsters of projects. It has been used in a number of research areas, including:
• mobile robots at Cornell [Donald 92];
• a multi-user collaboration system, sometimes known as a ‘MUD’ (‘multi-user dun-

geon’) or ‘MUSE’ (‘multi-user simulation environment’), as well as general research in
capability-based security [Museme; Rees 96]; and

• advanced distributed computing with higher-order mobile agents at NEC’s Princeton
research lab [Cejtin et al. 95].

The system is tied together in a modular fashion by a configuration language that permits
quite easy mixing and matching of components, so much so that Scheme48 can be used
essentially as its own OS, as it was in Cornell’s mobile robots program, or just as easily
within another, as the standard distribution is. The standard distribution is quite portable
and needs only a 32-bit byte-addressed POSIX system.

The name ‘Scheme48’ commemorates the time it took Jonathan Rees and Richard Kelsey
to originally write Scheme48 on August 6th & 7th, 1986: forty-eight hours. (It has been
joked that the system has expanded to such a size now that it requires forty-eight hours to
read the source.)

1.1 This manual

This manual begins in the form of an introduction to the usage of Scheme48, suitable
for those new to the system, after which it is primarily a reference material, organized by
subject. Included in the manual is also a complete reference manual for Pre-Scheme, a
low-level dialect of Scheme for systems programming and in which the Scheme48 virtual
machine is written; see Chapter 9 [Pre-Scheme], page 154.

This manual is, except for some sections pilfered and noted as such from the official but
incomplete Scheme48 reference manual, solely the work of Taylor Campbell, on whom all

Chapter 1: Introduction 2

responsibility for the content of the manual lies. The authors of Scheme48 do not endorse
this manual.

1.2 Acknowledgements

Thanks to Jonathan Rees and Richard Kelsey for having decided so many years ago
to make a simple Scheme implementation with a clean design in the first place, and for
having worked on it so hard for so many years (almost twenty!); to Martin Gasbichler and
Mike Sperber, for having picked up Scheme48 in the past couple years when Richard and
Jonathan were unable to work actively on it; to Jeremy Fincher for having asked numerous
questions about Scheme48 as he gathered knowledge from which he intended to build an
implementation of his own Lisp dialect, thereby inducing me to decide to write the manual
in the first place; to Jorgen Schäfer, for having also asked so many questions, proofread
various drafts, and made innumerable suggestions to the manual.

Chapter 2: User environment 3

2 User environment

2.1 Running Scheme48

Scheme48 is run by invoking its virtual machine on a dumped heap image to resume a
saved system state. The common case of invoking the default image, ‘scheme48.image’,
which contains the usual command processor, run-time system, &c., is what the scheme48
script that is installed does. The actual virtual machine executable itself, scheme48vm,
is typically not installed into an executable directory such as ‘/usr/local/bin/’ on
Unix, but in the Scheme48 library directory, which is, by default on Unix installations
of Scheme48, ‘/usr/local/lib/’. However, both scheme48 and scheme48vm share the
following command-line options; the only difference is that scheme48 has a default ‘-i’
argument.

‘-h heap-size ’
The size of Scheme48’s heap, in cells. By default, the heap size is 3 megacells,
or 12 megabytes, permitting 6 megabytes per semispace — Scheme48 uses a
simple stop & copy garbage collector.1 Since the current garbage collector
cannot resize the heap dynamically if it becomes consistently too full, users on
machines with much RAM may be more comfortable with liberally increasing
this option.

‘-s stack-size ’
The stack size, in cells. The default stack size is 10000 bytes, or 2500 cells.
Note that this is only the size of the stack cache segment of memory for fast
stack frame storage. When this overflows, there is no error; instead, Scheme48
simply copies the contents of the stack cache into the heap, until the frames
it copied into the heap are needed later, at which point they are copied back
into the stack cache. The ‘-s’ option therefore affects only performance, not
the probability of fatal stack overflow errors.

‘-i image-filename ’
The filename of the suspended heap image to resume. When running the
scheme48 executable, the default is the regular Scheme48 image; when run-
ning the virtual machine directly, this option must be passed explicitly. For
information on creating custom heap images, see Section 2.4.11 [Image-building
commands], page 20, and also see Section 4.8 [Suspending and resuming heap
images], page 77.

‘-a argument ...’
Command-line arguments to pass to the heap image’s resumer, rather than
being parsed by the virtual machine. In the usual Scheme48 command processor
image, these arguments are put in a list of strings that will be the initial focus
value (see Section 2.4.4 [Focus value], page 12).

‘-u’ Muffles warnings on startup about undefined imported foreign bindings.

1 The Scheme48 team is also working on a new, generational garbage collector, but it is not in the standard
distribution of Scheme48 yet.

Chapter 2: User environment 4

The usual Scheme48 image may accept an argument of batch, using the ‘-a’ switch to
the virtual machine. This enters Scheme48 in batch mode, which displays no welcoming
banner, prints no prompt for inputs, and exits when an EOF is read. This may be used to
run scripts from the command-line, often in the exec language (see Section 2.4.10 [Command
programs], page 19), by sending text to Scheme48 through Unix pipes or shell heredocs.
For example, this Unix shell command will load the command program in the file ‘foo.scm’
into the exec language environment and exit Scheme48 when the program returns:

echo ,exec ,load foo.scm | scheme48 -a batch

This Unix shell command will load ‘packages.scm’ into the module language environment,
open the tests structure into the user environment, and call the procedure run-tests with
zero arguments:

scheme48 -a batch <<END
,config ,load packages.scm
,open tests
(run-tests)
END

Scheme48 also supports [SRFI 22] and [SRFI 7] by providing R5RS and [SRFI 7] script
interpreters in the location where Scheme48 binaries are kept as scheme-r5rs and scheme-
srfi-7. See the [SRFI 22] and [SRFI 7] documents for more details. Scheme48’s command
processor also has commands for loading [SRFI 7] programs, with or without a [SRFI 22]
script header; see Section 2.4.7 [SRFI 7], page 16.

2.1.1 Command processor introduction

The Scheme48 command processor is started up on resumption of the usual Scheme48
image. This is by default what the scheme48 script installed by Scheme48 does. It will first
print out a banner that contains some general information about the system, which will
typically look something like this:

Welcome to Scheme 48 1.3 (made by root on Sun Jul 10 10:57:03 EDT 2005)
Copyright (c) 1993-2005 by Richard Kelsey and Jonathan Rees.
Please report bugs to scheme-48-bugs@s48.org.
Get more information at http://www.s48.org/.
Type ,? (comma question-mark) for help.

After the banner, it will initiate a REPL (read-eval-print loop). At first, there should be a
simple ‘>’ prompt. The command processor interprets Scheme code as well as commands.
Commands operate the system at a level above or outside Scheme. They begin with a
comma, and they continue until the end of the line, unless they expect a Scheme expression
argument, which may continue as many lines as desired. Here is an example of a command
invocation:

> ,set load-noisily on

This will set the load-noisily switch (see Section 2.4.2 [Command processor switches],
page 11) on.

Note: If a command accepts a Scheme expression argument that is followed by more
arguments, all of the arguments after the Scheme expression must be put on the same line
as the last line of the Scheme expression.

Chapter 2: User environment 5

Certain operations, such as breakpoints and errors, result in a recursive command proces-
sor to be invoked. This is known as pushing a command level. See Section 2.4.5 [Command
levels], page 13. Also, the command processor supports an object inspector, an interactive
program for inspecting the components of objects, including continuation or stack frame
objects; the debugger is little more than the inspector, working on continuations. See
Section 2.4.9 [Inspector], page 18.

Evaluation of code takes place in the interaction environment. (This is what R5RS’s
interaction-environment returns.) Initially, this is the user environment, which by de-
fault is a normal R5RS Scheme environment. There are commands that set the interaction
environment and evaluate code in other environments, too; see Section 2.4.6 [Module com-
mands], page 15.

The command processor’s prompt has a variety of forms. As above, it starts out with
as a simple ‘>’. Several factors can affect the prompt. The complete form of the prompt is
as follows:
• It begins with an optional command level (see Section 2.4.5 [Command levels], page 13)

number: at the top level, there is no command level number; as command levels are
pushed, the number is incremented, starting at 1.

• Optionally, the name of the interaction environment follows the command level num-
ber: if the interaction environment is the user environment, there is no name printed
here; named environments are printed with their names; unnamed environments (usu-
ally created using the ,new-package command; see Section 2.4.6 [Module commands],
page 15) are printed with their numeric identifiers. If a command level number preceded
an environment name, a space is printed between them.

• If the command processor is in the regular REPL mode, it ends with a ‘>’ and a space
before the user input area; if it is in inspector mode (see Section 2.4.9 [Inspector],
page 18), it ends with a ‘:’ and a space before the user input area.

For example, this prompt denotes that the user is in inspector mode at command level
3 and that the interaction environment is an environment named frobozz:

3 frobozz:

This prompt shows that the user is in the regular REPL mode at the top level, but in
the environment for module descriptions (see Section 2.4.6 [Module commands], page 15):

config>

For a complete listing of all the commands in the command processor, see Section 2.4
[Command processor], page 10.

2.2 Emacs integration

Emacs is the canonical development environment for Scheme48. The ‘scheme.el’ and
‘cmuscheme.el’ packages provide support for editing Scheme code and running inferior
Scheme processes, respectively. Also, the ‘scheme48.el’ package provides more support
for integrating directly with Scheme48.2 ‘scheme.el’ and ‘cmuscheme.el’ come with GNU
Emacs; ‘scheme48.el’ is available separately from

2 ‘scheme48.el’ is based on the older ‘cmuscheme48.el’, which is bundled with Scheme48 in the ‘emacs/’
directory. Since ‘cmuscheme48.el’ is older and less developed, it is not documented here.

Chapter 2: User environment 6

http://www.emacswiki.org/cgi-bin/wiki/download/scheme48.el.

To load ‘scheme48.el’ if it is in the directory emacs-dir, add these lines to your ‘.emacs’:

(add-to-list ’load-path "emacs-dir/")
(autoload ’scheme48-mode "scheme48"
"Major mode for improved Scheme48 integration."
t)

(add-hook ’hack-local-variables-hook
(lambda ()
(if (and (boundp ’scheme48-package)

scheme48-package)
(progn (scheme48-mode)

(hack-local-variables-prop-line)))))

The add-hook call sets Emacs up so that any file with a scheme48-package local variable
specified in the file’s -*- line or Local Variables section will be entered in Scheme48 mode.
Files should use the scheme48-package variable to enable Scheme48 mode; they should
not specify Scheme48 mode explicitly, since this would fail in Emacs instances without
‘scheme48.el’. That is, put this at the tops of files:

;;; -*- Mode: Scheme; scheme48-package: ... -*-

Avoid this at the tops of files:

;;; -*- Mode: Scheme48 -*-

There is also SLIME48, the Superior Lisp Interaction Mode for Emacs with Scheme48.
It provides a considerably higher level of integration the other Emacs packages do, although
it is less mature. It is at

http://mumble.net/~campbell/scheme/slime48.tar.gz;

there is also a Darcs repository3 at

http://mumble.net/~campbell/darcs/slime48/.

Finally, ‘paredit.el’ implements pseudo-structural editing facilities for S-expressions:
it automatically balances parentheses and provides a number of high-level operations on
S-expressions. ‘Paredit.el’ is available on the web at

http://mumble.net/~campbell/emacs/paredit.el.

‘cmuscheme.el’ defines these:

[Emacs command]run-scheme [scheme-prog]
Starts an inferior Scheme process or switches to a running one. With no argument,
this uses the value of scheme-program-name to run the inferior Scheme system; with
a prefix argument scheme-prog, this invokes scheme-prog.

[Emacs variable]scheme-program-name
The Scheme program to invoke for inferior Scheme processes.

3 Darcs is a revision control system; see

http://www.darcs.net/

for more details.

http://www.emacswiki.org/cgi-bin/wiki/download/scheme48.el
http://mumble.net/~campbell/scheme/slime48.tar.gz
http://mumble.net/~campbell/darcs/slime48/
http://mumble.net/~campbell/emacs/paredit.el
http://www.darcs.net/

Chapter 2: User environment 7

Under scheme48-mode with ‘scheme.el’, ‘cmuscheme.el’, and ‘scheme48.el’, these
keys are defined:

C-M-f — forward-sexp
C-M-b — backward-sexp
C-M-k — kill-sexp
〈ESC〉 C-〈DEL〉 (not C-M-〈DEL〉) — backward-kill-sexp
C-M-q — indent-sexp
C-M-@ — mark-sexp
C-M-〈SPC〉 — mark-sexp

S-expression manipulation commands. C-M-f moves forward by one
S-expression; C-M-b moves backward by one. C-M-k kills the S-expression
following the point; 〈ESC〉 C-〈DEL〉 kills the S-expression preceding the point.
C-M-q indents the S-expression following the point. C-M-@ & C-M-〈SPC〉,
equivalent to one another, mark the S-expression following the point.

C-c z — switch-to-scheme
Switches to the inferior Scheme process buffer.

C-c C-l — scheme48-load-file
Loads the file corresponding with the current buffer into Scheme48. If that file
was not previously loaded into Scheme48 with C-c C-l, Scheme48 records the
current interaction environment in place as it loads the file; if the file was pre-
viously recorded, it is loaded into the recorded environment. See Section 2.4.3
[Emacs integration commands], page 12.

C-c C-r — scheme48-send-region
C-c M-r — scheme48-send-region-and-go

C-c C-r sends the currently selected region to the current inferior Scheme pro-
cess. The file of the current buffer is recorded as in the C-c C-l command,
and code is evaluated in the recorded package. C-c M-r does similarly, but
subsequently also switches to the inferior Scheme process buffer.

C-M-x — scheme48-send-definition
C-c C-e — scheme48-send-definition
C-c M-e — scheme48-send-definition-and-go

C-M-x (GNU convention) and C-c C-e send the top-level definition that the
current point is within to the current inferior Scheme process. C-c C-e does
similarly, but subsequently also switches to the inferior Scheme process buffer.
C-c c-e and C-c M-e also respect Scheme48’s file/environment mapping.

C-x C-e — scheme48-send-last-sexp
Sends the S-expression preceding the point to the inferior Scheme process. This
also respects Scheme48’s file/environment mapping.

2.3 Using the module system

Scheme48 is deeply integrated with an advanced module system. For complete detail of
its module system, see Chapter 3 [Module system], page 23. Briefly, however:

Chapter 2: User environment 8

Packages are top-level environments suitable for evaluating expressions and definitions,
either interactively, from files loaded on-the-fly, or as the bodies of modules. They can
also access bindings exported by structures by opening the structures.
Structures are libraries, or implementations of interfaces, exporting sets of bindings
that packages can access. Underlying structures are usually packages, in which the
user can, in some cases, interactively evaluate code during development.

Scheme48’s usual development system, the command processor, provides a number of
commands for working with the module system. For complete details, see Section 2.4.6
[Module commands], page 15. Chief among these commands are ,open and ,in. ‘,open
struct ...’ makes all of the bindings from each of struct . . . available in the interaction
environment. Many of the sections in this manual describe one or more structures with the
name they are given. For example, in order to use, or open, the multi-dimensional array
library in the current interaction environment, one would enter

,open arrays

to the command processor. ‘,in struct ’ sets the interaction environment to be the package
underlying struct. For instance, if, during development, the user decides that the package
of the existing structure foo should open the structure bar, he might type

,in foo
,open bar

Module descriptions, or code in the module configuration language (see Section 3.2
[Module configuration language], page 24) should be loaded into the special environment for
that language with the ,config command (see Section 2.4.6 [Module commands], page 15).
E.g., if ‘packages.scm’ contains a set of module descriptions that the user wishes to load,
among which is the definition of a structure frobozz which he wishes to open, he will
typically send the following to the command processor prompt:

,config ,load packages.scm
,open frobozz

Note: These are commands for the interactive command processor, not special directives
to store in files to work with the module system. The module language is disjoint from
Scheme; for complete detail on it, see Chapter 3 [Module system], page 23.

2.3.1 Configuration mutation

(This section was derived from work copyrighted (C) 1993-2005 by Richard Kelsey,
Jonathan Rees, and Mike Sperber.)

During program development, it is often desirable to make changes to packages and
interfaces. In static languages, it is usually necessary to re-compile and re-link a program
in order for such changes to be reflected in a running system. Even in interactive Common
Lisp systems, a change to a package’s exports often requires reloading clients that have
already mentioned names whose bindings change. In those systems, once read resolves a
use of a name to a symbol, that resolution is fixed, so a change in the way that a name
resolves to a symbol can be reflected only by re-reading all such references.

The Scheme48 development environment supports rapid turnaround in modular program
development by allowing mutations to a program’s configuration and giving a clear seman-
tics to such mutation. The rule is that variable bindings in a running program are always

Chapter 2: User environment 9

resolved according to the current structure and interface bindings, even when these bindings
change as a result of edits to the configuration. For example, consider the following:

(define-interface foo-interface (export a c))
(define-structure foo foo-interface
(open scheme)
(begin (define a 1)

(define (b x) (+ a x))
(define (c y) (* (b a) y))))

(define-structure bar (export d)
(open scheme foo)
(begin (define (d w) (+ (b w) a))))

This program has a bug. The variable named b, which is free in the definition of d, has
no binding in bar’s package. Suppose that b was intended to be exported by foo, but was
mistakenly omitted. It is not necessary to re-process bar or any of foo’s other clients at
this point. One need only change foo-interface and inform the development system of
that change (using, say, an appropriate Emacs command), and foo’s binding of b will be
found when the procedure d is called and its reference to b actually evaluated.

Similarly, it is possible to replace a structure; clients of the old structure will be modified
so that they see bindings from the new one. Shadowing is also supported in the same way.
Suppose that a client package C opens a structure mumble that exports a name x, and
mumble’s implementation obtains the binding of x from some other structure frotz. C will
see the binding from frotz. If one then alters mumble so that it shadows bar’s binding of x
with a definition of its own, procedures in C that refer to x will subsequently automatically
see mumble’s definition instead of the one from frotz that they saw earlier.

This semantics might appear to require a large amount of computation on every variable
reference: the specified behaviour appears to require scanning the package’s list of opened
structures and examining their interfaces — on every variable reference evaluated, not just at
compile-time. However, the development environment uses caching with cache invalidation
to make variable references fast, and most of the code is invoked only when the virtual
machine traps due to a reference to an undefined variable.

2.3.2 Listing interfaces

The list-interfaces structure provides a utility for examining interfaces. It is usually
opened into the config package with ,config ,open list-interfaces in order to have
access to the structures & interfaces easily.

[procedure]list-interface struct-or-interface −→ unspecified
Lists all of the bindings exported by struct-or-interface along with their static types
(see Section 3.4 [Static type system], page 30). For example,

> ,config ,open list-interfaces
> ,config (list-interface condvars)
condvar-has-value? (proc (:condvar) :value)
condvar-value (proc (:condvar) :value)
condvar? (proc (:value) :boolean)
make-condvar (proc (&rest :value) :condvar)

Chapter 2: User environment 10

maybe-commit-and-set-condvar! (proc (:condvar :value) :boolean)
maybe-commit-and-wait-for-condvar (proc (:condvar) :boolean)
set-condvar-has-value?! (proc (:condvar :value) :unspecific)
set-condvar-value! (proc (:condvar :value) :unspecific)

2.4 Command processor

The Scheme48 command processor is the main development environment. It incorporates
a read-eval-print loop as well as an interactive inspector and debugger. It is well-integrated
with the module system for rapid dynamic development, which is made even more conve-
nient with the Emacs interface, cmuscheme48; see Section 2.2 [Emacs integration], page 5.

2.4.1 Basic commands

There are several generally useful commands built-in, along with many others described
in subsequent sections:

[command],help
[command],help command
[command],?
[command],? command

Requests help on commands. ,? is an alias for ,help. Plain ‘,help’ lists a synopsis
of all commands available, as well as all switches (see Section 2.4.2 [Command pro-
cessor switches], page 11). ‘,help command ’ requests help on the particular command
command.

[command],exit
[command],exit status
[command],exit-when-done
[command],exit-when-done status

Exits the command processor. ‘,exit’ immediately exits with an exit status of 0.
‘,exit status ’ exits with the status that evaluating the expression status in the
interaction environment produces. ,exit-when-done is like ,exit, but it waits until
all threads complete before exiting.

[command],go expression
,go is like ,exit, except that it requires an argument, and it evaluates expression in
the interaction environment in a tail context with respect to the command processor.
This means that the command processor may no longer be reachable by the garbage
collector, and may be collected as garbage during the evaluation of expression. For
example, the full Scheme48 command processor is bootstrapped from a minimal one
that supports the ,go command. The full command processor is initiated in an
argument to the command, but the minimal one is no longer reachable, so it may be
collected as garbage, leaving only the full one.

Chapter 2: User environment 11

[command],run expression
Evaluates expression in the interaction environment. Alone, this command is not
very useful, but it is required in situations such as the inspector (see Section 2.4.9 [In-
spector], page 18) and command programs (see Section 2.4.10 [Command programs],
page 19).

[command],undefine name
Removes the binding for name in the interaction environment.

[command],load filename . . .
Loads the contents each filename as Scheme source code into the interaction environ-
ment. Each filename is translated first (see Section 4.1.3 [Filenames], page 39). The
given filenames may be surrounded or not by double-quotes; however, if a filename
contains spaces, it must be surrounded by double-quotes. The differences between
the ,load command and Scheme’s load procedure are that ,load does not require
its arguments to be quoted, allows arbitrarily many arguments while the load pro-
cedure accepts only one filename (and an optional environment), and works even in
environments in which load is not bound.

[command],translate from to
A convenience for registering a filename translation without needing to open the
filenames structure. For more details on filename translations, see Section 4.1.3
[Filenames], page 39; this command corresponds with the filename structure’s set-
translation! procedure. As with ,load, each of the filenames from and to may be
surrounded or not by double-quotes, unless there is a space in the filenames, in which
case it must be surrounded by double-quotes.

2.4.2 Switches

The Scheme48 command processor keeps track of a set of switches, user-settable config-
urations.

[command],set switch
[command],set switch {on|off|?}
[command],unset switch
[command],set ?

‘,set switch ’ & ‘,set switch on’ set the switch switch on. ‘,unset switch ’ &
‘,set switch off’ turn switch off. ‘,set switch ?’ gives a brief description of
switch’s current status. ‘,set ?’ gives information about all the available switches
and their current state.

The following switches are defined. Each switch is listed with its name and its default
status.

ask-before-loading (off)
If this is on, Scheme48 will prompt the user before loading modules’ code. If it
is off, it will quietly just load it.

Chapter 2: User environment 12

batch (off)
Batch mode is intended for automated uses of the command processor. With
batch mode on, errors cause the command processor to exit, and the prompt is
not printed.

break-on-warnings (off)
If the break-on-warnings switch is on, warnings (see Section 4.2 [Condition
system], page 51) signalled that reach the command processor’s handler will
cause a command level (see Section 2.4.5 [Command levels], page 13) to be
pushed, similarly to breakpoints and errors.

inline-values (off)
Inline-values tells whether or not certain procedures may be integrated in-
line.

levels (on)
Errors will push a new command level (see Section 2.4.5 [Command levels],
page 13) if this switch is on, or they will just reset back to the top level if
levels is off.

load-noisily (off)
Loading source files will cause messages to be printed if load-noisily is on;
otherwise they will be suppressed.

2.4.3 Emacs integration commands

There are several commands that exist mostly for Emacs integration (see Section 2.2
[Emacs integration], page 5); although they may be used elsewhere, they are not very useful
or convenient without cmuscheme48.

[command],from-file filename
[command],end

‘,from-file filename ’ proclaims that the code following the command, until an
,end command, comes from filename — for example, this may be due to an appro-
priate Emacs command, such as C-c l in cmuscheme48 —; if this is the first time
the command processor has seen code from filename, it is registered to correspond
with the interaction environment wherein the ,from-file command was used. If it
is not the first time, the code is evaluated within the package that was registered for
filename.

[command],forget filename
Clears the command processor’s memory of the package to which filename corre-
sponds.

2.4.4 Focus value

The Scheme48 command processor maintains a current focus value. This is typically the
value that the last expression evaluated to, or a list of values if it returned multiple values.
If it evaluated to either zero values or Scheme48’s ‘unspecific’ token (see Section 4.1 [System

Chapter 2: User environment 13

features], page 35), the focus value is unchanged. At the initial startup of Scheme48, the
focus value is set to the arguments passed to Scheme48’s virtual machine after the ‘-a’
argument on the command-line (see Section 2.1 [Running Scheme48], page 3). The focus
value is accessed through the ## syntax; the reader substitutes a special quotation (special
so that the compiler will not generate warnings about a regular quote expression containing
a weird value) for occurrences of ##. Several commands, such as ,inspect and ,dis, either
accept an argument or use the current focus value. Also, in the inspector (see Section 2.4.9
[Inspector], page 18), the focus object is the object that is currently being inspected.

> (cons 1 2)
’(1 . 2)
> ##
’(1 . 2)
> (begin (display "Hello, world!") (newline))
Hello, world!
> ##
’(1 . 2)
> (cdr ##)
2
> (define x 5)
; no values returned
> (+ ## x)
7
> (values 1 2 3)
; 3 values returned
1
2
3
> ##
’(1 2 3)

2.4.5 Command levels

The Scheme48 command processor maintains a stack of command levels, or recursive
invocations of the command processor. Each command level retains information about
the point from the previous command level at which it was pushed: the threads that
were running — which the command processor suspends —, including the thread of that
command level itself; the continuation of what pushed the level; and, if applicable, the
condition (see Section 4.2 [Condition system], page 51) that caused the command level to
be pushed. Each command level has its own thread scheduler, which controls all threads
running at that level, including those threads’ children.

Some beginning users may find command levels confusing, particularly those who are
new to Scheme or who are familiar with the more simplistic interaction methods of other
Scheme systems. These users may disable the command level system with the levels switch
(see Section 2.4.2 [Command processor switches], page 11) by writing the command ‘,set
levels off’.

Chapter 2: User environment 14

[command],push
[command],pop
[command],resume
[command],resume level
[command],reset
[command],reset level

‘,push’ pushes a new command level. ‘,pop’ pops the current command level. C-d/^D,
or EOF, has the same effect as the ,pop command. Popping the top command level
inquires the user whether to exit or to return to the top level. ‘,resume level ’ pops
all command levels down to level and resumes all threads that were running at level
when it was suspended to push another command level. ‘,reset level ’ resets the
command processor to level, terminating all threads at that level but the command
reader thread. ,resume & ,reset with no argument use the top command level.

[command],condition
[command],threads

‘,condition’ sets the focus value to the condition that caused the command level
to be pushed, or prints ‘no condition’ if there was no relevant condition. ‘,threads’
invokes the inspector on the list of threads of the previous command level, or on
nothing if the current command level is the top one.

> ,push
1> ,push
2> ,pop
1> ,reset

Top level
> ,open threads formats
> ,push
1> ,push
2> (spawn (lambda ()

(let loop ()
(sleep 10000) ; Sleep for ten seconds.
(format #t "~&foo~%")
(loop)))

’my-thread)
2>
foo
,push
3> ,threads
; 2 values returned
[0] ’#{Thread 4 my-thread}
[1] ’#{Thread 3 command-loop}
3: q
’(#{Thread 4 my-thread} #{Thread 3 command-loop})
3> ,resume 1

foo

Chapter 2: User environment 15

2>
foo
,push
3> ,reset 1
Back to 1> ,pop
>

2.4.6 Module commands

Scheme48’s command processor is well-integrated with its module system (see Chap-
ter 3 [Module system], page 23). It has several dedicated environments, including the user
package and the config package, and can be used to evaluate code within most packages in
the Scheme48 image during program development. The config package includes bindings
for Scheme48’s configuration language; structure & interface definitions may be evaluated
in it. The command processor also has provisions to support rapid development and mod-
ule reloading by automatically updating references to redefined variables in compiled code
without having to reload all of that code.

[command],open struct . . .
Opens each struct into the interaction environment, making all of its exported bind-
ings available. This may have the consequence of loading code to implement those
bindings. If there was code evaluated in the interaction environment that referred
to a previously undefined variable for whose name a binding was exported by one of
these structures, a message is printed to the effect that that binding is now available,
and the code that referred to that undefined variable will be modified to subsequently
refer to the newly available binding.

[command],load-package struct
[command],reload-package struct

,load-package and ,reload-package both load the code associated with the pack-
age underlying struct, after ensuring that all of the other structures opened by that
package are loaded as well. ,load-package loads the code only if has not already
been loaded; ,reload-package unconditionally loads it.

[command],user
[command],user command-or-exp
[command],config
[command],config command-or-exp
[command],for-syntax
[command],for-syntax command-or-exp
[command],new-package
[command],in structure
[command],in structure command-or-exp

These all operate on the interaction environment. ‘,user’ sets it to the user package,
which is the default at initial startup. ‘,user command-or-exp ’ temporarily sets the
interaction environment to the user package, processes command-or-exp, and reverts
the interaction environment to what it was before ,user was invoked. The ,config &

Chapter 2: User environment 16

,for-syntax commands are similar, except that they operate on the config package
and the package used for the user package’s macros (see Section 3.3 [Macros in concert
with modules], page 28). ‘,new-package’ creates a temporary, unnamed package with
a vanilla R5RS environment and sets the interaction environment to it. That new
package is not accessible in any way except to the user of the command processor, and
it is destroyed after the user switches to another environment (unless the user uses the
,structure command; see below). ‘,in structure ’ sets the interaction environment
to be structure’s package; structure is a name whose value is extracted from the
config package. ‘,in structure command-or-exp ’ sets the interaction environment
to structure temporarily to process command-or-exp and then reverts it to what it
was before the use of ,in. Note that, within a structure, the bindings available are
exactly those bindings that would be available within the structure’s static code, i.e.
code in the structure’s begin package clauses or code in files referred to by files
package clauses.

[command],user-package-is struct
[command],config-package-is struct

,user-package-is & ,config-package-is set the user & config packages, respec-
tively, to be struct’s package. Struct is a name whose value is accessed from the
current config package.

[command],structure name interface
This defines a structure named name in the config package that is a view of interface
on the current interaction environment.

2.4.7 SRFI 7

Scheme48 supports [SRFI 7] after loading the srfi-7 structure by providing two com-
mands for loading [SRFI 7] programs:

[command],load-srfi-7-program name filename
[command],load-srfi-7-script name filename

These load [SRFI 7] a program into a newly constructed structure, named name,
which opens whatever other structures are needed by features specified in the pro-
gram. ,load-srfi-7-program loads a simple [SRFI 7] program; ,load-srfi-7-
script skips the first line, intended for [SRFI 22] Unix scripts.

2.4.8 Debugging commands

There are a number of commands useful for debugging, along with a continuation in-
spector, all of which composes a convenient debugger.

[command],bound? name
[command],where
[command],where procedure

,bound? prints out binding information about name, if it is bound in the interaction
environment, or ‘Not bound’ if name is unbound. ,where prints out information
about what file and package its procedure argument was created in. If procedure is

Chapter 2: User environment 17

not passed, ,where uses the focus value. If ,where’s argument is not a procedure,
it informs the user of this fact. If ,where cannot find the location of its argument’s
creation, it prints ‘Source file not recorded.’

[command],expand
[command],expand exp
[command],dis
[command],dis proc

,expand prints out a macro-expansion of exp, or the focus value if exp is not pro-
vided. The expression to be expanded should be an ordinary S-expression. The ex-
pansion may contain ‘generated names’ and ‘qualified names.’ These merely contain
lexical context information that allow one to differentiate between identifiers with
the same name. Generated names look like #{Generated name unique-numeric-

id}. Qualified names appear to be vectors; they look like #(>> introducer-macro

name unique-numeric-id), where introducer-macro is the macro that introduced
the name.
,dis prints out a disassembly of its procedure, continuation, or template argument. If
proc is passed, it is evaluated in the interaction environment; if not, ,dis disassembles
the focus value. The disassembly is of Scheme48’s virtual machine’s byte code.4

[command],condition
[command],threads

For the descriptions of these commands, see Section 2.4.5 [Command levels], page 13.
These are mentioned here because they are relevant in the context of debugging.

[command],trace
[command],trace name . . .
[command],untrace
[command],untrace name . . .

Traced procedures will print out information about when they are entered and when
they exit. ‘,trace’ lists all of the traced procedures’ bindings. ‘,trace name ...’ sets
each name in the interaction environment, which should be bound to a procedure,
to be a traced procedure over the original procedure. ‘,untrace’ resets all traced
procedures to their original, untraced procedures. ‘,untrace name ...’ untraces each
individual traced procedure of name . . . in the interaction environment.

[command],preview
Prints a trace of the previous command level’s suspended continuation. This is anal-
ogous with stack traces in many debuggers.

[command],debug
Invokes the debugger: runs the inspector on the previous command level’s saved
continuation. For more details, see Section 2.4.9 [Inspector], page 18.

4 A description of the byte code is forthcoming, although it does not have much priority to this manual’s
author. For now, users can read the rudimentary descriptions of the Scheme48 virtual machine’s byte
code instruction set in ‘vm/interp/arch.scm’ of Scheme48’s Scheme source.

Chapter 2: User environment 18

[command],proceed
[command],proceed exp

Returns to the continuation of the condition signalling of the previous command
level. Only certain kinds of conditions will push a new command level, however
— breakpoints, errors, and interrupts, and, if the break-on-warnings switch is on,
warnings —; also, certain kinds of errors that do push new command levels do not
permit being proceeded from. In particular, only with a few VM primitives may
the ,proceed command be used. If exp is passed, it is evaluated in the interaction
environment to produce the values to return; if it is not passed, zero values are
returned.

2.4.9 Inspector

Scheme48 provides a simple interactive object inspector. The command processor’s
prompt’s end changes from ‘>’ to ‘:’ when in inspection mode. The inspector is the basis
of the debugger, which is, for the most part, merely an inspector of continuations. In the
debugger, the prompt is ‘debug:’. In the inspector, objects are printed followed by menus
of their components. Entries in the menu are printed with the index, which optionally
includes a symbolic name, and the value of the component. For example, a pair whose car
is the symbol a and whose cdr is the symbol b would be printed by the inspector like this:

’(a . b)

[0: car] ’a
[1: cdr] ’b

The inspector maintains a stack of the focus objects it previously inspected. Selecting a
new focus object pushes the current one onto the stack; the u command pops the stack.

[command],inspect
[command],inspect exp

Invokes the inspector. If exp is present, it is evaluated in the user package and its
result is inspected (or a list of results, if it returned multiple values, is inspected). If
exp is absent, the current focus value is inspected.

The inspector operates with its own set of commands, separate from the regular in-
teraction commands, although regular commands may be invoked from the inspector as
normal. Inspector commands are entered with or without a preceding comma at the in-
spector prompt. Multiple inspector commands may be entered on one line; an input may
also consist of an expression to be evaluated. If an expression is evaluated, its value is
selected as the focus object. Note, however, that, since inspector commands are symbols,
variables cannot be evaluated just by entering their names; one must use either the ,run
command or wrap the variables in a begin.

These inspector commands are defined:

[inspector command]menu
[inspector command]m

Menu prints a menu for the focus object. M moves forward in the current menu if there
are more than sixteen items to be displayed.

Chapter 2: User environment 19

[inspector command]u
Pops the stack of focus objects, discarding the current one and setting the focus object
to the current top of the stack.

[inspector command]q
Quits the inspector, going back into the read-eval-print loop.

[inspector command]template
Attempts to coerce the focus object into a template. If successful, this selects it as the
new focus object; if not, this prints an error to that effect. Templates are the static
components of closures and continuations: they contain the code for the procedure,
the top-level references made by the procedure, literal constants used in the code,
and any inferior templates of closures that may be constructed by the code.

[inspector command]d
Goes down to the parent of the continuation being inspected. This command is valid
only in the debugger mode, i.e. when the focus object is a continuation.

2.4.10 Command programs

The Scheme48 command processor can be controlled programmatically by command
programs, programs written in the exec language. This language is essentially a mirror
of the commands but in a syntax using S-expressions. The language also includes all of
Scheme. The exec language is defined as part of the exec package.

[command],exec
[command],exec command

Sets the interaction environment to be the exec package. If an argument is passed, it
is set temporarily, only to run the given command.

Commands in the exec language are invoked as procedures in Scheme. Arguments should
be passed as follows:
• Identifiers, such as those of structure names in the config package, should be passed as

literal symbols. For instance, the command ‘,in frobbotz’ would become in the exec
language (in ’frobbotz).

• Filenames should be passed as strings; e.g., ‘,dump frob.image’ becomes (dump
"frob.image").

• Commands should be represented in list values with the car being the command name
and the cdr being the arguments. Note that when applying a command an argument
that is a command invocation is often quoted to produce a list, but the list should
not include any quotation; for instance, ‘,in mumble ,undefine frobnicate’ would
become (in ’mumble ’(undefine frobnicate)), even though simply ‘,undefine
frobnicate’ would become (undefine ’frobnicate).
The reason for this is that the command invocation in the exec language is different
from a list that represents a command invocation passed as an argument to another
command; since commands in the exec language are ordinary procedures, the arguments
must be quoted, but the quoted arguments are not themselves evaluated: they are
applied as commands.

Chapter 2: User environment 20

An argument to a command that expects a command invocation can also be a pro-
cedure, which would simply be called with zero arguments. For instance, (config
(lambda () (display (interaction-environment)) (newline))) will call the given
procedure with the interaction environment set to the config package.

• Expressions must be passed using the run command. For example, the equivalent of
‘,user (+ 1 2)’ in the exec language would be (user ’(run (+ 1 2))).

Command programs can be loaded by running the ,load command in the exec package.
Scripts to load application bundles are usually written in the exec language and loaded into
the exec package. For example, this command program, when loaded into the exec package,
will load ‘foo.scm’ into the config package, ensure that the package frobbotzim is loaded,
and open the quuxim structure in the user package:

(config ’(load "foo.scm"))
(load-package ’frobbotzim)
(user ’(open quuxim))

2.4.11 Image-building commands

Since Scheme48’s operation revolves about an image-based model, these commands pro-
vide a way to save heap images on the file system, which may be resumed by invoking the
Scheme48 virtual machine on them as in Section 2.1 [Running Scheme48], page 3.

[command],build resumer filename
[command],dump filename
[command],dump filename message

,build evaluates resumer, whose value should be a unary procedure, and builds a heap
image in filename that, when resumed by the virtual machine, will pass the resumer
all of the command-line arguments after the ‘-a’ argument to the virtual machine.
The run-time system will have been initialized as with usual resumers (see Section 4.8
[Suspending and resuming heap images], page 77), and a basic condition handler will
have been installed by the time that the resumer is called. On Unix, resumer must
return an integer exit status for the process. ,dump dumps the Scheme48 command
processor, including all of the current settings, to filename. If message is passed, it
should be a string delimited by double-quotes, and it will be printed as part of the
welcome banner on startup; its default value, if it is not present, is "(suspended
image)".

2.4.12 Resource statistics and control

Scheme48 provides several devices for querying statistics about various resources and
controlling resources, both in the command processor and programmatically.

[command],collect
Forces a garbage collection and prints the amount of space in the heap before and
after the collection.

Chapter 2: User environment 21

[command],time expression
Evaluates expression and prints how long it took. Three numbers are printed: run
time, GC time, and real time. The run time is the amount of time in Scheme code;
the GC time is the amount of time spent in the garbage collector; and the real time
is the actual amount of time that passed during the expression’s evaluation.

[command],keep
[command],keep kind . . .
[command],flush
[command],flush kind . . .

Scheme48 maintains several different kinds of information used for debugging infor-
mation. ‘,keep’ with no arguments shows what kinds of debugging data are preserved
and what kinds are not. ‘,keep kind ...’ requests that the debugging data of the
given kinds should be kept; the ,flush command requests the opposite. ‘,flush’ with
no arguments flushes location names and resets the debug data table. The following
are the kinds of debugging data:

names procedure names

maps environment maps used by the debugger to show local variable names

files filenames where procedures were defined

source source code surrounding continuations, printed by the debugger

tabulate if true, will store debug data records in a global table that can be easily
flushed; if false, will store directly in compiled code

,flush can also accept location-names, which will flush the table of top-level vari-
ables’ names (printed, for example, by the ,bound? command); file-packages,
which will flush the table that maps filenames to packages in which code from those
files should be evaluated; or table, in which case the table of debug data is flushed.
Removing much debug data can significantly reduce the size of Scheme48 heap images,
but it can also make error messages and debugging much more difficult. Usually, all
debug data is retained; only for images that must be small and that do not need to
be debuggable should the debugging data flags be turned off.

The spatial structure exports these utilities for displaying various statistics about the
heap:

[procedure]space −→ unspecified
[procedure]vector-space [predicate] −→ unspecified
[procedure]record-space [predicate] −→ unspecified

Space prints out a list of the numbers of all objects and the number of bytes allocated
for those objects on the heap, partitioned by the objects’ primitive types and whether
or not they are immutable (pure) or mutable (impure). Vector-space prints the
number of vectors and the number of bytes used to store those vectors of several
different varieties, based on certain heuristics about their form. If the predicate
argument is passed, it gathers only vectors that satisfy that predicate. Record-space
prints out, for each record type in the heap, both the number of all instances of

Chapter 2: User environment 22

that record type and the number of bytes used to store all of those instances. Like
vector-space, if the predicate argument is passed, record-space will consider only
those records that satisfy the predicate.
All of these three procedures first invoke the garbage collector before gathering statis-
tics.

The traverse structure provides a simple utility for finding paths by which objects refer
to one another.

[procedure]traverse-breadth-first object −→ unspecified
[procedure]traverse-depth-first object −→ unspecified

These traverse the heap, starting at object, recording all objects transitively re-
ferred to. Traverse-breadth-first uses a FIFO-queue-directed breadth-first graph
traversal, while traverse-depth-first uses a LIFO-stack-directed depth-first graph
traversal. The traversal halts at any leaves in the graph, which are distinguished by
an internal leaf predicate in the module. See below on set-leaf-predicate! on how
to customize this and what the default is.
The traversal information is recorded in a global resource; it is not thread-safe, and
intended only for interactive usage. The record can be reset by passing some simple
object with no references to either traverse-breadth-first or traverse-depth-
first; e.g., (traverse-depth-first #f).

[procedure]trail object −→ unspecified
After traversing the heap from an initial object, (trail object) prints the path
of references and intermediate objects by which the initial object holds a transitive
reference to object.

[procedure]set-leaf-predicate! predicate −→ unspecified
[procedure]usual-leaf-predicate object −→ boolean

Set-leaf-predicate! sets the current leaf predicate to be predicate. Usual-leaf-
predicate is the default leaf predicate; it considers simple numbers (integers and
flonums), strings, byte vectors, characters, and immediate objects (true, false, nil,
and the unspecific object) to be leaves, and everything else to be branches.

Chapter 3: Module system 23

3 Module system

Scheme48 has an advanced module system that is designed to interact well with macros,
incremental compilation, and the interactive development environment’s (see Chapter 2
[User environment], page 3) code reloading facilities for rapid program development. For
details on the integration of the module system and the user environment for rapid code
reloading, see Section 2.3 [Using the module system], page 7.

3.1 Module system architecture

The fundamental mechanism by which Scheme code is evaluated is the lexical environ-
ment. Scheme48’s module system revolves around this fundamental concept. Its purpose is
to control the denotation of names in code1 in a structured, modular manner. The module
system is manipulated by a static configuration language, described in the next section; this
section describes the concepts in the architecture of the module system.

The package is the entity internal to the module system that maps a set of names to
denotations. For example, the package that represents the Scheme language maps lambda
to a descriptor for the special form that the compiler interprets to construct a procedure,
car to the procedure that accesses the car of a pair, &c. Packages are not explicitly
manipulated by the configuration language, but they lie underneath structures, which are
described below. A package also contains the code of a module and controls the visibility
of names within that code. It also includes some further information, such as optimizer
switches. A structure is a view on a package; that is, it contains a package and an interface
that lists all of the names it exports to the outside. Multiple structures may be constructed
atop a single package; this mechanism is often used to offer multiple abstraction levels to
the outside. A module is an abstract entity: it consists of some code, the namespace visible
to the code, and the set of abstractions or views upon that code.

A package contains a list of the structures whose bindings should be available in the code
of that package. If a structure is referred to in a such a list of a package, the package is said
to open that structure. It is illegal for a package to open two structures whose interfaces
contain the same name.2 Packages may also modify the names of the bindings that they
import. They may import only selected bindings, exclude certain bindings from structures,
rename imported bindings, create alias bindings, and add prefixes to names.

Most packages will open the standard scheme structure, although it is not implicitly
opened, and the module system allows not opening scheme. It may seem to be not very
useful to not open it, but this is necessary if some bindings from it are intended to be
shadowed by another structure, and it allows for entirely different languages from Scheme
to be used in a package’s code. For example, Scheme48’s byte code interpreter virtual
machine is implemented in a subset of Scheme called Pre-Scheme, which is described in a
later chapter in this manual. The modules that compose the VM all open not the scheme
structure but the prescheme structure. The configuration language itself is controlled by the

1 This is in contrast to, for example, Common Lisp’s package system, which controls the mapping from
strings to names.

2 The current implementation, however, does not detect this. Instead it uses the left-most structure in the
list of a package’s open clause; see the next section for details on this.

Chapter 3: Module system 24

module system, too. In another example, from Scsh, the Scheme shell, there is a structure
scsh that contains all of the Unix shell programming facilities. However, the scsh structure
necessarily modifies some of the bindings related to I/O that the scheme structure exports.
Modules could not open both scheme and scsh, because they both provide several bindings
with the same names, so Scsh defines a more convenient scheme-with-scsh structure that
opens both scheme, but with all of the shadowed bindings excluded, and scsh; modules that
use Scsh would open neither scsh nor scheme: they instead open just scheme-with-scsh.

Interfaces are separated from structures in order that they may be reüsed and com-
bined. For example, several different modules may implement the same abstractions dif-
ferently. The structures that they include would, in such cases, reüse the same interfaces.
Also, it is sometimes desirable to combine several interfaces into a compound interface;
see the compound-interface form in the next section. Furthermore, during interactive
development, interface definitions may be reloaded, and the structures that use them will
automatically begin using the new interfaces; see Section 2.3 [Using the module system],
page 7.

Scheme48’s module system also supports parameterized modules. Parameterized mod-
ules, sometimes known as generic modules, higher-order modules or functors, are essentially
functions at the module system level that map structures to structures. They may be in-
stantiated or applied arbitrarily many times, and they may accept and return arbitrarily
many structures. Parameterized modules may also accept and return other parameterized
modules.

3.2 Module configuration language

Scheme48’s module system is used through a module configuration language. The con-
figuration language is entirely separate from Scheme. Typically, in one configuration, or set
of components that compose a program, there is an ‘interfaces.scm’ file that defines all of
the interfaces used by the configuration, and there is also a ‘packages.scm’ file that defines
all of the packages & structures that compose it. Note that modules are not necessarily
divided into files or restricted to one file: modules may include arbitrarily many files, and
modules’ code may also be written in-line to structure expressions (see the begin package
clause below), although that is usually only for expository purposes and trivial modules.

Structures are always created with corresponding package clauses. Each clause specifies
an attribute of the package that underlies the structure or structures created using the
clauses. There are several different types of clauses:

[package clause]open structure . . .
[package clause]access structure . . .

Open specifies that the package should open each of the listed structures, whose pack-
ages will be loaded if necessary. Access specifies that each listed structure should be
accessible using the (structure-ref structure identifier) special form, which
evaluates to the value of identifier exported by the accessed structure structure.
Structure-ref is available from the structure-refs structure. Each structure
passed to access is not opened, however; the bindings exported thereby are avail-
able only using structure-ref. While the qualified structure-ref mechanism is no
longer useful in the presence of modified structures (see below on modify, subset, &

Chapter 3: Module system 25

with-prefix), some old code still uses it, and access is also useful to force that the
listed structures’ packages be loaded without cluttering the namespace of the package
whose clauses the access clause is among.

[package clause]for-syntax package-clause . . .
Specifies a set of package clauses for the next floor of the reflective tower; see Sec-
tion 3.3 [Macros in concert with modules], page 28.

[package clause]files file-specifier . . .
[package clause]begin code . . .

Files and begin specify the package’s code. Files takes a sequence of namelists for
the filenames of files that contain code; see Section 4.1.3 [Filenames], page 39. Begin
accepts in-line program code.

[package clause]optimize optimizer-specifier . . .
[package clause]integrate [on?]

Optimize clauses request that specified compiler optimizers be applied to the code.
(Actually, ‘optimizer’ is a misnomer. The optimize clause may specify arbitrary
passes that the compiler can be extended with.) Integrate clauses specify whether
or not integrable procedures from other modules, most notably Scheme primitives
such as car or vector-ref, should actually be integrated in this package. This is by
default on. Most modules should leave it on for any reasonable performance; only a
select few, into which code is intended to be dynamically loaded frequently and in
which redefinition of imported procedures is common, need turn this off. The value
of the argument to integrate clauses should be a literal boolean, i.e. #t or #f; if no
argument is supplied, integration is enabled by default.

Currently, the only optimizer built-in to Scheme48 is the automatic procedure in-
tegrator, or auto-integrate, which attempts stronger type reconstruction than is
attempted with most code (see Section 3.4 [Static type system], page 30) and selects
procedures below a certain size to be made integrable (so that the body will be com-
piled in-line in all known call sites). Older versions of Scheme48 also provided another
optimizer, flat-environments, which would flatten certain lexical closure environ-
ments, rather than using a nested environment structure. Now, however, Scheme48’s
byte code compiler always flattens environments; specifying flat-environments in
an optimize clause does nothing.

A configuration is a sequence of definitions. There are definition forms for only structures
and interfaces.

[configuration form]define-structure name interface package-clause . . .
[configuration form]define-structures ((name interface) . . .) package-clause . . .

Define-structure creates a package with the given package clauses and defines name
to be the single view atop it, with the interface interface. Define-structure also
creates a package with the given package clauses; upon that package, it defines each
name to be a view on it with the corresponding interface.

Chapter 3: Module system 26

[configuration form]define-module (name parameter . . .) definition . . . result
[configuration form]def name . . . (parameterized-module argument . . .)

Define-module defines name to be a parameterized module that accepts the given
parameters.

[configuration form]define-interface name interface
Defines name to be the interface that interface evaluates to. Interface may either be
an interface constructor application or simply a name defined to be an interface by
some prior define-interface form.

[interface constructor]export export-specifier . . .
Export constructs a simple interface with the given export specifiers. The export
specifiers specify names to export and their corresponding static types. Each export-
specifier should have one of the following forms:

symbol in which case symbol is exported with the most general value type;

(symbol type)
in which case symbol is exported with the given type; or

((symbol ...) type)
in which case each symbol is exported with the same given type

For details on the valid forms of type, see Section 3.4 [Static type system], page 30.
Note: All macros listed in interfaces must be explicitly annotated with the type
:syntax; otherwise they would be exported with a Scheme value type, which would
confuse the compiler, because it would not realize that they are macros: it would
instead treat them as ordinary variables that have regular run-time values.

[interface constructor]compound-interface interface . . .
This constructs an interface that contains all of the export specifiers from each inter-
face.

Structures may also be constructed anonymously; this is typically most useful in passing
them to or returning them from parameterized modules.

[structure constructor]structure interface package-clauses
[structure constructor]structures (interface . . .) package-clauses

Structure creates a package with the given clauses and evaluates to a structure over
it with the given interface. Structures does similarly, but it evaluates to a number
of structures, each with the corresponding interface.

[structure constructor]subset structure (name . . .)
[structure constructor]with-prefix structure name
[structure constructor]modify structure modifier . . .

These modify the interface of structure. Subset evaluates to a structure that exports
only name . . . , excluding any other names that structure exported. With-prefix
adds a prefix name to every name listed in structure’s interface. Both subset and
with-prefix are syntactic sugar for the more general modify, which applies the

Chapter 3: Module system 27

modifier commands in a strictly right-to-left or last-to-first order. Note: These all
denote new structures with new interfaces; they do not destructively modify existing
structures’ interfaces.

[modifier command]prefix name
[modifier command]expose name . . .
[modifier command]hide name . . .
[modifier command]alias (from to) . . .
[modifier command]rename (from to) . . .

Prefix adds the prefix name to every exported name in the structure’s interface.
Expose exposes only name . . . ; any other names are hidden. Hide hides name
Alias exports each to as though it were the corresponding from, as well as each
from. Rename exports each to as if it were the corresponding from, but it also hides
the corresponding from.

Examples:

(modify structure

(prefix foo:)
(expose bar baz quux))

makes only foo:bar, foo:baz, and foo:quux, available.

(modify structure

(hide baz:quux)
(prefix baz:)
(rename (foo bar)

(mumble frotz))
(alias (gargle mumph)))

exports baz:gargle as what was originally mumble, baz:mumph as an alias for what
was originally gargle, baz:frotz as what was originally mumble, baz:bar as what
was originally foo, not baz:quux — what was originally simply quux —, and every-
thing else that structure exported, but with a prefix of baz:.

There are several simple utilities for binding variables to structures locally and returning
multiple structures not necessarily over the same package (i.e. not with structures). These
are all valid in the bodies of define-module and def forms, and in the arguments to
parameterized modules and open package clauses.

[syntax]begin body
[syntax]let ((name value) . . .) body
[syntax]receive (name . . .) producer body
[syntax]values value . . .

These are all as in ordinary Scheme. Note, however, that there is no reasonable way
by which to use values except to call it, so it is considered a syntax; also note that
receive may not receive a variable number of values — i.e. there are no ‘rest lists’
—, because list values in the configuration language are nonsensical.

Finally, the configuration language also supports syntactic extensions, or macros, as in
Scheme.

Chapter 3: Module system 28

[configuration form]define-syntax name transformer-specifier
Defines the syntax transformer name to be the transformer specified by transformer-
specifier. Transformer-specifier is exactly the same as in Scheme code; it is evaluated
as ordinary Scheme.

3.3 Macros in concert with modules

One reason that the standard Scheme language does not support a module system yet
is the issue of macros and modularity. There are several issues to deal with:

• that compilation of code that uses macros requires presence of those macros’ definitions,
which prevents true separate compilation, because those macros may be from other
modules;

• that a macro’s expansion must preserve referential transparency and hygiene, for ex-
ample in cases where it refers to names from within the module in which it was defined,
even if those names weren’t exported; and

• that a macro’s code may be arbitrary Scheme code, which in turn can use other modules,
so one module’s compile-time, when macros are expanded, is another’s run-time, when
the code used in macros is executed by the expander: this makes a tower of phases of
code evaluation over which some coherent control must be provided.

Scheme48’s module system tries to address all of these issues coherently and comprehen-
sively. Although it cannot offer total separate compilation, it can offer incremental compi-
lation, and compiled modules can be dumped to the file system & restored in the process
of incremental compilation.3

Scheme48’s module system is also very careful to preserve non-local module references
from a macro’s expansion. Macros in Scheme48 are required to perform hygienic renaming in
order for this preservation, however; see Section 4.1.12 [Explicit renaming macros], page 49.
For a brief example, consider the delay syntax for lazy evaluation. It expands to a simple
procedure call:

(delay expression)
7→ (make-promise (lambda () expression))

However, make-promise is not exported from the scheme structure. The expansion works
correctly due to the hygienic renaming performed by the delay macro transformer: when
it hygienically renames make-promise, the output contains not the symbol but a special
token that refers exactly to the binding of make-promise from the environment in which the
delay macro transformer was defined. Special care is taken to preserve this information.
Had delay expanded to a simple S-expression with simple symbols, it would have generated
a free reference to make-promise, which would cause run-time undefined variable errors,
or, if the module in which delay was used had its own binding of or imported a binding
of the name make-promise, delay’s expansion would refer to the wrong binding, and there
could potentially be drastic and entirely unintended impact upon its semantics.

3 While such facilities are not built-in to Scheme48, there is a package to do this, which will probably be
integrated at some point soon into Scheme48.

Chapter 3: Module system 29

Finally, Scheme48’s module system has a special design for the tower of phases, called
a reflective tower.4 Every storey represents the environment available at successive macro
levels. That is, when the right-hand side of a macro definition or binding is evaluated in an
environment, the next storey in that environment’s reflective tower is used to evaluate that
macro binding. For example, in this code, there are two storeys used in the tower:

(define (foo ...bar...)
(let-syntax ((baz ...quux...))
...zot...))

In order to evaluate code in one storey of the reflective tower, it is necessary to expand
all macros first. Most of the code in this example will eventually be evaluated in the first
storey of the reflective tower (assuming it is an ordinary top-level definition), but, in order
to expand macros in that code, the let-syntax must be expanded. This causes ...quux...
to be evaluated in the second storey of the tower, after which macro expansion can proceed,
and long after which the enclosing program can be evaluated.

The module system provides a simple way to manipulate the reflective tower. There is
a package clause, for-syntax, that simply contains package clauses for the next storey in
the tower. For example, a package with the following clauses:

(open scheme foo bar)
(for-syntax (open scheme baz quux))

has all the bindings of scheme, foo, & bar, at the ground storey; and the environment in
which macros’ definitions are evaluated provides everything from scheme, baz, & quux.

With no for-syntax clauses, the scheme structure is implicitly opened; however, if there
are for-syntax clauses, scheme must be explicitly opened.5 Also, for-syntax clauses
may be arbitrarily nested: reflective towers are theoretically infinite in height. (They are
internally implemented lazily, so they grow exactly as high as they need to be.)

Here is a simple, though contrived, example of using for-syntax. The while-loops
structure exports while, a macro similar to C’s while loop. While’s transformer unhygien-
ically binds the name exit to a procedure that exits from the loop. It necessarily, therefore,
uses explicit renaming macros (see Section 4.1.12 [Explicit renaming macros], page 49) in
order to break hygiene; it also, in the macro transformer, uses the destructure macro to
destructure the input form (see Section 6.8 [Library utilities], page 112, in particular, the
structure destructuring for destructuring S-expressions).

(define-structure while-loops (export while)
(open scheme)
(for-syntax (open scheme destructuring))
(begin
(define-syntax while

(lambda (form r compare)
(destructure (((WHILE test . body) form))

‘(,(r ’CALL-WITH-CURRENT-CONTINUATION)
(,(r ’LAMBDA) (EXIT)

4 This would be more accurately named ‘syntactic tower,’ as it has nothing to do with reflection.
5 This is actually only in the default config package of the default development environment. The full

mechanism is very general.

Chapter 3: Module system 30

(,(r ’LET) (r ’LOOP) ()
(,(r ’IF) ,test

(,(r ’BEGIN)
,@body
(,(r ’LOOP)))))))))

(CALL-WITH-CURRENT-CONTINUATION LAMBDA LET IF BEGIN))))

This next while-example structure defines an example procedure foo that uses while.
Since while-example has no macro definitions, there is no need for any for-syntax clauses;
it imports while from the while-loops structure only at the ground storey, because it has
no macro bindings to evaluate the transformer expressions of:

(define-structure while-example (export foo)
(open scheme while-loops)
(begin
(define (foo x)

(while (> x 9)
(if (integer? (sqrt x))

(exit (expt x 2))
(set! x (- x 1)))))))

3.4 Static type system

Scheme48 supports a rudimentary static type system. It is intended mainly to catch
some classes of type and arity mismatch errors early, at compile-time. By default, there is
only extremely basic analysis, which is typically only good enough to catch arity errors and
the really egregious type errors. The full reconstructor, which is still not very sophisticated,
is enabled by specifying an optimizer pass that invokes the code usage analyzer. The only
optimizer pass built-in to Scheme48, the automatic procedure integrator, named auto-
integrate, does so.

The type reconstructor attempts to assign the most specific type it can to program terms,
signalling warnings for terms that are certain to be invalid by Scheme’s dynamic semantics.
Since the reconstructor is not very sophisticated, it frequently gives up and assigns very
general types to many terms. Note, however, that it is very lenient in that it only assigns
more general types: it will never signal a warning because it could not reconstruct a very
specific type. For example, the following program will produce no warnings:

(define (foo x y) (if x (+ y 1) (car y)))

Calls to foo that are clearly invalid, such as (foo #t ’a), could cause the type analyzer to
signal warnings, but it is not sophisticated enough to determine that foo’s second argument
must be either a number or a pair; it simply assigns a general value type (see below).

There are some tricky cases that depend on the order by which arguments are evaluated
in a combination, because that order is not specified in Scheme. In these cases, the relevant
types are narrowed to the most specific ones that could not possibly cause errors at run-time
for any order. For example,

(lambda (x) (+ (begin (set! x ’(3)) 5) (car x)))

will be assigned the type (proc (:pair) :number), because, if the arguments are evaluated
right-to-left, and x is not a pair, there will be a run-time type error.

Chapter 3: Module system 31

The type reconstructor presumes that all code is potentially reachable, so it may signal
warnings for code that the most trivial control flow analyzer could decide unreachable. For
example, it would signal a warning for (if #t 3 (car 7)). Furthermore, it does not account
for continuation throws; for example, though it is a perfectly valid Scheme program, the
type analyzer might signal a warning for this code:

(call-with-current-continuation
(lambda (k) (0 (k))))

The type system is based on a type lattice. There are several maximum or ‘top’ elements,
such as :values, :syntax, and :structure; and one minimum or ‘bottom’ element, :error.
This description of the type system makes use of the following notations: E : T means that
the term E has the type, or some compatible subtype of, T; and Ta v Tb means that Ta

is a compatible subtype of Tb — that is, any term whose static type is Ta is valid in any
context that expects the type Tb —.

Note that the previous text has used the word ‘term,’ not ‘expression,’ because static
types are assigned to not only Scheme expressions. For example, cond macro has the type
:syntax. Structures in the configuration language also have static types: their interfaces.
(Actually, they really have the type :structure, but this is a deficiency in the current
implementation’s design.) Types, in fact, have their own type: :type. Here are some
examples of values, first-class or otherwise, and their types:

cond : :syntax

(values 1 ’foo ’(x . y))
: (some-values :exact-integer :symbol :pair)

:syntax : :type

3 : :exact-integer

(define-structure foo (export a b) ...)
foo : (export a b)

One notable deficiency of the type system is the absence of any sort of parametric
polymorphism.

[type constructor]join type . . .
[type constructor]meet type . . .

Join and meet construct the supremum and infimum elements in the type lattice of
the given types. That is, for any two disjoint types Ta and Tb, let Tj be (join Ta

Tb) and Tm be (meet Ta Tb):

Tj v Ta and Tj v Tb

Ta v Tm and Tb v Tm

For example, (join :pair :null) allows either pairs or nil, i.e. lists, and (meet
:integer :exact) accepts only integers that are also exact.

(More complete definitions of supremum, infimum, and other elements of lattice the-
ory, may be found elsewhere.)

Chapter 3: Module system 32

[type]:error
This is the minimal, or ‘bottom,’ element in the type lattice. It is the type of, for
example, calls to error.

[type]:values
[type]:arguments

All Scheme expressions have the type :values. They may have more specific types
as well, but all expressions’ types are compatible subtypes of :values. :Values is a
maximal element of the type lattice. :Arguments is synonymous with :values.

[type]:value
Scheme expressions that have a single result have the type :value, or some compatible
subtype thereof; it is itself a compatible subtype of :values.

[type constructor]some-values type . . .
Some-values is used to denote the types of expressions that have multiple results: if
E1 ... En have the types T1 ... Tn, then the Scheme expression (values E1 ... En)
has the type (some-values T1 ... Tn).

Some-values-constructed types are compatible subtypes of :values.

Some-values also accepts ‘optional’ and ‘rest’ types, similarly to Common Lisp’s
‘optional’ and ‘rest’ formal parameters. The sequence of types may contain a &opt
token, followed by which is any number of further types, which are considered to
be optional. For example, make-vector’s domain is (some-values :exact-integer
&opt :value). There may also be a &rest token, which must follow the &opt to-
ken if there is one. Following the &rest token is one more type, which the rest
of the sequents in a sequence after the required or optional sequents must satisfy.
For example, map’s domain is (some-values :procedure (join :pair :null) &rest
(join :pair :null)): it accepts one procedure and at least one list (pair or null)
argument.

[type constructor]procedure domain codomain
[type constructor]proc (arg-type . . .) result-type

Procedure type constructors. Procedure types are always compatible subtypes of
:value. Procedure is a simple constructor from a specific domain and codomain;
domain and codomain must be compatible subtypes of :values. Proc is a more con-
venient constructor. It is equivalent to (procedure (some-values arg-type ...)
result-type).

Chapter 3: Module system 33

[type]:boolean
[type]:char
[type]:null
[type]:unspecific
[type]:pair
[type]:string
[type]:symbol
[type]:vector
[type]:procedure
[type]:input-port
[type]:output-port

Types that represent standard Scheme data. These are all compatible subtypes of
:value. :Procedure is the general type for all procedures; see proc and procedure
for procedure types with specific domains and codomains.

[type]:number
[type]:complex
[type]:real
[type]:rational
[type]:integer

Types of the Scheme numeric tower. :integer v :rational v :real v :complex
v :number

[type]:exact
[type]:inexact
[type]:exact-integer
[type]:inexact-real

:Exact and :inexact are the types of exact and inexact numbers, respectively. They
are typically met with one of the types in the numeric tower above; :exact-integer
and :inexact-real are two conveniences for the most common meets.

[type]:other
:Other is for types that do not fall into any of the previous value categories. (:other
v :value) All new types introduced, for example by loophole (see Section 4.1.11
[Type annotations], page 48), are compatible subtypes of :other.

[type constructor]variable type
This is the type of all assignable variables, where type v :value. Assignment to
variables whose types are value types, not assignable variable types, is invalid.

[type]:syntax
[type]:structure

:Syntax and :structure are two other maximal elements of the type lattice, along
with :values. :Syntax is the type of macros or syntax transformers. :Structure is
the general type of all structures.

Chapter 3: Module system 34

3.4.1 Types in the configuration language

Scheme48’s configuration language has several places in which to write types. However,
due to the definitions of certain elements of the configuration language, notably the export
syntax, the allowable type syntax is far more limited than the above. Only the following
are provided:

[type]:values
[type]:value
[type]:arguments
[type]:syntax
[type]:structure

All of the built-in maximal elements of the type lattice are provided, as well as the
simple compatible subtype :values, :value.

[type]:boolean
[type]:char
[type]:null
[type]:unspecific
[type]:pair
[type]:string
[type]:symbol
[type]:vector
[type]:procedure
[type]:input-port
[type]:output-port
[type]:number
[type]:complex
[type]:real
[type]:rational
[type]:integer
[type]:exact-integer

These are the only value types provided in the configuration language. Note the
conspicuous absence of :exact, :inexact, and :inexact-real.

[type constructor]procedure domain codomain
[type constructor]proc (arg-type . . .) result-type

These two are the only type constructors available. Note here the conspicuous absence
of some-values, so procedure types that are constructed by procedure can accept
only one argument (or use the overly general :values type) & return only one result
(or, again, use :values for the codomain), and procedure types that are constructed
by proc are similar in the result type.

Chapter 4: System facilities 35

4 System facilities

This chapter details many facilities that the Scheme48 run-time system provides.

4.1 System features

Scheme48 provides a variety of miscellaneous features built-in to the system.

4.1.1 Miscellaneous features

The structure features provides some very miscellaneous features in Scheme48.

[procedure]immutable? object −→ boolean
[procedure]make-immutable! object −→ object

All Scheme objects in Scheme48 have a flag determining whether or not they may be
mutated. All immediate Scheme objects ((), #f, &c.) are immutable; all fixnums
(small integers) are immutable; and all stored objects — vectors, pairs, &c. —
may be mutable. Immutable? returns #t if object may not be mutated, and make-
immutable!, a bit ironically, modifies object so that it may not be mutated, if it was
not already immutable, and returns it.

(immutable? #t) ⇒ #t
(define p (cons 1 2))
(immutable? p) ⇒ #f
(car p) ⇒ 1
(set-car! p 5)
(car p) ⇒ 5
(define q (make-immutable! p))
(eq? p q) ⇒ #t
(car p) ⇒ 5
(immutable? q) ⇒ #t
(set-car! p 6) error immutable pair

[procedure]string-hash string −→ integer-hash-code
Computes a basic but fast hash of string.

(string-hash "Hello, world!") ⇒ 1161

[procedure]force-output port −→ unspecified
Forces all buffered output to be sent out of port.

This is identical to the binding of the same name exported by the i/o structure (see
Section 4.5.1 [Ports], page 58).

[procedure]current-noise-port −→ output-port
The current noise port is a port for sending noise messages that are inessential to the
operation of a program.

Chapter 4: System facilities 36

The silly structure exports a single procedure, implemented as a VM primitive for the
silly reason of efficiency, hence the name of the structure.1 It is used in an inner loop of the
reader.

[procedure]reverse-list->string char-list count −→ string
Returns a string of the first count characters in char-list, in reverse. It is a serious
error if char-list is not a list whose length is at least count; the error is not detected
by the VM, so bogus pointers may be involved as a result. Use this routine with care
in inner loops.

The debug-messages structure exports a procedure for emitting very basic debugging
messages for low-level problems.

[procedure]debug-message item . . . −→ unspecified
Prints item . . . directly to an error port,2 eliding buffering and thread synchronization
on the Scheme side. Objects are printed as follows:

Fixnums (small integers) are written in decimal.

Characters are written literally with a #\ prefix. No naming translation is per-
formed, so the space and newline characters are written literally, not as #\space
or #\newline.

Records are written as #{type-name}, where type-name is the name of the
record’s type.

Strings and symbols are written literally.

Booleans and the empty list are written normally, i.e. as #t, #f, or ().

Pairs are written as (...).

Vectors are written as #(...).

Objects of certain primitive types are written as #{type}: procedures, templates,
locations, code (byte) vectors, and continuations.3

Everything else is printed as #{???}.

The code-quote structure exports a variant of quote that is useful in some sophisticated
macros.

[special form]code-quote object −→ object
Evaluates to the literal value of object. This is semantically identical to quote, but
object may be anything, and the compiler will not signal any warnings regarding
its value, while such warnings would be signalled for quote expressions that do not
wrap readable S-expressions: arbitrary, compound, unreadable data may be stored in
code-quote. Values computed at compile-time may thus be transmitted to run-time
code. However, care should be taken in doing this.

1 The author of this manual is not at fault for this nomenclature.
2 On Unix, this is stderr, the standard I/O error output file.
3 Continuations here are in the sense of VM stack frames, not escape procedures as obtained using call-

with-current-continuation.

Chapter 4: System facilities 37

4.1.2 Various utilities

The util structure contains some miscellaneous utility routines extensively used inter-
nally in the run-time system. While they are not meant to compose a comprehensive library
(such as, for example, [SRFI 1]), they were found useful in building the run-time system
without introducing massive libraries into the core of the system.

[procedure]unspecific −→ unspecific
Returns Scheme48’s unspecific token, which is used wherever R5RS uses the term
‘unspecific’ or ‘unspecified.’ In this manual, the term ‘unspecified’ is used to mean that
the values returned by a particular procedure are not specified and may be anything,
including a varying number of values, whereas ‘unspecific’ refers to Scheme48’s specific
‘unspecific’ value that the unspecific procedure returns.

[procedure]reduce kons knil list −→ final-knil
Reduces list by repeatedly applying kons to elements of list and the current knil value.
This is the fundamental list recursion operator.

(reduce kons knil

(cons elt 1

(cons elt 2

(...(cons elt N ’())...))))
≡

(kons elt 1

(kons elt 2

(...(kons elt N knil)...)))

Example:

(reduce append ’() ’((1 2 3) (4 5 6) (7 8 9)))
⇒ (1 2 3 4 5 6 7 8 9)

(append ’(1 2 3)
(append ’(4 5 6)

(append ’(7 8 9) ’())))
⇒ (1 2 3 4 5 6 7 8 9)

[procedure]fold combiner list accumulator −→ final-accumulator
Folds list into an accumulator by repeatedly combining each element into an accu-
mulator with combiner. This is the fundamental list iteration operator.

(fold combiner

(list elt 1 elt 2 ... elt N)
accumulator)

≡
(let* ((accum 1 (combiner elt 1 accumulator))

(accum 2 (combiner elt 2 accum 1))
...
(accum N (combiner elt N accum N−1)))

accum N)

Example:

Chapter 4: System facilities 38

(fold cons ’() ’(a b c d))
⇒ (d c b a)

(cons ’d (cons ’c (cons ’b (cons ’a ’()))))
⇒ (d c b a)

[procedure]fold->2 combiner list accumulator1 accumulator2 −→ [final-accumulator1

final-accumulator2]
[procedure]fold->3 combiner list accumulator1 accumulator2 accumulator3 −→

[final-accumulator1 final-accumulator2 final-accumulator3]
Variants of fold for two and three accumulators, respectively.

;;; Partition list by elements that satisfy pred? and those
;;; that do not.

(fold->2 (lambda (elt satisfied unsatisfied)
(if (pred? elt)

(values (cons elt satisfied) unsatisfied)
(values satisfied (cons elt unsatisfied))))

list

’() ’())

[procedure]filter predicate list −→ filtered-list
Returns a list of all elements in list that satisfy predicate.

(filter odd? ’(3 1 4 1 5 9 2 6 5 3 5))
⇒ (3 1 1 5 9 5 3 5)

[procedure]posq object list −→ integer or #f
[procedure]posv object list −→ integer or #f
[procedure]position object list −→ integer or #f

These find the position of the first element equal to object in list. Posq compares
elements by eq?; posv compares by eqv?; position compares by equal?.

(posq ’c ’(a b c d e f))
⇒ 2

(posv 1/2 ’(1 1/2 2 3/2))
⇒ 1

(position ’(d . e) ’((a . b) (b . c) (c . d) (d . e) (e . f)))
⇒ 3

[procedure]any predicate list −→ value or #f
[procedure]every predicate list −→ boolean

Any returns the value that predicate returns for the first element in list for which
predicate returns a true value; if no element of list satisfied predicate, any returns
#f. Every returns #t if every element of list satisfies predicate, or #f if there exist
any that do not.

(any (lambda (x) (and (even? x) (sqrt x)))
’(0 1 4 9 16))
⇒ 2

(every odd? ’(1 3 5 7 9))
⇒ #t

Chapter 4: System facilities 39

[procedure]sublist list start end −→ list
Returns a list of the elements in list including & after that at the index start and
before the index end.

(sublist ’(a b c d e f g h i) 3 6) ⇒ (d e f)

[procedure]last list −→ value
Returns the last element in list. Last’s effect is undefined if list is empty.

(last ’(a b c)) ⇒ c

[procedure]insert object list elt< −→ list
Inserts object into the sorted list list, comparing the order of object and each element
by elt<.

(insert 3 ’(0 1 2 4 5) <) ⇒ (0 1 2 3 4 5)

4.1.3 Filenames

There are some basic filename manipulation facilities exported by the filenames struc-
ture.4

[constant]*scheme-file-type* −→ symbol
[constant]*load-file-type* −→ symbol

Scheme-file-type is a symbol denoting the file extension that Scheme48 assumes
for Scheme source files; any other extension, for instance in the filename list of a struc-
ture definition, must be written explicitly. *Load-file-type* is a symbol denoting
the preferable file extension to load files from. (*Load-file-type* was used mostly
in bootstrapping Scheme48 from Pseudoscheme or T long ago and is no longer very
useful.)

[procedure]file-name-directory filename −→ string
[procedure]file-name-nondirectory filename −→ string

File-name-directory returns the directory component of the filename denoted
by the string filename, including a trailing separator (on Unix, /). File-name-
nondirectory returns everything but the directory component of the filename
denoted by the string filename, including the extension.

(file-name-directory "/usr/local/lib/scheme48/scheme48.image")
⇒ "/usr/local/lib/scheme48/"

(file-name-nondirectory "/usr/local/lib/scheme48/scheme48.image")
⇒ "scheme48.image"

(file-name-directory "scheme48.image")
⇒ ""

(file-name-nondirectory "scheme48.image")
⇒ "scheme48.image"

4 The facilities Scheme48 provides are very rudimentary, and they are not intended to act as a coherent
and comprehensive pathname or logical name facility such as that of Common Lisp. However, they
served the basic needs of Scheme48’s build process when they were originally created.

Chapter 4: System facilities 40

Namelists are platform-independent means by which to name files. They are represented
as readable S-expressions of any of the following forms:

basename represents a filename with only a basename and no directory or file
type/extension;

(directory basename [type])
represents a filename with a single preceding directory component and an op-
tional file type/extension; and

((directory ...) basename [type])
represents a filename with a sequence of directory components, a basename,
and an optional file type/extension.

Each atomic component — that is, the basename, the type/extension, and each individ-
ual directory component — may be either a string or a symbol. Symbols are converted to
the canonical case of the host operating system by namestring (on Unix, lowercase); the
case of string components is not touched.

[procedure]namestring namelist directory default-type −→ string
Converts namelist to a string in the format required by the host operating system.5

If namelist did not have a directory component, directory, a string in the underlying
operating system’s format for directory prefixes, is added to the resulting namestring;
and, if namelist did not have a type/extension, default-type, which may be a string or
a symbol and which should not already contain the host operating system’s delimiter
(usually a dot), is appended to the resulting namestring.

Directory or default-type may be #f, in which case they are not prefixed or appended
to the resulting filename.

(namestring ’foo #f #f) ⇒ "foo"
(namestring ’foo "bar" ’baz) ⇒ "bar/foo.baz"
(namestring ’(rts defenum) "scheme" ’scm)

⇒ "scheme/rts/defenum.scm"
(namestring ’((foo bar) baz quux) "zot" #f)

⇒ "zot/foo/bar/baz.quux"
(namestring "zot/foo/bar/baz.quux" #f "mumble")

⇒ "zot/foo/bar/baz.quux.mumble"

4.1.3.1 Filename translations

Scheme48 keeps a registry of filename translations, translations from filename prefixes to
the real prefixes. This allows abstraction of actual directory prefixes without necessitating
running Scheme code to construct directory pathnames (for example, in configuration files).

[procedure]translations −→ string/string-alist
Returns the alist of filename translations.

5 However, the current standard distribution of Scheme48 is specific to Unix: the current code implements
only Unix filename facilities.

Chapter 4: System facilities 41

[procedure]set-translation! from to −→ unspecified
Adds a filename prefix translation, overwriting an existing one if one already existed.

[procedure]translate filename −→ translated-filename
Translates the first prefix of filename found in the registry of translations and returns
the translated filename.

(set-translation! "s48" "/home/me/scheme/scheme48/scheme")
(translate (namestring ’(bcomp frame) "s48" ’scm))

⇒ "/home/me/scheme/scheme48/scheme/bcomp/frame.scm"
(translate (namestring "comp-packages" "s48" ’scm))

⇒ "/home/me/scheme/scheme48/scheme/comp-packages.scm"
(translate "s48/frobozz")

⇒ "/home/me/scheme/scheme48/scheme/frobozz"
(set-translation! "scheme48" "s48")
(translate (namestring ’((scheme48 big) filename) #f ’scm))

⇒ scheme48/big/filename.scm
(translate (translate (namestring ’((scheme48 big) filename) #f ’scm)))

⇒ "/home/me/scheme/scheme48/scheme/big/filename.scm"

One filename translation is built-in, mapping =scheme48/ to the directory of system files
in a Scheme48 installation, which on Unix is typically a directory in /usr/local/lib.

(translate "=scheme48/scheme48.image")
⇒ /usr/local/scheme48/scheme48.image

4.1.4 Fluid/dynamic bindings

The fluids structure provides a facility for dynamically bound resources, like special
variables in Common Lisp, but with first-class, unforgeable objects.

Every thread (see Chapter 5 [Multithreading], page 79) in Scheme48 maintains a fluid
or dynamic environment. It maps fluid descriptors to their values, much like a lexical en-
vironment maps names to their values. The dynamic environment is implemented by deep
binding and dynamically scoped. Fluid variables are represented as first-class objects for
which there is a top-level value and possibly a binding in the current dynamic environ-
ment. Escape procedures, as created with Scheme’s call-with-current-continuation,
also store & preserve the dynamic environment at the time of their continuation’s capture
and restore it when invoked.

The convention for naming variables that are bound to fluid objects is to add a prefix
of $ (dollar sign); e.g., $foo.

[procedure]make-fluid top-level-value −→ fluid
Fluid constructor.

[procedure]fluid fl −→ value
[procedure]set-fluid! fl value −→ unspecified
[procedure]fluid-cell-ref fluid-cell −→ value
[procedure]fluid-cell-set! fluid-cell value −→ unspecified

Fluid returns the value that the current dynamic environment associates with fl, if
it has an association; if not, it returns fl’s top-level value, as passed to make-fluid

Chapter 4: System facilities 42

to create fl. Set-fluid! assigns the value of the association in the current dynamic
environment for fl to value, or, if there is no such association, it assigns the top-level
value of fl to value. Direct assignment of fluids is deprecated, however, and may be
removed in a later release; instead, programmers should use fluids that are bound to
mutable cells (see Section 4.1.7 [Cells], page 45). Fluid-cell-ref and fluid-cell-
set! are conveniences for this; they simply call the corresponding cell operations after
fetching the cell that the fluid refers to by using fluid.

[procedure]let-fluid fluid value thunk −→ values
[procedure]let-fluids fluid0 value0 fluid1 value1 . . . thunk −→ values

These dynamically bind their fluid arguments to the corresponding value arguments
and apply thunk with the new dynamic environment, restoring the old one after thunk
returns and returning the value it returns.

(define $mumble (make-fluid 0))

(let ((a (fluid $mumble))
(b (let-fluid $mumble 1

(lambda () (fluid $mumble))))
(c (fluid $mumble))
(d (let-fluid $mumble 2

(lambda ()
(let-fluid $mumble 3

(lambda () (fluid $mumble)))))))
(list a b c d))
⇒ (0 1 0 3)

(let ((note (lambda (when)
(display when)
(display ": ")
(write (fluid $mumble))
(newline))))

(note ’initial)
(let-fluid $mumble 1 (lambda () (note ’let-fluid)))
(note ’after-let-fluid)
(let-fluid $mumble 1
(lambda ()

(note ’outer-let-fluid)
(let-fluid $mumble 2 (lambda () (note ’inner-let-fluid)))))

(note ’after-inner-let-fluid)
((call-with-current-continuation

(lambda (k)
(lambda ()
(let-fluid $mumble 1

(lambda ()
(note ’let-fluid-within-cont)
(let-fluid $mumble 2

(lambda () (note ’inner-let-fluid-within-cont)))

Chapter 4: System facilities 43

(k (lambda () (note ’let-fluid-thrown)))))))))
(note ’after-throw))
a initial: 0
a let-fluid: 1
a after-let-fluid: 0
a outer-let-fluid: 1
a inner-let-fluid: 2
a let-fluid-within-cont: 1
a inner-let-fluid-within-cont: 2
a let-fluid-thrown: 0
a after-throw: 0

4.1.5 ASCII character encoding

These names are exported by the ascii structure.

[procedure]char->ascii char −→ ascii-integer
[procedure]ascii->char ascii-integer −→ character

These convert characters to and from their integer ASCII encodings. Char->ascii
and ascii->char are similar to R5RS’s char->integer and integer->char, but
they are guaranteed to use the ASCII encoding. Scheme48’s integer->char and
char->integer deliberately do not use the ASCII encoding to encourage program-
mers to make use of only what R5RS guarantees.

(char->ascii #\a) ⇒ 97
(ascii->char 97) ⇒ #\a

[constant]ascii-limit −→ integer
[constant]ascii-whitespaces −→ ascii-integer-list

Ascii-limit is an integer that is one greater than the highest number that char-
>ascii may return or ascii->char will accept. Ascii-whitespaces is a list of
the integer encodings of all characters that are considered whitespace: space (32),
horizontal tab (9), line-feed/newline (10), vertical tab (11), form-feed/page (12), and
carriage return (13).

4.1.6 Integer enumerations

Scheme48 provides a facility for integer enumerations, somewhat akin to C enums. The
names described in this section are exported by the enumerated structure.

Note: These enumerations are not compatible with the enumerated/finite type facility
(see Section 6.2 [Enumerated/finite types and sets], page 98).

[syntax]define-enumeration enumeration-name (enumerand-name . . .)
Defines enumeration-name to be a static enumeration. (Note that it is not a regular
variable. It is actually a macro, though its exact syntax is not exposed; it must
be exported with the :syntax type (see Section 3.4 [Static type system], page 30).)
Enumeration-name thereafter may be used with the enumeration operators described
below.

Chapter 4: System facilities 44

[syntax]enum enumeration-name enumerand-name −→ enumerand-integer
[syntax]components enumeration-name −→ component-vector

Enum expands to the integer value represented symbolically by enumerand-name in
the enumeration enumeration-name as defined by define-enumeration. Components
expands to a literal vector of the components in enumeration-name as defined by
define-enumeration. In both cases, enumerand-name must be written literally as
the name of the enumerand; see name->enumerand for extracting an enumerand’s
integer given a run-time symbol naming an enumerand.

[syntax]enumerand->name enumerand-integer enumeration-name −→ symbol
[syntax]name->enumerand enumerand-name enumeration-name −→

integer-enumerand
Enumerand->name expands to a form that evaluates to the symbolic name that the
integer value of the expression enumerand-integer is mapped to by enumeration-name
as defined by define-enumeration. Name->enumerand expands to a form that eval-
uates to the integer value of the enumerand in enumeration-name that is represented
symbolically by the value of the expression enumerand-name.

The enum-case structure provides a handy utility of the same name for dispatching on
enumerands.

[syntax]enum-case
(enum-case enumeration-name key

((enumerand-name ...) body)
...
[(else else-body)])

Matches key with the clause one of whose names maps in enumeration-name to the
integer value of key. Key must be an exact, non-negative integer. If no matching
clause is found, and else-body is present, enum-case will evaluate else-body ; if else-
body is not present, enum-case will return an unspecific value.

Examples:
(define-enumeration foo
(bar
baz))

(enum foo bar) ⇒ 0
(enum foo baz) ⇒ 1

(enum-case foo (enum foo bar)
((baz) ’x)
(else ’y))
⇒ y

(enum-case foo (enum foo baz)
((bar) ’a)
((baz) ’b))
⇒ b

Chapter 4: System facilities 45

(enumerand->name 1 foo) ⇒ baz
(name->enumerand ’bar foo) ⇒ 0
(components foo) ⇒ #(bar baz)

4.1.7 Cells

Scheme48 also provides a simple mutable cell data type from the cells structure. It
uses them internally for local, lexical variables that are assigned, but cells are available still
to the rest of the system for general use.

[procedure]make-cell contents −→ cell
[procedure]cell? object −→ boolean
[procedure]cell-ref cell −→ value
[procedure]cell-set! cell value −→ unspecified

Make-cell creates a new cell with the given contents. Cell? is the disjoint type
predicate for cells. Cell-ref returns the current contents of cell. Cell-set! assigns
the contents of cell to value.

Examples:
(define cell (make-cell 42))
(cell-ref cell) ⇒ 42
(cell? cell) ⇒ #t
(cell-set! cell ’frobozz)
(cell-ref cell) ⇒ frobozz

4.1.8 Queues

The queues structure exports names for procedures that operate on simple first-in, first-
out queues.

[procedure]make-queue −→ queue
[procedure]queue? object −→ boolean

Make-queue constructs an empty queue. Queue? is the disjoint type predicate for
queues.

[procedure]queue-empty? queue −→ boolean
[procedure]empty-queue! queue −→ unspecified

Queue-empty? returns #t if queue contains zero elements or #f if it contains some.
Empty-queue! removes all elements from queue.

[procedure]enqueue! queue object −→ unspecified
[procedure]dequeue! queue −→ value
[procedure]maybe-dequeue! queue −→ value or #f
[procedure]queue-head queue −→ value

Enqueue! adds object to queue. Dequeue! removes & returns the next object avail-
able from queue; if queue is empty, dequeue! signals an error. Maybe-dequeue! is
like dequeue!, but it returns #f in the case of an absence of any element, rather

Chapter 4: System facilities 46

than signalling an error. Queue-head returns the next element available from queue
without removing it, or it signals an error if queue is empty.

[procedure]queue-length queue −→ integer
Returns the number of objects in queue.

[procedure]on-queue? queue object −→ boolean
[procedure]delete-from-queue! queue object −→ unspecified

On-queue? returns true if queue contains object or #f if not. Delete-from-queue!
removes the first occurrence of object from queue that would be dequeued.

[procedure]queue->list queue −→ list
[procedure]list->queue list −→ queue

These convert queues to and from lists of their elements. Queue->list returns a list
in the order in which its elements were added to the queue. List->queue returns a
queue that will produce elements starting at the head of the list.

Examples:
(define q (make-queue))
(enqueue! q ’foo)
(enqueue! q ’bar)
(queue->list q) ⇒ (foo bar)
(on-queue? q ’bar) ⇒ #t
(dequeue! q) ⇒ ’foo
(queue-empty? q) ⇒ #f
(delete-from-queue! queue ’bar)
(queue-empty? q) ⇒ #t
(enqueue! q ’frobozz)
(empty-queue! q)
(queue-empty? q) ⇒ #t
(dequeue! q) error empty queue

Queues are integrated with Scheme48’s optimistic concurrency (see Section 5.2 [Opti-
mistic concurrency], page 79) facilities, in that every procedure exported except for queue-
>list ensures fusible atomicity in operation — that is, every operation except for queue-
>list ensures that the transaction it performs is atomic, and that it may be fused within
larger atomic transactions, as transactions wrapped within call-ensuring-atomicity &c.
may be.

4.1.9 Hash tables

Scheme48 provides a simple hash table facility in the structure tables.

[procedure]make-table [hasher] −→ table
[procedure]make-string-table −→ string-table
[procedure]make-symbol-table −→ symbol-table
[procedure]make-integer-table −→ integer-table

Hash table constructors. Make-table creates a table that hashes keys either with
hasher, if it is passed to make-table, or default-hash-function, and it compares

Chapter 4: System facilities 47

keys for equality with eq?, unless they are numbers, in which case it compares with
eqv?. Make-string-table makes a table whose hash function is string-hash and
that compares the equality of keys with string=?. Make-symbol-table constructs a
table that hashes symbol keys by converting them to strings and hashing them with
string-hash; it compares keys’ equality by eq?. Tables made by make-integer-
table hash keys by taking their absolute value, and test for key equality with the =
procedure.

[procedure]make-table-maker comparator hasher −→ table-maker
Customized table constructor constructor: this returns a nullary procedure that cre-
ates a new table that uses comparator to compare keys for equality and hasher to
hash keys.

[procedure]table? object −→ boolean
Hash table disjoint type predicate.

[procedure]table-ref table key −→ value or #f
[procedure]table-set! table key value −→ unspecified

Table-ref returns the value associated with key in table, or #f if there is no such
association. If value is #f, table-set! ensures that there is no longer an association
with key in table; if value is any other value, table-set! creates a new association
or assigns an existing one in table whose key is key and whose associated value is
value.

[procedure]table-walk proc table −→ unspecified
Table-walk applies proc to the key & value, in that order of arguments, of every
association in table.

[procedure]make-table-immutable! table −→ table
This makes the structure of table immutable, though not its contents. Table-set!
may not be used with tables that have been made immutable.

[procedure]default-hash-function value −→ integer-hash-code
[procedure]string-hash string −→ integer-hash-code

Two built-in hashing functions. Default-hash-function can hash any Scheme value
that could usefully be used in a case clause. String-hash is likely to be fast, as it
is implemented as a VM primitive. String-hash is the same as what the features
structure exports under the same name.

4.1.10 Weak references

Scheme48 provides an interface to weakly held references in basic weak pointers and
populations, or sets whose elements are weakly held. The facility is in the structure weak.

Chapter 4: System facilities 48

4.1.10.1 Weak pointers

[procedure]make-weak-pointer contents −→ weak-pointer
[procedure]weak-pointer? object −→ boolean
[procedure]weak-pointer-ref weak-pointer −→ value or #f

Make-weak-pointer creates a weak pointer that points to contents. Weak-pointer?
is the weak pointer disjoint type predicate. Weak-pointer-ref accesses the value
contained within weak-pointer, or returns #f if there were no strong references
to the contents and a garbage collection occurred. Weak pointers resemble cells (see
Section 4.1.7 [Cells], page 45), except that they are immutable and hold their contents
weakly, not strongly.

4.1.10.2 Populations (weak sets)

[procedure]make-population −→ population
[procedure]add-to-population! object population −→ unspecified
[procedure]population->list population −→ list
[procedure]walk-population proc population −→ unspecified

Make-population constructs an empty population. Add-to-population! adds ob-
ject to the population population. Population->list returns a list of the elements
of population. Note, though, that this can be dangerous in that it can create strong
references to the population’s contents and potentially leak space because of this.
Walk-population applies proc to every element in population.

4.1.11 Type annotations

Scheme48 allows optional type annotations with the loophole special form from the
loopholes structure.

[syntax]loophole type expression −→ values
This is exactly equivalent in semantics to expression, except the static type analyzer
is informed that the whole expression has the type type. For details on the form of
type, see Section 3.4 [Static type system], page 30.

Type annotations can be used for several different purposes:
• simply to give more information to the static type analyzer;
• to work as a simple abstract data type facility: passing a type name that does not

already exist creates a new disjoint value type; and
• to prevent the type system from generating warnings in the rare cases where it

would do so incorrectly, such as in the primitive-cwcc, primitive-catch, and
with-continuation devices (to be documented in a later edition of this manual).

To see an example of the second use, see ‘rts/jar-defrecord.scm’ in Scheme48’s source
tree.

Note: Type annotations do not damage the safety of Scheme’s type system. They affect
only the static type analyzer, which does not change run-time object representations; it
only checks type soundness of code and generates warnings for programs that would cause
run-time type errors.

Chapter 4: System facilities 49

4.1.12 Explicit renaming macros

Scheme48 supports a simple low-level macro system based on explicitly renaming iden-
tifiers to preserve hygiene. The macro system is well-integrated with the module system;
see Section 3.3 [Macros in concert with modules], page 28.

Explicit renaming macro transformers operate on simple S-expressions extended with
identifiers, which are like symbols but contain more information about lexical context. In
order to preserve that lexical context, transformers must explicitly call a renamer procedure
to produce an identifier with the proper scope. To test whether identifiers have the same
denotation, transformers are also given an identifier comparator.

The facility provided by Scheme48 is almost identical to the explicit renaming macro
facility described in [Clinger 91].6 It differs only by the transformer keyword, which
is described in the paper but not used by Scheme48, and in the annotation of auxiliary
names.

[syntax]define-syntax name transformer [aux-names]
Introduces a derived syntax name with the given transformer, which may be an
explicit renaming transformer procedure, a pair whose car is such a procedure and
whose cdr is a list of auxiliary identifiers, or the value of a syntax-rules expression.
In the first case, the added operand aux-names may, and usually should except in
the case of local (non-exported) syntactic bindings, be a list of all of the auxiliary
top-level identifiers used by the macro.

Explicit renaming transformer procedures are procedures of three arguments: an input
form, an identifier renamer procedure, and an identifier comparator procedure. The input
form is the whole form of the macro’s invocation (including, at the car, the identifier whose
denotation was the syntactic binding). The identifier renamer accepts an identifier as an
argument and returns an identifier that is hygienically renamed to refer absolutely to the
identifier’s denotation in the environment of the macro’s definition, not in the environment
of the macro’s usage. In order to preserve hygiene of syntactic transformations, macro
transformers must call this renamer procedure for any literal identifiers in the output. The
renamer procedure is referentially transparent; that is, two invocations of it with the same
arguments in terms of eq? will produce the same results in the sense of eq?.

For example, this simple transformer for a swap! macro is incorrect:
(define-syntax swap!
(lambda (form rename compare)
(let ((a (cadr form))

(b (caddr form)))
‘(LET ((TEMP ,a))

(SET! ,a ,b)
(SET! ,b TEMP)))))

The introduction of the literal identifier temp into the output may conflict with one of the
input variables if it were to also be named temp: (swap! temp foo) or (swap! bar temp)
would produce the wrong result. Also, the macro would fail in another very strange way if

6 For the sake of avoiding any potential copyright issues, the paper is not duplicated here, and instead the
author of this manual has written the entirety of this section.

Chapter 4: System facilities 50

the user were to have a local variable named let or set!, or it would simply produce invalid
output if there were no binding of let or set! in the environment in which the macro was
used. These are basic problems of abstraction: the user of the macro should not need to
know how the macro is internally implemented, notably with a temp variable and using the
let and set! special forms.

Instead, the macro must hygienically rename these identifiers using the renamer proce-
dure it is given, and it should list the top-level identifiers it renames (which cannot otherwise
be extracted automatically from the macro’s definition):

(define-syntax swap!
(lambda (form rename compare)
(let ((a (cadr form))

(b (caddr form)))
‘(,(rename ’LET) ((,(rename ’TEMP) ,a))

(,(rename ’SET!) ,a ,b)
(,(rename ’SET!) ,b ,(rename ’TEMP)))))

(LET SET!))

However, some macros are unhygienic by design, i.e. they insert identifiers into the
output intended to be used in the environment of the macro’s usage. For example, consider
a loop macro that loops endlessly, but binds a variable named exit to an escape procedure
to the continuation of the loop expression, with which the user of the macro can escape
the loop:

(define-syntax loop
(lambda (form rename compare)
(let ((body (cdr form)))

‘(,(rename ’CALL-WITH-CURRENT-CONTINUATION)
(,(rename ’LAMBDA) (EXIT) ; Literal, unrenamed EXIT.

(,(rename ’LET) ,(rename ’LOOP) ()
,@body
(,(rename ’LOOP)))))))

(CALL-WITH-CURRENT-CONTINUATION LAMBDA LET))

Note that macros that expand to loop must also be unhygienic; for instance, this näıve
definition of a loop-while macro is incorrect, because it hygienically renames exit auto-
matically by of the definition of syntax-rules, so the identifier it refers to is not the one
introduced unhygienically by loop:

(define-syntax loop-while
(syntax-rules ()
((LOOP-WHILE test body ...)
(LOOP (IF (NOT test)

(EXIT)) ; Hygienically renamed.
body ...))))

Instead, a transformer must be written to not hygienically rename exit in the output:
(define-syntax loop-while
(lambda (form rename compare)
(let ((test (cadr form))

(body (cddr form)))

Chapter 4: System facilities 51

‘(,(rename ’LOOP)
(,(rename ’IF) (,(rename ’NOT) ,test)

(EXIT)) ; Not hygienically renamed.
,@body)))

(LOOP IF NOT))

To understand the necessity of annotating macros with the list of auxiliary names they
use, consider the following definition of the delay form, which transforms (delay exp) into
(make-promise (lambda () exp)), where make-promise is some non-exported procedure
defined in the same module as the delay macro:

(define-syntax delay
(lambda (form rename compare)
(let ((exp (cadr form)))

‘(,(rename ’MAKE-PROMISE) (,(rename ’LAMBDA) () ,exp)))))

This preserves hygiene as necessary, but, while the compiler can know whether make-
promise is exported or not, it cannot in general determine whether make-promise is local,
i.e. not accessible in any way whatsoever, even in macro output, from any other modules.
In this case, make-promise is not local, but the compiler cannot in general know this,
and it would be an unnecessarily heavy burden on the compiler, the linker, and related
code-processing systems to assume that all bindings are not local. It is therefore better7 to
annotate such definitions with the list of auxiliary names used by the transformer:

(define-syntax delay
(lambda (form rename compare)
(let ((exp (cadr form)))

‘(,(rename ’MAKE-PROMISE) (,(rename ’LAMBDA) () ,exp))))
(MAKE-PROMISE LAMBDA))

4.2 Condition system

As of version 1.3 (different from all older versions), Scheme48 supports two different
condition systems. One of them, the original one, is a simple system where conditions are
represented as tagged lists. This section documents the original one. The new condition
system is [SRFI 34, 35], and there is a complicated translation layer between the old one,
employed by the run-time system, and the new one, which is implemented in a layer high
above that as a library, but a library which is always loaded in the usual development
environment. See the [SRFI 34, 35] documents for documentation of the new condition sys-
tem. [SRFI 34] is available from the exceptions structure; SRFI 35, from the conditions
structure.

Note: The condition system changed in Scheme48 version 1.3. While the old one is still
available, the names of the structures that implement it changed. Signals is now simple-
signals, and conditions is now simple-conditions. The structure that signals now
names implements the same interface, but with [SRFI 34, 35] underlying it. The structure
that the name conditions now identifies [SRFI 35]. You will have to update all old code
that relied on the old signals and conditions structure either by using those structures’

7 However, the current compiler in Scheme48 does not require this, though the static linker does.

Chapter 4: System facilities 52

new names or by invasively modifying all code to use [SRFI 34, 35]. Also, the only way
to completely elide the use of the SRFIs is to evaluate this in an environment with the
exceptions-internal and vm-exceptions structure open:

(begin (initialize-vm-exceptions! really-signal-condition)
;; INITIALIZE-VM-EXCEPTIONS! returns a very large object,
;; which we probably don’t want printed at the REPL.
#t)

4.2.1 Signalling, handling, and representing conditions

Scheme48 provides a simple condition system.8 Conditions are objects that describe
exceptional situations. Scheme48 keeps a registry of condition types, which just have ref-
erences to their supertypes. Conditions are simple objects that contain only two fields, the
type and the type-specific data (the stuff). Accessor procedures should be defined for par-
ticular condition types to extract the data contained within the ‘stuff’ fields of instances of of
those condition types. Condition types are represented as symbols. Condition handlers are
part of the system’s dynamic context; they are used to handle exceptional situations when
conditions are signalled that describe such exceptional situations. Signalling a condition
signals that an exceptional situation occurred and invokes the current condition handler on
the condition.

Scheme48’s condition system is split up into three structures:

simple-signals
Exports procedures to signal conditions and construct conditions, as well as
some utilities for common kinds of conditions.

handle Exports facilities for handling signalled conditions.

simple-conditions
The system of representing conditions as objects.

The simple-signals structure exports these procedures:

[procedure]make-condition type-name stuff −→ condition
The condition object constructor.

[procedure]signal-condition condition −→ values (may not return)
[procedure]signal type-name stuff . . . −→ values (may not return)

Signal-condition signals the given condition. Signal is a convenience atop the
common conjunction of signal-condition and make-condition: it constructs a
condition with the given type name and stuff, whereafter it signals that condition
with signal-condition.

8 Note, however, that Scheme48’s condition system is likely to be superseded in the near future by [SRFI
34, SRFI 35].

Chapter 4: System facilities 53

[procedure]error message irritant . . . −→ values (may not return)
[procedure]warn message irritant . . . −→ values (may not return)
[procedure]syntax-error message irritant . . . −→ expression (may not return)
[procedure]call-error message irritant . . . −→ values (may not return)
[procedure]note message irritant . . . −→ values (may not return)

Conveniences for signalling standard condition types. These procedures generally
either do not return or return an unspecified value, unless specified to by a user of
the debugger. Syntax-error returns the expression (quote syntax-error), if the
condition handler returns to syntax-error in the first place.

By convention, the message should be lowercased (i.e. the first word should not be
capitalized), and it should not end with punctuation. The message is typically not a
complete sentence. For example, these all follow Scheme48’s convention:

argument type error
wrong number of arguments
invalid syntax
ill-typed right-hand side
out of memory, unable to continue

These, on the other hand, do not follow the convention and should be avoided:

Argument type error:
An argument of the wrong type was passed.
possible type mismatch:
Luser is an idiot!

Elaboration on a message is performed usually by wrapping an irritant in a descriptive
list. For example, one might write:

(error "invalid argument"
’(not a pair)
‘(while calling ,frobbotz)
‘(received ,object))

This might be printed as:

Error: invalid argument
(not a pair)
(while calling #{Procedure 123 (frobbotz in ...)})
(received #(a b c d))

The handle structure exports the following procedures:

[procedure]with-handler handler thunk −→ values
Sets up handler as the condition handler for the dynamic extent of thunk. Handler
should be a procedure of two arguments: the condition that was signalled and a
procedure of zero arguments that propagates the condition up to the next dynamically
enclosing handler. When a condition is signalled, handler is tail-called from the point
that the condition was signalled at. Note that, because handler is tail-called at that
point, it will return to that point also.

Chapter 4: System facilities 54

Warning: With-handler is potentially very dangerous. If an exception occurs and
a condition is raised in the handler, the handler itself will be called with that new
condition! Furthermore, the handler may accidentally return to an unexpecting sig-
naller, which can cause very confusing errors. Be careful with with-handler; to be
perfectly safe, it might be a good idea to throw back out to where the handler was
initially installed before doing anything:

((call-with-current-continuation
(lambda (k)
(lambda ()

(with-handler (lambda (c propagate)
(k (lambda () handler body)))

(lambda () body))))))

[procedure]ignore-errors thunk −→ values or condition
[procedure]report-errors-as-warnings thunk message irritant . . . −→ values

Ignore-errors sets up a condition handler that will return error conditions to the
point where ignore-errors was called, and propagate all other conditions. If no
condition is signalled during the dynamic extent of thunk, ignore-errors simply
returns whatever thunk returned. Report-errors-as-warnings downgrades errors
to warnings while executing thunk. If an error occurs, a warning is signalled with the
given message, and a list of irritants constructed by adding the error condition to the
end of the list irritant

Finally, the simple-conditions structure defines the condition type system. (Note
that conditions themselves are constructed only by make-condition (and signal) from the
simple-signals structure.) Conditions are very basic values that have only two universally
defined fields: the type and the stuff. The type is a symbol denoting a condition type.
The type is specified in the first argument to make-condition or signal. The stuff field
contains whatever a particular condition type stores in conditions of that type. The stuff
field is always a list; it is created from the arguments after the first to make-condition
or signal. Condition types are denoted by symbols, kept in a global registry that maps
condition type names to their supertype names.

[procedure]define-condition-type name supertype-names −→ unspecified
Registers the symbol name as a condition type. Its supertypes are named in the list
supertype-names.

[procedure]condition-predicate ctype-name −→ predicate
Returns a procedure of one argument that returns #t if that argument is a condition
whose type’s name is ctype-name or #f if not.

[procedure]condition-type condition −→ type-name
[procedure]condition-stuff condition −→ list

Accessors for the two immutable fields of conditions.

Chapter 4: System facilities 55

[procedure]error? condition −→ boolean
[procedure]warning? condition −→ boolean
[procedure]note? condition −→ boolean
[procedure]syntax-error? condition −→ boolean
[procedure]call-error? condition −→ boolean
[procedure]read-error? condition −→ boolean
[procedure]interrupt? condition −→ boolean

Condition predicates for built-in condition types.

[procedure]make-exception opcode reason arguments −→ exception
[procedure]exception? condition −→ boolean
[procedure]exception-opcode exception −→ integer-opcode
[procedure]exception-reason exception −→ symbol
[procedure]exception-arguments exception −→ list

Exceptions represent run-time errors in the Scheme48 VM. They contain information
about what opcode the VM was executing when it happened, what the reason for the
exception occurring was, and the relevant arguments.

4.2.2 Displaying conditions

The display-conditions structure is also relevant in this section.

[procedure]display-condition condition port −→ unspecified
Prints condition to port for a user to read. For example:

(display-condition (make-condition ’error
"Foo bar baz"
’quux
’(zot mumble: frotz))

(current-output-port))
a Error: Foo bar baz
a quux
a (zot mumble: frotz)

[method table]&disclose-condition condition −→ disclosed
Method table (see Section 4.4 [Generic dispatch system], page 57) for a generic proce-
dure (not exposed) used to translate a condition object into a more readable format.
See Section 4.6.2 [Writer], page 71.

[procedure]limited-write object port max-depth max-length −→ unspecified
A utility for avoiding excessive output: prints object to port, but will never print more
than max-length of a subobject’s components, leaving a --- after the last component,
and won’t recur further down the object graph from the vertex object beyond max-
depth, instead printing an octothorpe (#).

(let ((x (cons #f #f)))
(set-car! x x)
(set-cdr! x x)
(limited-write x (current-output-port) 2 2))
a ((# # ---) (# # ---) ---)

Chapter 4: System facilities 56

4.3 Bitwise manipulation

Scheme48 provides two structures for bit manipulation: bitwise integer operations, the
bitwise structure, and homogeneous vectors of bytes (integers between 0 and 255, inclu-
sive), the byte-vectors structure.

4.3.1 Bitwise integer operations

The bitwise structure exports these procedures:

[procedure]bitwise-and integer . . . −→ integer
[procedure]bitwise-ior integer . . . −→ integer
[procedure]bitwise-xor integer . . . −→ integer
[procedure]bitwise-not integer −→ integer

Basic twos-complement bitwise boolean logic operations.

[procedure]arithmetic-shift integer count −→ integer
Shifts integer by the given bit count. If count is positive, the shift is a left shift;
otherwise, it is a right shift. Arithmetic-shift preserves integer’s sign.

[procedure]bit-count integer −→ integer
Returns the number of bits that are set in integer. If integer is negative, it is flipped
by the bitwise NOT operation before counting.

(bit-count #b11010010) ⇒ 4

4.3.2 Byte vectors

The structure byte-vectors exports analogues of regular vector procedures for byte
vectors, homogeneous vectors of bytes:

[procedure]make-byte-vector length fill −→ byte-vector
[procedure]byte-vector byte . . . −→ byte-vector
[procedure]byte-vector? object −→ boolean
[procedure]byte-vector-length byte-vector −→ integer
[procedure]byte-vector-ref byte-vector index −→ byte
[procedure]byte-vector-set! byte-vector index byte −→ unspecified

Fill and each byte must be bytes, i.e. integers within the inclusive range 0 to 255.
Note that make-byte-vector is not an exact analogue of make-vector, because the
fill parameter is required.

Old versions of Scheme48 referred to byte vectors as ‘code vectors’ (since they were used
to denote byte code). The code-vectors structure exports make-code-vector, code-
vector?, code-vector-length, code-vector-ref, and code-vector-set!, identical to
the analogously named byte vector operations.

Chapter 4: System facilities 57

4.4 Generic dispatch system

Scheme48 supports a CLOS-style generic procedure dispatch system, based on type
predicates. The main interface is exported by methods. The internals of the system are
exposed by the meta-methods structure, but they are not documented here. The generic
dispatch system is used in Scheme48’s writer (see Section 4.6.2 [Writer], page 71) and
numeric system.

Types in Scheme48’s generic dispatch system are represented using type predicates,
rather than having every object have a single, well-defined ‘class.’ The naming convention
for simple types is to prefix the type name with a colon. The types support multiple inheri-
tance. Method specificity is determined based on descending order of argument importance.
That is, given two methods, M & N, such that they are both applicable to a given sequence
of arguments, and an index i into that sequence, such that i is the first index in M ’s &
N ’s lists of argument type specifiers, from left to right, where the type differs: if the type
for M ’s argument at i is more specific than the corresponding type in N ’s specifiers, M is
considered to be more specific than N, even if the remaining argument type specifiers in N
are more specific.

[syntax]define-simple-type name (supertype . . .) predicate
Defines name to be a simple type with the given predicate and the given supertypes.

[procedure]singleton value −→ simple-type
Creates a singleton type that matches only value.

[syntax]define-generic proc-name method-table-name [prototype]
Defines proc-name to be a generic procedure that, when invoked, will dispatch on its
arguments via the method table that method-table-name is defined to be and apply
the most specific method it can determine defined in the method-table-name method
table to its arguments. The convention for naming variables that will be bound to
method tables is to add an ampersand to the front of the name. Prototype is a
suggestion for what method prototypes should follow the shape of, but it is currently
ignored.

[syntax]define-method method-table prototype body
Adds a method to method-table, which is usually one defined by define-generic.9

Prototype should be a list whose elements may be either identifiers, in which case
that parameter is not used for dispatching, or lists of two elements, the car of which
is the parameter name and the cadr of which should evaluate to the type on which
to dispatch. As in many generic dispatch systems of similar designs, methods may
invoke the next-most-specific method. By default, the name next-method is bound
in body to a nullary procedure that calls the next-most-specific method. The name
of this procedure may be specified by the user by putting the sequence "next" next-

method-name in prototype, in which case it will be next-method-name that is bound
to that procedure. For example:

9 There is an internal interface, a sort of meta-object protocol, to the method dispatch system, but it is
not yet documented.

Chapter 4: System facilities 58

(define-method &frob ((foo :bar) "next" frobozz)
(if (mumble? foo)

(frobozz) ; Invoke the next method.
(yargh blargle foo)))

A number of simple types are already defined & exported by the methods structure.
Entries are listed as type-name <- (supertype ...), predicate

:values <- (), (lambda (x) #t) — Abstract supertype of all run-time values
:value <- (:values), (lambda (x) #t) — Abstract supertype of all first-class values
:zero <- (:values), (lambda (x) #f) — Type that no objects satisfy
:number <- (:value), number?

:complex <- (:number), complex? — (This happens to be equivalent to :number.)
:real <- (:complex), real?

:rational <- (:real), rational?

:integer <- (:rational), integer?

:exact-integer <- (:integer), (lambda (x) (and (integer? x) (exact? x)))

:boolean <- (:value), boolean?

:symbol <- (:value), symbol?

:char <- (:value), char?

:null <- (:value), null?

:pair <- (:value), pair?

:vector <- (:value), vector?

:string <- (:value), string?

:procedure <- (:value), procedure?

:input-port <- (:value), input-port?

:output-port <- (:value), output-port?

:eof-object <- (:value), eof-object?

:record <- (:value), record?

4.5 I/O system

Scheme48 supports a sophisticated, non-blocking, user-extensible I/O system untied to
any particular operating system’s I/O facilities. It is based in three levels: channels, ports,
and the facilities already built with both ports and channels in Scheme48, such as buffering.

4.5.1 Ports

While channels provide the low-level interface directly to the OS’s I/O facilities, ports
provide a more abstract & generalized mechanism for I/O transmission. Rather than be-
ing specific to channels or being themselves primitive I/O devices, ports are functionally
parameterized. This section describes the usual I/O operations on ports. The next section
describes the programmatic port parameterization mechanism, and the section following
that describes the most commonly used built-in port abstraction, ports atop channels.

Chapter 4: System facilities 59

4.5.1.1 Port operations

The following names are exported by the i/o structure.

[procedure]input-port? value −→ boolean
[procedure]output-port? value −→ boolean

These return #t if their argument is both a port and either an input port or output
port, respectively, or #f if neither condition is true.

[procedure]close-input-port port −→ unspecified
[procedure]close-output-port port −→ unspecified

Closes port, which must be an input port or an output port, respectively.

[procedure]char-ready? [port] −→ boolean
[procedure]output-port-ready? port −→ boolean

Char-ready? returns a true value if there is a character ready to be read from port
and #f if there is no character ready. Port defaults to the current input port if absent;
see below on current ports. Output-port-ready? returns a true value if port is ready
to receive a single written character and #f if not.

[procedure]read-block block start count port [wait?] −→ count-read or EOF
[procedure]write-block block start count port −→ count-written
[procedure]write-string string port −→ char-count-written

Read-block attempts to read count elements from port into block, which may be a
string or a byte vector, starting at start. If fewer than count characters or bytes are
available to read from port, and wait? is a true value or absent, read-block will wait
until count characters are available and read into block; if wait? is #f, read-block
immediately returns. Read-block returns the number of elements read into block, or
an end of file object if the stream’s end is immediately encountered. Write-block
writes count elements from block, which may be a string or a byte vector, starting
at start to port. Write-string is a convenience atop write-block for writing the
entirety of a string to a port.

[procedure]newline [port] −→ unspecified
Writes a newline character or character sequence to the output port port. Port
defaults to the current output port; see below on current ports.

[procedure]disclose-port port −→ disclosed
Returns a disclosed representation of port; see Section 4.6.2 [Writer], page 71.

[procedure]force-output port −→ unspecified
Forces all buffered output in the output port port to be sent.

[procedure]make-null-output-port −→ output-port
Returns an output port that will ignore any output it receives.

Chapter 4: System facilities 60

4.5.1.2 Current ports

Scheme48 keeps in its dynamic environment (see Section 4.1.4 [Fluid/dynamic bindings],
page 41) a set of ‘current’ ports. These include R5RS’s current input and output ports, as
well as ports for general noise produced by the system, and ports for where error messages
are printed. These procedures are exported by the i/o structure.

[procedure]current-input-port −→ input-port
[procedure]current-output-port −→ output-port
[procedure]current-noise-port −→ output-port
[procedure]current-error-port −→ output-port

These return the values in the current dynamic environment of the respective ports.
Current-input-port and current-output-port are also exported by the scheme
structure.

[procedure]input-port-option arguments −→ input-port
[procedure]output-port-option arguments −→ output-port

These are utilities for retrieving optional input and output port arguments from rest
argument lists, defaulting to the current input or output ports. For example, assuming
the newline character sequence is simply #\newline, newline might be written as:

(define (newline . maybe-port)
(write-char #\newline (output-port-option maybe-port)))

[procedure]silently thunk −→ values
This stifles output from the current noise port in the dynamic extent of thunk, which
is applied to zero arguments. Silently returns the values that thunk returns.

[procedure]with-current-ports input output error thunk −→ values
With-current-ports dynamically binds the current input, output, and error ports
to input, output, and error, respectively, in the dynamic extent of thunk, which is
applied to zero arguments. The current noise port is also bound to error. With-
current-ports returns the values that thunk returns.

Similarly to with-current-ports, the i/o-internal structure also exports these pro-
cedures:

[procedure]call-with-current-input-port port thunk −→ values
[procedure]call-with-current-output-port port thunk −→ values
[procedure]call-with-current-noise-port port thunk −→ values

These bind individual current ports for the dynamic extent of each thunk, which is
applied to zero arguments. These all return the values that thunk returns.

4.5.2 Programmatic ports

Ports are user-extensible; all primitive port operations on them — read-char, write-
block, &c. — are completely generalized. Abstractions for buffered ports are also available.

Chapter 4: System facilities 61

4.5.2.1 Port data type

The ports structure defines the basis of the port data type and exports the following
procedures.

[procedure]make-port handler status lock data buffer index limit pending-eof? −→
port

Port constructor. The arguments are all the fields of ports, which are described below.
Note that make-port is rarely called directly; usually one will use one of the buffered
port constructors instead.

[procedure]port-handler port −→ port-handler
[procedure]port-buffer port −→ buffer or #f
[procedure]port-lock port −→ value
[procedure]port-status port −→ integer-status
[procedure]port-data port −→ value
[procedure]port-index port −→ integer or #f
[procedure]port-limit port −→ integer or #f
[procedure]port-pending-eof? port −→ boolean

Accessors for the port fields:

handler The handler is the functional parameterization mechanism: it provides
all the port’s operations, such as reading/writing blocks, disclosing (see
Section 4.6.2 [Writer], page 71) the port, closing the port, &c. See Sec-
tion 4.5.2.2 [Port handlers], page 62.

buffer The buffer is used for buffered ports, where it is a byte vector (see Sec-
tion 4.3 [Bitwise manipulation], page 56). It may be any value for un-
buffered ports.

lock This misnamed field was originally used for a mutual exclusion lock, be-
fore optimistic concurrency was made the native synchronization mecha-
nism in Scheme48. It is now used as a ‘timestamp’ for buffered ports: it
is provisionally written to with a unique value when a thread resets the
index to reuse the buffer, and it is provisionally read from when reading
from the buffer. In this way, if the buffer is reset while another thread is
reading from it, the other thread’s proposal is invalidated by the different
value in memory than what was there when it logged the old timestamp
in its proposal.

status A mask from the port-status-options enumeration; see Section 4.5.3
[Miscellaneous I/O internals], page 66.

data Arbitrary data for particular kinds of ports. For example, for a port
that tracks line & column information (see Section 6.5 [I/O extensions],
page 108), this might be a record containing the underlying port, the line
number, and the column number.

index The current index into a buffered port’s buffer. If the port is not buffered,
this is #f.

Chapter 4: System facilities 62

limit The limit of the index field for a buffered port’s buffer. When the index
field is equal to the limit field, the buffer is full. If the port is not
buffered, this is #f.

pending-eof?
For output ports, this is a boolean flag indicating whether the buffer has
been forced to output recently. For input ports, this is a boolean flag
indicating whether an end of file is pending after reading through the
current buffer.

[procedure]set-port-lock! port value −→ unspecified
[procedure]set-port-status! port status −→ unspecified
[procedure]set-port-data! port data −→ unspecified
[procedure]set-port-index! port index −→ unspecified
[procedure]set-port-limit! port index −→ unspecified
[procedure]set-port-pending-eof?! port pending-eof? −→ unspecified

These assign respective fields of ports. The buffer and handler fields, however, are
immutable.

[procedure]provisional-port-handler port −→ port-handler
[procedure]provisional-port-lock port −→ value
[procedure]provisional-port-status port −→ integer-status
[procedure]provisional-port-data port −→ value
[procedure]provisional-port-index port −→ integer or #f
[procedure]provisional-port-limit port −→ integer or #f
[procedure]provisional-port-pending-eof? port −→ boolean
[procedure]provisional-set-port-lock! port value −→ unspecified
[procedure]provisional-set-port-status! port status −→ unspecified
[procedure]provisional-set-port-data! port data −→ unspecified
[procedure]provisional-set-port-index! port index −→ unspecified
[procedure]provisional-set-port-limit! port index −→ unspecified
[procedure]provisional-set-port-pending-eof?! port pending-eof? −→

unspecified
Provisional versions of the above port accessors & modifiers; that is, accessors &
modifiers that log in the current proposal, if there is one.

4.5.2.2 Port handlers

Port handlers store a port’s specific operations for the general port operations, such as
block reads and writes, buffer flushing, &c. Port handler constructors, including make-
port-handler & the buffered port handlers in the next section, are available from the
i/o-internal structure.

[procedure]make-port-handler discloser closer char-reader/writer
block-reader/writer readiness-tester buffer-forcer −→ port-handler

Basic port handler constructor. The arguments are used for the port handler fields.
Each field contains a procedure. The expected semantics of each procedure depend on

Chapter 4: System facilities 63

whether the port is for input or output. Input ports do not use the buffer-forcer
field. The first two fields are independent of the type of port:

discloser port −→ disclosed
Returns a disclosed representation of the port, i.e. a list whose car is the
‘type name’ of this handler (usually with a suffix of either -input-port or
-output-port) followed by a list of all of the components to be printed;
see Section 4.6.2 [Writer], page 71.

closer port −→ ignored
Closes port. This operation corresponds with the close-input-port &
close-output-port procedures.

For input ports, the remaining fields are:

char-reader port consume? −→ char
Reads a single character from port. If consume? is true, the character
should be consumed from port; if consume? is #f, however, the character
should be left in port’s input stream. If consume? is true, this operation
corresponds with read-char; if it is #f, this operation corresponds with
peek-char.

block-reader port block start count wait? −→ count-written or EOF
Attempts to read count characters from port’s input stream into the
string or byte vector block, starting at start. In the case that an insuf-
ficient number of characters is available, if wait? is true, the procedure
should wait until all of the wanted characters are available; otherwise, if
wait? is #f, the block reader should immediately return. In either case,
it returns the number of characters that were read into block, or an end
of file object if it immediately reached the end of the stream. Buffered
ports will typically just copy elements from the buffer into block, rather
than reading from any internal I/O channel in port. This operation cor-
responds with read-block.

readiness-tester port −→ boolean
Returns a true value if there is a character available to be read in port or
#f if not. This operation corresponds with the char-ready? procedure.

For output ports, the remaining fields are:

char-writer port char −→ ignored
Writes the single character char to port. This operation corresponds with
write-char.

block-writer port block start count −→ count-written
Writes count characters to port from block, starting at start. Block may
be a string or a byte vector. This will usually involve copying contents of
block to port’s buffer, if it is buffered. This operation corresponds with
write-block.

readiness-tester port −→ boolean
Returns a true value if port is ready to receive a character and #f if not.

Chapter 4: System facilities 64

buffer-forcer port necessary? −→ ignored
For buffered ports, this is intended to force all buffered output to the
actual internal I/O channel of port. Necessary? tells whether or not it is
absolutely necessary to force all the output immediately; if it is #t, the
buffer forcer is required to force all output in the buffer before it returns.
If necessary? is #f, not only may it just register an I/O transaction
without waiting for it to complete, but it also should not signal an error
if port is already closed. For unbuffered ports, this operation need not
do anything at all.

4.5.2.3 Buffered ports & handlers

Along with bare port handlers, Scheme48 provides conveniences for many patterns of
buffered ports & port handlers. These names are exported by the i/o-internal struc-
ture. Buffered ports are integrated with Scheme48’s optimistic concurrency (see Section 5.2
[Optimistic concurrency], page 79) facilities.

Note: Although internally buffered ports are integrated with optimistic concurrency,
operations on buffered ports, like operations on channels, cannot be reliably fusibly atomic.

[procedure]make-buffered-input-port handler data buffer index limit −→
input-port

[procedure]make-buffered-output-port handler data buffer index limit −→
output-port

Constructors for buffered ports. Handler is the port’s handler, which is usually con-
structed with one of the buffered port handler constructors (see below). Data is
arbitrary data to go in the port’s data field. Buffer is a byte vector whose length
is greater than or equal to both index & limit. Index is the initial index into buffer
to go in the port’s index field. Limit is the limit in the port’s buffer, to go into the
port’s limit field; nothing will be written into buffer at or past limit.

[procedure]make-unbuffered-input-port handler data −→ input-port
[procedure]make-unbuffered-output-port handler data −→ output-port

Conveniences for ports that are explicitly not buffered. Only the relevant fields are
passed; all fields pertaining to buffering are initialized with #f.

[procedure]make-buffered-input-port-handler discloser closer buffer-filler
readiness-tester −→ port-handler

This creates a port handler for buffered input ports. The arguments are as follows:

discloser port-data −→ disclosed
closer port-data −→ ignored

Discloser & closer are like the similarly named regular port handler fields,
but they are applied directly to the port’s data, not to the port itself.

buffer-filler port wait? −→ committed?
Used to fill port’s buffer when it no longer has contents from which to read
in its current buffer. Wait? is a boolean flag, #t if the operation should
wait until the I/O transaction necessary to fill the buffer completes, or

Chapter 4: System facilities 65

#f if it may simply initiate an I/O transaction but not wait until it com-
pletes (e.g., use channel-maybe-commit-and-read, but not wait on the
condition variable passed to channel-maybe-commit-and-read). Buffer-
filler is called with a fresh proposal in place, and it is the responsibility
of buffer-filler to commit it. It returns a boolean flag denoting whether
the proposal was committed. The last call in buffer-filler is usually either
(maybe-commit) or a call to a procedure that causes that effect (e.g., one
of the operation on condition variables that commits the current proposal.
See Section 5.3 [Higher-level synchronization], page 85.)

readiness-tester port −→ [committed? ready?]
Called when char-ready? is applied to port and the buffer of port is
empty. Like buffer-filler, readiness-tester is applied with a fresh proposal
in place, which it should attempt to commit. Readiness-tester should
return two values, each a boolean flag: the first denotes whether or not
the current proposal was successfully committed, and, if it was successful,
whether or not a character is ready.

[procedure]make-buffered-output-port-handler discloser buffer-emptier
readiness-tester −→ port-handler

This creates a port handler for buffered output ports. Discloser & closer are as with
buffered input ports. The remaining fields are as follows:

buffer-emptier port necessary? −→ committed?
Buffer-emptier is used when port’s buffer is full and needs to be emptied.
It is called with a fresh proposal in place. It should reset port’s index
field, call note-buffer-reuse! to invalidate other threads’ transactions
on the recycled buffer, and attempt to commit the new proposal installed.
It returns a boolean flag indicating whether or not the commit succeeded.

readiness-tester port −→ [committed? ready?]
Readiness-tester is applied to port when its buffer is full (i.e. its index &
limit fields are equal) and output-port-ready? is applied to port. After
performing the test, it should attempt to commit the current proposal and
then return two values: whether it succeeded in committing the current
proposal, and, if it was successful, whether or not a character is ready to
be outputted.

[constant]default-buffer-size −→ integer
The default size for port buffers. This happens to be 4096 in the current version of
Scheme48.

[procedure]note-buffer-reuse! port −→ unspecified
[procedure]check-buffer-timestamp! port −→ unspecified

These are used to signal the resetting of a buffer between multiple threads. Note-
buffer-reuse! is called — in the case of an output port — when a buffer fills up, is
emptied, and flushed; or — in the case of an input port — when a buffer is emptied
and needs to be refilled. Note-buffer-reuse! logs in the current proposal a fresh
value to store in port. When that proposal is committed, this fresh value is stored in
the port. Other threads that were using port’s buffer call check-buffer-timestamp!,

Chapter 4: System facilities 66

which logs a read in the current proposal. If another thread commits a buffer reuse
to memory, that read will be invalidated, invalidating the whole transaction.

4.5.3 Miscellaneous I/O internals

All of these but port-status-options are exported by the i/o-internal structure;
the port-status-options enumeration is exported by the architecture structure, but it
deserves mention in this section.

[enumeration]port-status-options
(define-enumeration port-status-options
(input
output
open-for-input
open-for-output))

Enumeration of indices into a port’s status field bit set.

[procedure]open-input-port? port −→ boolean
[procedure]open-output-port? port −→ boolean

These return true values if port is both an input or output port, respectively, and
open.

[constant]open-input-port-status −→ integer-status
[constant]open-output-port-status −→ integer-status

The bitwise masks of enumerands from the port-status-options enumeration sig-
nifying an open input or output port, respectively.

[procedure]make-input-port-closed! port −→ unspecified
[procedure]make-output-port-closed! port −→ unspecified

These set the status of port, which must be an input or output port, respectively, to
indicate that it is closed.

[procedure]eof-object −→ eof-object
Returns the EOF object token. This is the only value that will answer true to R5RS’s
eof-object? predicate.

[procedure]force-output-if-open port −→ unspecified
This forces port’s output if it is an open output port, and does not block.

[procedure]periodically-force-output! port −→ unspecified
[procedure]periodically-flushed-ports −→ port-list

Periodically-force-output! registers port to be forced periodically. Only a weak
reference to port in this registry is held, however, so this cannot cause accidental space
leaks. Periodically-flushed-ports returns a list of all ports in this registry. Note
that the returned list holds strong references to all of its elements. Periodically-
flushed-ports does not permit thread context switches, or interrupts of any sort,
while it runs.

Chapter 4: System facilities 67

4.5.4 Channels

Channels represent the OS’s native I/O transmission channels. On Unix, channels are
essentially boxed file descriptors, for example. The only operations on channels are block
reads & writes. Blocks in this sense may be either strings or byte vectors (see Section 4.3
[Bitwise manipulation], page 56).

4.5.4.1 Low-level channel operations

The low-level base of the interface to channels described here is exported from the
channels structure.

[procedure]channel? −→ boolean
Disjoint type predicate for channels.

[procedure]channel-id channel −→ value
[procedure]channel-status channel −→ integer-enumerand
[procedure]channel-os-index channel −→ integer

Channel-id returns channel’s id. The id is some identifying characteristic of channels.
For example, file channels’ ids are usually the corresponding filenames; channels such
as the standard input, output, or error output channels have names like "standard
input" and "standard output". Channel-status returns the current status of chan-
nel; see the channel-status-option enumeration below. Channel-os-index returns
the OS-specific integer index of channel. On Unix, for example, this is the channel’s
file descriptor.

[procedure]open-channel filename option close-silently? −→ channel
Open-channel opens a channel for a file given its filename. Option specifies what
type of channel this is; see the channel-status-option enumeration below. Close-
silently? is a boolean that specifies whether a message should be printed (on Unix,
to stderr) when the resulting channel is closed after a garbage collector finds it
unreachable.

[procedure]close-channel channel −→ unspecified
Closes channel after aborting any potential pending I/O transactions it may have
been involved with.

[procedure]channel-ready? channel −→ boolean
If channel is an input channel: returns #t if there is input ready to be read from
channel or #f if not; if channel is an output channel: returns #t if a write would
immediately take place upon calling channel-maybe-write, i.e. channel-maybe-
write would not return #f, or #f if not.

Chapter 4: System facilities 68

[procedure]channel-maybe-read channel buffer start-index octet-count wait? −→
octet count read, error status cell, EOF object, or #f

[procedure]channel-maybe-write channel buffer start-index octet-count −→ octet
count written, error status cell, or #f

[procedure]channel-abort channel −→ unspecified
Channel-maybe-read attempts to read octet-count octets from channel into buffer,
starting at start-index. If a low-level I/O error occurs, it returns a cell containing a
token given by the operating system indicating what kind of error occurred. If wait?
is #t, and channel is not ready to be read from, channel is registered for the VM’s
event polling mechanism, and channel-maybe-read returns #f. Otherwise, it returns
either the number of octets read, or an EOF object if channel was was at the end.

Channel-maybe-write attempts to write octet-count octets to channel from buffer,
starting at start-index. If a low-level I/O error occurs, it returns a cell indicating a
token given by the operating system indicating what kind of error occurred. If no
such low-level error occurs, it registers channel for the VM’s event polling mechanism
and returns #f iff zero octets were immediately written or the number of octets
immediately written if any were.

Channel-abort aborts any pending operation registered for the VM’s event polling
mechanism.

[procedure]open-channels-list −→ channel-list
Returns a list of all open channels in order of the os-index field.

[enumeration]channel-status-option
(define-enumeration channel-status-option

(closed
input
output
special-input
special-output))

Enumeration for a channel’s status. The closed enumerand is used only after a
channel has been closed. Note that this is not suitable for a bit mask; that is, one
may choose exactly one of the enumerands, not use a bit mask of status options. For
example, to open a file ‘frob’ for input that one wishes the garbage collector to be
silent about on closing it:

(open-channel "frob"
(enum channel-status-option input)
#t)

⇒ #{Input-channel "frob"}

4.5.4.2 Higher-level channel operations

More convenient abstractions for operating on channels, based on condition variables
(see Section 5.3 [Higher-level synchronization], page 85), are provided from the channel-
i/o structure. They are integrated with Scheme48’s optimistic concurrency (see Section 5.2
[Optimistic concurrency], page 79) facilities.

Chapter 4: System facilities 69

Note: Transactions on channels can not be atomic in the sense of optimistic concurrency.
Since they involve communication with the outside world, they are irrevocable transactions,
and thus an invalidated proposal cannot retract the transaction on the channel.

[procedure]channel-maybe-commit-and-read channel buffer start-index
octet-count condvar wait? −→ committed?

[procedure]channel-maybe-commit-and-write channel buffer start-index
octet-count condvar −→ committed?

These attempt to commit the current proposal. If they fail, they immediately return
#f; otherwise, they proceed, and return #t. If the commit succeeded, these procedures
attempt an I/O transaction, without blocking. Channel-maybe-commit-and-read
attempts to read octet-count octets into buffer, starting at start-index, from channel.
Channel-maybe-commit-and-write attempts to write octet-count octets from buffer,
starting at start-index, to channel. Condvar is noted as waiting for the completion of
the I/O transaction. When the I/O transaction finally completes — in the case of a
read, there are octets ready to be read into buffer from channel or the end of the file
was struck; in the case of a write, channel is ready to receive some octets —, condvar
is set to the result of the I/O transaction: the number of octets read, an I/O error
condition, or an EOF object, for reads; and the number of octets written or an I/O
error condition, for writes.

[procedure]channel-maybe-commit-and-close channel closer −→ committed?
Attempts to commit the current proposal; if successful, this aborts any wait on chan-
nel, sets the result of any condvars waiting on channel to the EOF object, closes
channel by applying closer to channel (in theory, closer could be anything; usually,
however, it is close-channel from the channels structure or some wrapper around
it), and returns #t. If the commit failed, channel-maybe-commit-and-close imme-
diately returns #f.

[procedure]channel-write channel buffer start-index octet-count −→
octet-count-written

Atomically attempts to write octet-count octets to channel from buffer, starting at
start-index in buffer. If no I/O transaction immediately occurs — what would result
in channel-maybe-write returning #f —, channel-write blocks until something
does happen. It returns the number of octets written to channel.

[procedure]wait-for-channel channel condvar −→ unspecified
Registers condvar so that it will be set to the result of some prior I/O transaction
when some I/O event regarding channel occurs. (Contrary to the name, this does not
actually wait or block. One must still use maybe-commit-and-wait-for-condvar
on condvar; see Section 5.3 [Higher-level synchronization], page 85.) This is useful
primarily in conjunction with calling foreign I/O routines that register channels with
the VM’s event polling system.

Note: wait-for-channel must be called with interrupts disabled.

Chapter 4: System facilities 70

4.5.5 Channel ports

Built-in to Scheme48 are ports made atop channels. These are what are created by
R5RS’s standard file operations. The following names are exported by the channel-ports
structure.

[procedure]call-with-input-file filename receiver −→ values
[procedure]call-with-output-file filename receiver −→ values
[procedure]with-input-from-file filename thunk −→ values
[procedure]with-output-to-file filename thunk −→ values
[procedure]open-input-file filename −→ input-port
[procedure]open-output-file filename −→ output-port

Standard R5RS file I/O operations. (These are also exported by the scheme struc-
ture.) The call-with-...put-file operations open the specified type of port and
apply receiver to it; after receiver returns normally (i.e. nothing is done if there is
a throw out of receiver), they close the port and return the values that receiver re-
turned. With-input-from-file & with-output-to-file do similarly, but, rather
than applying thunk to the port, they dynamically bind the current input & output
ports, respectively, to the newly opened ports. Call-with-input-file, call-with-
output-file, with-input-from-file, and with-output-to-file return the values
that thunk returns. Open-input-file & open-output-file just open input & out-
put ports; users of these operations must close them manually.

[procedure]input-channel->port channel [buffer-size] −→ port
[procedure]output-channel->port channel [buffer-size] −→ port

These create input & output ports atop the given channels and optional buffer sizes.
The default buffer size is 4096 bytes.

[procedure]input-channel+closer->port channel closer [buffer-size] −→ port
[procedure]output-channel+closer->port channel closer [buffer-size] −→ port

Similarly, these create input & output ports atop the given channels and optional
buffer sizes, but they allow for extra cleanup when the resulting ports are closed.

[procedure]port->channel port −→ channel or #f
If port is a port created by the system’s channel ports facility, port->channel returns
the channel it was created atop; otherwise port->channel returns #f.

[procedure]force-channel-output-ports! −→ unspecified
This attempts to force as much output as possible from all of the ports based on
channels. This is used by Scheme48’s POSIX libraries before forking the current
process.

4.6 Reader & writer

Scheme48 has simple S-expression reader & writer libraries, with some facilities beyond
R5RS’s read & write procedures.

Chapter 4: System facilities 71

4.6.1 Reader

Scheme48’s reader facility is exported by the reading structure. The read binding
thereby exported is identical to that of the scheme structure, which is the binding that
R5RS specifies under the name read.

[procedure]read [port] −→ readable-value
Reads a single S-expression from port, whose default value is the current input port.
If the end of the stream is encountered before the beginning of an S-expression, read
will return an EOF object. It will signal a read error if text read from port does not
constitute a complete, well-formed S-expression.

[procedure]define-sharp-macro char proc −→ unspecified
Defines a sharp/pound/hash/octothorpe (#) reader macro. The next time the reader
is invoked, if it encounters an octothorpe/sharp followed by char, it applies proc to
char and the input port being read from. Char is not consumed in the input port. If
char is alphabetic, it should be lowercase; otherwise the reader will not recognize it,
since the reader converts the character following octothorpes to lowercase.

[procedure]reading-error port message irritant . . . −→ unspecified
Signals an error while reading, for custom sharp macros. It is not likely that calls to
reading-error will return.

[procedure]gobble-line port −→ unspecified
Reads until a newline from port. The newline character sequence is consumed.

4.6.2 Writer

Scheme48’s writing structure exports its writer facility. The write and display bind-
ings from it are identical to those from the scheme structure, which are the same bindings
that R5RS specifies.

[procedure]write object [port] −→ unspecified
Writes object to port, which defaults to the current output port, in a machine-readable
manner. Strings are written with double- quotes; characters are prefixed by #\. Any
object that is unreadable — anything that does not have a written representation as
an S-expression — is written based on its disclosed representation. Such unreadable
objects are converted to a disclosed representation by the disclose generic procedure
(see below).

[procedure]display object [port] −→ unspecified
Displays object to port, which defaults to the value of the current output port, in
a more human-readable manner. Strings are written without surrounding double-
quotes; characters are written as themselves with no prefix.

[procedure]recurring-write object port recur −→ unspecified
Writes object to port. Every time this recurs upon a new object, rather than calling
itself or its own looping procedure, it calls recur. This allows customized printing

Chapter 4: System facilities 72

routines that still take advantage of the existence of Scheme48’s writer. For example,
display simply calls recurring-write with a recurring procedure that prints strings
and characters specially and lets recurring-write handle everything else.

[procedure]display-type-name name port −→ unspecified
If name is a symbol with an alphabetic initial character, this writes name to port with
the first character uppercased and the remaining character lowercased; otherwise,
display-type-name simply writes name to port with display.

(display-type-name ’foo)
a Foo

(display-type-name (string->symbol "42foo"))
a 42foo

(display-type-name (cons "foo" "bar"))
a (foo . bar)

(display-type-name (string->symbol "fOo-BaR"))
a Foo-bar

This is used when printing disclosed representations (see below).

4.6.2.1 Object disclosure

The methods structure (see Section 4.4 [Generic dispatch system], page 57) exports the
generic procedure disclose and its method table &disclose. When recurring-write
encounters an object it is unable to write in a rereadable manner, it applies disclose to
the unreadable object to acquire a disclosed representation. (If disclose returns #f, i.e.
the object has no disclosed representation, the writer will write #{Random object}.) After
converting a value to its disclosed representation, e.g. a list consisting of the symbol foo, the
symbol bar, a byte vector, and a pair (1 . 2), the writer will write #{Foo #{Byte-vector}
bar (1 . 2)}. That is: contents of the list are surrounded by #{ and }, the first element
of the list (the ‘type name’) is written with display-type-name, and then the remaining
elements of the list are recursively printed out with the recur argument.

Typically, when a programmer creates an abstract data type by using Scheme48’s record
facility, he will not add methods to &disclose but instead define the record type’s discloser
with the define-record-discloser procedure; see Section 4.7 [Records], page 73.

Example:
(define-record-type pare rtd/pare
(kons a d)
pare?
(a kar set-kar!)
(d kdr set-kdr!))

(define-record-discloser rtd/pare
(lambda (pare)
‘(pare ,(kar pare) *dot* ,(kdr pare))))

Chapter 4: System facilities 73

(write (kons (kons 5 3) (kons ’a ’b)))
a #{Pare #{Pare 5 *dot* 3} *dot* #{Pare a *dot* b}}

4.7 Records

Scheme48 provides several different levels of a record facility. Most programmers will
probably not care about the two lower levels; the syntactic record type definers are sufficient
for abstract data types.

At the highest level, there are two different record type definition macros. Richard
Kelsey’s is exported from the defrecord structure; Jonathan Rees’s is exported from
define-record-types. They both export a define-record-type macro and the same
define-record-discloser procedure; however, the macros are dramatically different.
Scheme48 also provides [SRFI 9], which is essentially Jonathan Rees’s record type definition
macro with a slight syntactic difference, in the srfi-9 structure. Note, however, that
srfi-9 does not export define-record-discloser. The difference between Jonathan
Rees’s and Richard Kelsey’s record type definition macros is merely syntactic convenience;
Jonathan Rees’s more conveniently allows for arbitrary naming of the generated variables,
whereas Richard Kelsey’s is more convenient if the naming scheme varies little.

4.7.1 Jonathan Rees’s define-record-type macro

[syntax]define-record-type
(define-record-type record-type-name record-type-variable

(constructor constructor-argument ...)
[predicate]
(field-tag field-accessor [field-modifier])
...)

This defines record-type-variable to be a record type descriptor. Constructor is de-
fined to be a procedure that accepts the listed field arguments and creates a record of
the newly defined type with those fields initialized to the corresponding arguments.
Predicate, if present, is defined to be the disjoint (as long as abstraction is not vio-
lated by the lower-level record interface) type predicate for the new record type. Each
field-accessor is defined to be a unary procedure that accepts a record type and re-
turns the value of the field named by the corresponding field-tag. Each field-modifier,
if present, is defined to be a binary procedure that accepts a record of the new type
and a value, which it assigns the field named by the corresponding field-tag to. Every
constructor-argument must have a corresponding field-tag, though field-tags that are
not used as arguments to the record type’s constructor are simply uninitialized when
created. They should have modifiers: otherwise they will never be initialized.
It is worth noting that Jonathan Rees’s define-record-type macro does not intro-
duce identifiers that were not in the original macro’s input form.
For example:

(define-record-type pare rtd/pare
(kons a d)

Chapter 4: System facilities 74

pare?
(a kar)
(d kdr set-kdr!))

(kar (kons 5 3))
⇒ 5

(let ((p (kons ’a ’c)))
(set-kdr! p ’b)
(kdr p))
⇒ b

(pare? (kons 1 2))
⇒ #t

(pare? (cons 1 2))
⇒ #f

There is also a variant of Jonathan Rees’s define-record-type macro for defining
record types with fields whose accessors and modifiers respect optimistic concurrency (see
Section 5.2 [Optimistic concurrency], page 79) by logging in the current proposal.

4.7.2 Richard Kelsey’s define-record-type macro

[syntax]define-record-type
(define-record-type type-name

(argument-field-specifier ...)
(nonargument-field-specifier ...))

argument-field-specifier −→
field-tag Immutable field

| (field-tag) Mutable field
nonargument-field-specifier −→

field-tag Uninitialized field
| (field-tag exp) Initialized with exp’s value

This defines type/type-name to be a record type descriptor for the newly defined
record type, type-name-maker to be a constructor for the new record type that
accepts arguments for every field in the argument field specifier list, type-name? to
be the disjoint type predicate for the new record type, accessors for each field tag
field-tag by constructing an identifier type-name-field-tag , and modifiers for each
argument field tag that was specified to be mutable as well as each nonargument
field tag. The name of the modifier for a field tag field-tag is constructed to be
set-type-name-field-tag!.

Note that Richard Kelsey’s define-record-type macro does concatenate & intro-
duce new identifiers, unlike Jonathan Rees’s.

For example, a use of Richard Kelsey’s define-record-type macro

Chapter 4: System facilities 75

(define-record-type pare
(kar
(kdr))
(frob
(mumble 5)))

is equivalent to the following use of Jonathan Rees’s macro

(define-record-type pare type/pare
(%pare-maker kar kdr mumble)
pare?
(kar pare-kar)
(kdr pare-kdr set-pare-kdr!)
(frob pare-frob set-pare-frob!)
(mumble pare-mumble set-pare-mumble!))

(define (pare-maker kar kdr)
(%pare-maker kar kdr 5))

4.7.3 Record types

Along with two general record type definition facilities, there are operations directly on
the record type descriptors themselves, exported by the record-types structure. (Record
type descriptors are actually records themselves.)

[procedure]make-record-type name field-tags −→ record-type-descriptor
[procedure]record-type? object −→ boolean

Make-record-type makes a record type descriptor with the given name and field
tags. Record-type? is the disjoint type predicate for record types.

[procedure]record-type-name rtype-descriptor −→ symbol
[procedure]record-type-field-names rtype-descriptor −→ symbol-list

Accessors for the two record type descriptor fields.

[procedure]record-constructor rtype-descriptor argument-field-tags −→
constructor-procedure

[procedure]record-predicate rtype-descriptor −→ predicate-procedure
[procedure]record-accessor rtype-descriptor field-tag −→ accessor-procedure
[procedure]record-modifier rtype-descriptor field-tag −→ modifier-procedure

Constructors for the various procedures relating to record types. Record-
constructor returns a procedure that accepts arguments for each field in
argument-field-tags and constructs a record whose record type descriptor is
rtype-descriptor, initialized with its arguments. Record-predicate returns a
disjoint type predicate for records whose record type descriptor is rtype-descriptor.
Record-accessor and record-modifier return accessors and modifiers for records
whose record type descriptor is rtype-descriptor for the given fields.

Chapter 4: System facilities 76

[procedure]define-record-discloser rtype-descriptor discloser −→ unspecific
Defines the method by which records of type rtype-descriptor are disclosed (see Sec-
tion 4.6.2 [Writer], page 71). This is also exported by define-record-types and
defrecord.

[procedure]define-record-resumer rtype-descriptor resumer −→ unspecified
Sets rtype-descriptor’s record resumer to be resumer. If resumer is #t (the default),
records of this type require no particular reinitialization when found in dumped heap
images (see Section 4.8 [Suspending and resuming heap images], page 77); if resumer
is #f, records of the type rtype-descriptor may not be dumped in heap images; finally,
if it is a procedure, and the heap image is resumed with the usual image resumer (see
Section 4.8 [Suspending and resuming heap images], page 77), it is applied to each
record whose record type descriptor is rtype-descriptor after the run-time system has
been initialized and before the argument to usual-resumer is called.

The records-internal structure also exports these:

[record type]:record-type
The record type of record types.

[procedure]disclose-record record −→ disclosed
This applies record’s record type descriptor’s discloser procedure to record to acquire
a disclosed representation; see Section 4.6.2 [Writer], page 71.

For expository purposes, the record type record type might have been defined like so
with Jonathan Rees’s define-record-type macro:

(define-record-type record-type :record-type
(make-record-type name field-names)
record-type?
(name record-type-name)
(field-names record-type-field-names))

or like so with Richard Kelsey’s define-record-type macro:

(define-record-type record-type
(name field-names)
())

Of course, in reality, these definitions would have severe problems with circularity of defi-
nition.

4.7.4 Low-level record manipulation

Internally, records are represented very similarly to vectors, and as such have low-level
operations on them similar to vectors, exported by the records structure. Records usually
reserve the slot at index 0 for their record type descriptor.

Warning: The procedures described here can be very easily misused to horribly break
abstractions. Use them very carefully, only in very limited & extreme circumstances!

Chapter 4: System facilities 77

[procedure]make-record length init −→ record
[procedure]record elt . . . −→ record
[procedure]record? object −→ boolean
[procedure]record-length record −→ integer
[procedure]record-ref record index −→ value
[procedure]record-set! record index object −→ unspecified

Exact analogues of similarly named vector operation procedures.

[procedure]record-type record −→ value
This returns the record type descriptor of record, i.e. the value of the slot at index 0
in record.

4.8 Suspending and resuming heap images

Scheme48’s virtual machine operates by loading a heap image into memory and calling
the initialization procedure specified in the image dump. Heap images can be produced in
several different ways: programmatically with write-image, using the command processor’s
facilities (see Section 2.4.11 [Image-building commands], page 20), or with the static linker.
This section describes only write-image and the related system resumption & initialization.

Heap image dumps begin with a sequence of characters terminated by an ASCII form-
feed/page character (codepoint 12). This content may be anything; for example, it might
be a Unix #! line that invokes scheme48vm on the file, or it might be a silly message to
whomever reads the top of the heap image dump file. (The command processor’s ,dump &
,build commands (see Section 2.4.11 [Image-building commands], page 20) write a blank
line at the top; the static linker puts a message stating that the image was built by the
static linker.)

Write-image is exported by the write-images structure.

[procedure]write-image filename startup-proc message −→ unspecified
Writes a heap image whose startup procedure is startup-proc and that consists of
every object accessible in some way from startup-proc. Message is put at the start
of the heap image file before the ASCII form-feed/page character. When the image
is resumed, startup-proc is passed a vector of program arguments, an input channel
for standard input, an output channel for standard output, an output channel for
standard error, and a vector of records to be resumed. This is typically simplified by
usual-resumer (see below). On Unix, startup-proc must return an integer exit code;
otherwise the program will crash and burn with a very low-level VM error message
when startup-proc returns.

4.8.1 System initialization

When suspended heap images are resumed by the VM, the startup procedure specified
in the heap image is applied to five arguments: a vector of command-line arguments (passed
after the -a argument to the VM), an input channel for standard input, an output channel
for standard output, an output channel for standard error, and a vector of records to be
resumed. The startup procedure is responsible for performing any initialization necessary

Chapter 4: System facilities 78

— including initializing the Scheme48 run-time system — as well as simply running the
program. Typically, this procedure is not written manually: resumers are ordinarily created
using the usual resumer abstraction, exported from the structure usual-resumer.

[procedure]usual-resumer startup-proc −→ resumer-proc
This returns a procedure that is suitable as a heap image resumer procedure. When
the heap image is resumed, it initializes the run-time system — it resumes all the
records, initializes the thread system, the dynamic state, the interrupt system, I/O
system, &c. — and applies startup-proc to a list (not a vector) of the command-line
arguments.

Some records may contain machine-, OS-, or other session-specific data. When suspended
in heap images and later resumed, this data may be invalidated, and it may be necessary to
reinitialize this data upon resumption of suspended heap images. For this reason Scheme48
provides record resumers; see define-record-resumer from the record-types structure
(see Section 4.7 [Records], page 73).

4.8.2 Manual system initialization

If a programmer chooses not to use usual-resumer — which is not a very common thing
to do —, he is responsible for manual initialization of the run-time system, including the
I/O system, resumption of records, the thread system and the root thread scheduler, the
interrupt system, and the condition system.

Warning: Manual initialization of the run-time system is a very delicate operation.
Although one can potentially vastly decrease the size of dumped heap images by doing it
manually,10 it is very error-prone and difficult to do without exercising great care, which
is why the usual resumer facility exists. Unless you really know what you are doing, you
should just use the usual resumer.

At the present, documentation of manual system initialization is absent. However, if
the reader knows enough about what he is doing that he desires to manually initialize the
run-time system, he is probably sufficiently familiar with it already to be able to find the
necessary information directly from Scheme48’s source code and module descriptions.

10 For example, the author of this manual, merely out of curiosity, compared the sizes of two images: one
that used the usual resumer and printed each of its command-line arguments, and one that performed
no run-time system initialization — which eliminated the run-time system in the image, because it was
untraceable from the resumer — and wrote directly to the standard output channel. The difference
was a factor of about twenty. However, also note that the difference is constant; the run-time system
happened to account for nineteen twentieths of the larger image.

Chapter 5: Multithreading 79

5 Multithreading

This chapter describes Scheme48’s fully preëmptive and sophisticated user-level thread
system. Scheme48 supports customized and nested thread schedulers, user-designed syn-
chronization mechanisms, optimistic concurrency, useful thread synchronization libraries, a
high-level event algebra based on Reppy’s Concurrent ML [Reppy 99], and common pes-
simistic concurrency/mutual-exclusion-based thread synchronization facilities.

5.1 Basic thread operations

This section describes the threads structure.

[procedure]spawn thunk [name] −→ thread
Spawn constructs a new thread and instructs the current thread scheduler to com-
mence running the new thread. Name, if present, is used for debugging. The new
thread has a fresh dynamic environment (see Section 4.1.4 [Fluid/dynamic bindings],
page 41).

There are several miscellaneous facilities for thread operations.

[procedure]relinquish-timeslice −→ unspecified
[procedure]sleep count −→ unspecified

Relinquish-timeslice relinquishes the remaining quantum that the current thread
has to run; this allows the current scheduler run the next thread immediately. Sleep
suspends the current thread for count milliseconds.

[procedure]terminate-current-thread −→ (does not return)
Terminates the current thread, running all dynamic-wind exit points. Terminate-
current-thread obviously does not return.

Threads may be represented and manipulated in first-class thread descriptor objects.

[procedure]current-thread −→ thread
[procedure]thread? object −→ boolean
[procedure]thread-name thread −→ value
[procedure]thread-uid thread −→ unique-integer-id

Current-thread returns the thread descriptor for the currently running thread.
Thread? is the thread descriptor disjoint type predicate. Thread-name returns the
name that was passed to spawn when spawning thread, or #f if no name was passed.
Thread-uid returns a thread descriptor’s unique integer identifier, assigned by the
thread system.

5.2 Optimistic concurrency

Scheme48’s fundamental thread synchronization mechanism is based on a device often
used in high-performance database systems: optimistic concurrency. The basic principle
of optimistic concurrency is that, rather than mutually excluding other threads from data

Chapter 5: Multithreading 80

involved in one thread’s transaction, a thread keeps a log of its transaction, not actually
modifying the data involved, only touching the log. When the thread is ready to commit
its changes, it checks that all of the reads from memory retained their integrity — that
is, all of the memory that was read from during the transaction has remained the same,
and is consistent with what is there at the time of the commit. If, and only if, all of
the reads remained valid, the logged writes are committed; otherwise, the transaction has
been invalidated. While a thread is transacting, any number of other threads may be also
transacting on the same resource. All that matters is that the values each transaction
read are consistent with every write that was committed during the transaction. This
synchronization mechanism allows for wait-free, lockless systems that easily avoid confusing
problems involving careful sequences of readily deadlock-prone mutual exclusion.

In the Scheme48 system, every thread has its own log of transactions, called a proposal.
There are variants of all data accessors & modifiers that operate on the current thread’s
proposal, rather than actual memory: after the initial read of a certain part of memory —
which does perform a real read —, the value from that location in memory is cached in the
proposal, and thenceforth reads from that location in memory will actually read the cache;
modifications touch only the proposal, until the proposal is committed.

All of the names described in this section are exported by the proposals structure.

5.2.1 High-level optimistic concurrency

There are several high-level operations that abstract the manipulation of the current
thread’s proposal.

[procedure]call-ensuring-atomicity thunk −→ values
[procedure]call-ensuring-atomicity! thunk −→ unspecified

These ensure that the operation of thunk is atomic. If there is already a current
proposal in place, these are equivalent to calling thunk. If there is not a current
proposal in place, these install a new proposal, call thunk, and attempt to commit
the new proposal. If the commit succeeded, these return. If it failed, these retry
with a new proposal until they do succeed. Call-ensuring-atomicity returns the
values that thunk returned when the commit succeeded; call-ensuring-atomicity!
returns zero values — it is intended for when thunk is used for its effects only.

[procedure]call-atomically thunk −→ values
[procedure]call-atomically! thunk −→ unspecified

These are like call-ensuring-atomicity and call-ensuring-atomicity!, respectively, ex-
cept that they always install a new proposal (saving the old one and restoring it when
they are done).

[syntax]ensure-atomicity body −→ values
[syntax]ensure-atomicity! body −→ unspecified
[syntax]atomically body −→ values
[syntax]atomically! body −→ unspecified

These are syntactic sugar over call-ensuring-atomicity, call-ensuring-
atomicity!, call-atomically, and call-atomically!, respectively.

Chapter 5: Multithreading 81

Use these high-level optimistic concurrency operations to make the body atomic. Call-
ensuring-atomicity &c. simply ensure that the transaction will be atomic, and may ‘fuse’
it with an enclosing atomic transaction if there already is one, i.e. use the proposal for that
transaction already in place, creating one only if there is not already one. Call-atomically
&c. are for what might be called ‘subatomic’ transactions, which cannot be fused with other
atomic transactions, and for which there is always created a new proposal.

However, code within call-ensuring-atomicity &c. or call-atomically &c. should
not explicitly commit the current proposal; those operations above automatically commit
the current proposal when the atomic transaction is completed. (In the case of call-
atomically &c., this is when the procedure passed returns; in the case of call-ensuring-
atomicity &c., this is when the outermost enclosing atomic transaction completes, or the
same as call-atomically if there was no enclosing atomic transaction.) To explicitly com-
mit the current proposal — for example, to perform some particular action if the commit
fails rather than just to repeatedly retry the transaction, or to use operations from the cus-
tomized thread synchronization (see Section 5.6 [Custom thread synchronization], page 94)
facilities that commit the current proposal after their regular function, or the operations
on condition variables (see Section 5.3 [Higher-level synchronization], page 85) that oper-
ate on the condition variable and then commit the current proposal —, one must use the
with-new-proposal syntax as described below, not these operations.

5.2.2 Logging variants of Scheme procedures

[procedure]provisional-car pair −→ value
[procedure]provisional-cdr pair −→ value
[procedure]provisional-set-car! pair value −→ unspecified
[procedure]provisional-set-cdr! pair value −→ unspecified
[procedure]provisional-cell-ref cell −→ value
[procedure]provisional-cell-set! cell value −→ unspecified
[procedure]provisional-vector-ref vector index −→ value
[procedure]provisional-vector-set! vector index value −→ unspecified
[procedure]provisional-string-ref string index −→ char
[procedure]provisional-string-set! string index value −→ unspecified
[procedure]provisional-byte-vector-ref byte-vector index −→ char
[procedure]provisional-byte-vector-set! byte-vector index byte −→ unspecified
[procedure]attempt-copy-bytes! from fstart to tstart count −→ unspecified

These are variants of most basic Scheme memory accessors & modifiers that log in
the current proposal, rather than performing the actual memory access/modification.
All of these do perform the actual memory access/modification, however, if there is
no current proposal in place when they are called. Attempt-copy-bytes! copies a
sequence of count bytes from the byte vector or string from, starting at the index
fstart, to the byte vector or string to, starting at the index tstart.

5.2.3 Synchronized records

[syntax]define-synchronized-record-type
(define-synchronized-record-type tag type-name

Chapter 5: Multithreading 82

(constructor-name parameter-field-tag ...)
[(sync-field-tag ...)]
predicate-name

(field-tag accessor-name [modifier-name])
...)

This is exactly like define-record-type from the define-record-types structure,
except that the accessors & modifiers for each field in sync-field-tag . . . are defined
to be provisional, i.e. to log in the current proposal. If the list of synchronized fields
is absent, all of the fields are synchronized, i.e. it is as if all were specified in that list.

The proposals structure also exports define-record-discloser (see Section 4.7
[Records], page 73). Moreover, the define-sync-record-types structure, too, exports
define-synchronized-record-type, though it does not export define-record-
discloser.

5.2.4 Optimistic concurrency example

Here is a basic example of using optimistic concurrency to ensure the synchronization of
memory. We first present a simple mechanism for counting integers by maintaining internal
state, which is expressed easily with closures:

(define (make-counter value)
(lambda ()
(let ((v value))

(set! value (+ v 1))
v)))

This has a problem: between obtaining the value of the closure’s slot for value and
updating that slot, another thread might be given control and modify the counter, producing
unpredictable results in threads in the middle of working with the counter. To remedy this,
we might add a mutual exclusion lock to counters to prevent threads from simultaneously
accessing the cell:

(define (make-counter value)
(let ((lock (make-lock)))
(lambda ()

(dynamic-wind
(lambda () (obtain-lock lock))
(lambda ()

(let ((v value))
(set! value (+ v 1))
v))

(lambda () (release-lock lock))))))

This poses another problem, however. Suppose we wish to write an atomic (step-
counters! counter ...) procedure that increments each of the supplied counters by one;
supplying a counter n times should have the effect of incrementing it by n. The näıve
definition of it is this:

(define (step-counters! . counters)
(for-each (lambda (counter) (counter))

Chapter 5: Multithreading 83

counters))

Obviously, though, this is not atomic, because each individual counter is locked when
it is used, but not the whole iteration across them. To work around this, we might use an
obfuscated control structure to allow nesting the locking of counters:

(define (make-counter value)
(let ((lock (make-lock)))
(lambda args

(dynamic-wind
(lambda () (obtain-lock lock))
(lambda ()

(if (null? args)
(let ((v value))

(set! value (+ v 1))
v)

((car args))))
(lambda () (release-lock lock))))))

(define (step-counters! . counters)
(let loop ((cs counters))
(if (null? cs)

(for-each (lambda (counter) (counter))
counters)

((car cs) (lambda () (loop (cdr cs)))))))

Aside from the obvious matter of the obfuscation of the control structures used here,
however, this has another problem: we cannot step one counter multiple times atomically.
Though different locks can be nested, nesting is very dangerous, because accidentally obtain-
ing a lock that is already obtained can cause deadlock, and there is no modular, transparent
way to avoid this in the general case.

Instead, we can implement counters using optimistic concurrency to synchronize the
shared data. The state of counters is kept explicitly in a cell (see Section 4.1.7 [Cells],
page 45), in order to use a provisional accessor & modifier, as is necessary to make use of
optimistic concurrency, and we surround with call-ensuring-atomicity any regions we
wish to be atomic:

(define (make-counter initial)
(let ((cell (make-cell initial)))
(lambda ()

(call-ensuring-atomicity
(lambda ()

(let ((value (provisional-cell-ref cell)))
(provisional-cell-set! cell (+ value 1))
value))))))

(define (step-counters! . counters)
(call-ensuring-atomicity!
(lambda ()

(for-each (lambda (counter) (counter))

Chapter 5: Multithreading 84

counters))))

This approach has a number of advantages:
• The original control structure is preserved, only with provisional operators for shared

memory access that we explicitly wish to be synchronized and with call-ensuring-
atomicity wrapping the portions of code that we explicitly want to be atomic.

• Composition of transactions is entirely transparent; it is accomplished automatically
simply by call-ensuring-atomicity.

• Transactions can be nested arbitrarily deeply, and there is no problem of accidentally
locking the same resource again at a deeper nesting level to induce deadlock.

• No explicit mutual exclusion or blocking is necessary. Threads proceed without heed
to others, but do not actually write data to the shared memory until its validity is
ensured. There is no deadlock at all.

5.2.5 Low-level optimistic concurrency

Along with the higher-level operations described above, there are some lower-level prim-
itives for finer control over optimistic concurrency.

[procedure]make-proposal −→ proposal
[procedure]current-proposal −→ proposal
[procedure]set-current-proposal! proposal −→ unspecified
[procedure]remove-current-proposal! −→ unspecified

Make-proposal creates a fresh proposal. Current-proposal returns the current
thread’s proposal. Set-current-proposal! sets the current thread’s proposal to
proposal. Remove-current-proposal! sets the current thread’s proposal to #f.

[procedure]maybe-commit −→ boolean
[procedure]invalidate-current-proposal! −→ unspecified

Maybe-commit checks that the current thread’s proposal is still valid. If it is, the
proposal’s writes are committed, and maybe-commit returns #t; if not, the current
thread’s proposal is set to #f and maybe-commit returns #f. Invalidate-current-
proposal! causes an inconsistency in the current proposal by caching a read and
then directly writing to the place that read was from.

[syntax]with-new-proposal (lose) body −→ values
Convenience for repeating a transaction. With-new-proposal saves the current pro-
posal and will reinstates it when everything is finished. After saving the current
proposal, it binds lose to a nullary procedure that installs a fresh proposal and that
evaluates body ; it then calls lose. Typically, the last thing, or close to last thing, that
body will do is attempt to commit the current proposal, and, if that fails, call lose
to retry. With-new-proposal expands to a form that returns the values that body
returns.
This retry-at-most example tries running the transaction of thunk, and, if it fails to
commit, retries at most n times. If the transaction is successfully committed before
n repeated attempts, it returns true; otherwise, it returns false.

Chapter 5: Multithreading 85

(define (retry-at-most n thunk)
(with-new-proposal (lose)

(thunk)
(cond ((maybe-commit) #t)

((zero? n) #f)
(else (set! n (- n 1))

(lose)))))

5.3 Higher-level synchronization

This section details the various higher-level thread synchronization devices that
Scheme48 provides.

5.3.1 Condition variables

Condition variables are multiple-assignment cells on which readers block. Threads may
wait on condition variables; when some other thread assigns a condition variable, all threads
waiting on it are revived. The condvars structure exports all of these condition-variable-
related names.

In many concurrency systems, condition variables are operated in conjunction with mu-
tual exclusion locks. On the other hand, in Scheme48, they are used in conjunction with
its optimistic concurrency devices.

[procedure]make-condvar [id] −→ condvar
[procedure]condvar? object −→ boolean

Condition variable constructor & disjoint type predicate. Id is used purely for debug-
ging.

[procedure]maybe-commit-and-wait-for-condvar condvar −→ boolean
[procedure]maybe-commit-and-set-condvar! condvar value −→ boolean

Maybe-commit-and-wait-for-condvar attempts to commit the current proposal. If
the commit succeeded, the current thread is blocked on condvar, and when the current
thread is woken up, maybe-commit-and-wait-for-condvar returns #t. If the com-
mit did not succeed, maybe-commit-and-wait-for-condvar immediately returns #f.
Maybe-commit-and-set-condvar! attempts to commit the current proposal as well.
If it succeeds, it is noted that condvar has a value, condvar’s value is set to be value,
and all threads waiting on condvar are woken up.

Note: Do not use these in atomic transactions as delimited by call-ensuring-
atomicity &c.; see the note in Section 5.2 [Optimistic concurrency], page 79 on
this matter for details.

[procedure]condvar-has-value? condvar −→ boolean
[procedure]condvar-value condvar −→ value

Condvar-has-value? tells whether or not condvar has been assigned. If it has been
assigned, condvar-value accesses the value to which it was assigned.

Chapter 5: Multithreading 86

[procedure]set-condvar-has-value?! condvar boolean −→ unspecified
[procedure]set-condvar-value! condvar value −→ unspecified

Set-condvar-has-value?! is used to tell whether or not condvar is assigned. Set-
condvar-value! sets condvar’s value.
Note: Set-condvar-has-value?! should be used only with a second argument of
#f. Set-condvar-value! is a very dangerous routine, and maybe-commit-and-set-
condvar! is what one should almost always use, except if one wishes to clean up after
unassigning a condition variable.

5.3.2 Placeholders

Placeholders are similar to condition variables, except that they may be assigned only
once; they are in general a much simpler mechanism for throw-away temporary synchro-
nization devices. They are provided by the placeholders structure.

[procedure]make-placeholder [id] −→ placeholder
[procedure]placeholder? object −→ boolean

Placeholder constructor & disjoint type predicate. Id is used only for debugging
purposes when printing placeholders.

[procedure]placeholder-value placeholder −→ value
[procedure]placeholder-set! placeholder value −→ unspecified

Placeholder-value blocks until placeholder is assigned, at which point it returns
the value assigned. Placeholder-set! assigns placeholder’s value to value, awak-
ening all threads waiting for placeholder. It is an error to assign a placeholder with
placeholder-set! that has already been assigned.

5.3.3 Value pipes

Value pipes are asynchronous communication pipes between threads. The value-pipes
structure exports these value pipe operations.

[procedure]make-pipe [size [id]] −→ value-pipe
[procedure]pipe? object −→ boolean

Make-pipe is the value pipe constructor. Size is a limit on the number of elements
the pipe can hold at one time. Id is used for debugging purposes only in printing
pipes. Pipe? is the disjoint type predicate for value pipes.

[procedure]empty-pipe? pipe −→ boolean
[procedure]empty-pipe! pipe −→ unspecified

Empty-pipe? returns #t if pipe has no elements in it and #f if not. Empty-pipe!
removes all elements from pipe.

[procedure]pipe-read! pipe −→ value
[procedure]pipe-maybe-read! pipe −→ value or #f
[procedure]pipe-maybe-read?! pipe −→ [boolean value]

Pipe-read! reads a value from pipe, removing it from the queue. It blocks if there are
no elements available in the queue. Pipe-maybe-read! attempts to read & return a

Chapter 5: Multithreading 87

single value from pipe; if no elements are available in its queue, it instead returns #f.
Pipe-maybe-read?! does similarly, but it returns two values: a boolean, signifying
whether or not a value was read; and the value, or #f if no value was read. Pipe-
maybe-read?! is useful when pipe may contain the value #f.

[procedure]pipe-write! pipe value −→ unspecified
[procedure]pipe-push! pipe value −→ unspecified
[procedure]pipe-maybe-write! pipe value −→ boolean

Pipe-write! attempts to add value to pipe’s queue. If pipe’s maximum size, as
passed to make-pipe when constructing the pipe, is either #f or greater than the
number of elements in pipe’s queue, pipe-write! will not block; otherwise it will
block until a space has been made available in the pipe’s queue by another thread
reading from it. Pipe-push! does similarly, but, in the case where the pipe is full,
it pushes the first element to be read out of the pipe. Pipe-maybe-write! is also
similar to pipe-write!, but it returns #t if the pipe was not full, and it immediately
returns #f if the pipe was full.

5.4 Concurrent ML

Scheme48 provides a high-level event synchronization facility based on on Reppy’s Con-
current ML [Reppy 99]. The primary object in CML is the rendezvous1, which represents
a point of process synchronization. A rich library for manipulating rendezvous and several
useful, high-level synchronization abstractions are built atop rendezvous.

5.4.1 Rendezvous concepts

When access to a resource must be synchronized between multiple processes, for example
to transmit information from one process to another over some sort of communication
channel, the resource provides a rendezvous to accomplish this, which represents a potential
point of synchronization between processes. The use of rendezvous occurs in two stages:
synchronization and enablement. Note that creation of rendezvous is an unrelated matter,
and it does not (or should not) itself result in any communication or synchronization between
processes.

When a process requires an external resource for which it has a rendezvous, it synchro-
nizes that rendezvous. This first polls whether the resource is immediately available; if so,
the rendezvous is already enabled, and a value from the resource is immediately produced
from the synchronization. Otherwise, the synchronization of the rendezvous is recorded
somehow externally, and the process is blocked until the rendezvous is enabled by an ex-
ternal entity, usually one that made the resource available. Rendezvous may be reüsed
arbitrarily many times; the value produced by an enabled, synchronized rendezvous is not
cached. Note, however, that the construction of a rendezvous does not (or should not) have
destructive effect, such as sending a message to a remote server or locking a mutex; the only
destructive effects should be incurred at synchronization or enablement time. For effecting
initialization prior to the synchronization of a rendezvous, see below on delayed rendezvous.

1 In the original CML, these were called events, but that term was deemed too overloaded and confusing
when Scheme48’s library was developed.

Chapter 5: Multithreading 88

Rendezvous may consist of multiple rendezvous choices, any of which may be taken when
enabled but only one of which actually is. If, when a composite rendezvous is initially syn-
chronized, several components are immediately enabled, each one has a particular numeric
priority which is used to choose among them. If several are tied for the highest priority,
a random one is chosen. If none is enabled when the choice is synchronized, however, the
synchronizer process is suspended until the first one is enabled and revives the process.
When this happens, any or all of the other rendezvous components may receive a negative
acknowledgement; see below on delayed rendezvous with negative acknowledgement.

A rendezvous may also be a rendezvous wrapped with a procedure, which means that,
when the internal rendezvous becomes enabled, the wrapper one also becomes enabled, and
the value it produces is the result of applying its procedure to the value that the internal
rendezvous produced. This allows the easy composition of complex rendezvous from simpler
ones, and it also provides a simple mechanism for performing different actions following the
enablement of different rendezvous, rather than conflating the results of several possible
rendezvous choices into one value and operating on that (though this, too, can be a useful
operation).

5.4.2 Delayed rendezvous

A rendezvous may be delayed, which means that its synchronization requires some pro-
cessing that could not or would not be reasonable to perform at its construction. It consists
of a nullary procedure to generate the actual rendezvous to synchronize when the delayed
rendezvous is itself synchronized.

For example, a rendezvous for generating unique identifiers, by sending a request over
a network to some server and waiting for a response, could not be constructed by waiting
for a response from the server, because that may block, which should not occur until syn-
chronization. It also could not be constructed by first sending a request to the server at all,
because that would have a destructive effect, which is not meant to happen when creating
a rendezvous, only when synchronizing or enabling one.

Instead, the unique identifier rendezvous would be implemented as a delayed rendezvous
that, when synchronized, would send a request to the server and generate a rendezvous for
the actual synchronization that would become enabled on receiving the server’s response.

5.4.2.1 Negative acknowledgements

Delayed rendezvous may also receive negative acknowledgements. Rather than a simple
nullary procedure being used to generate the actual rendezvous for synchronization, the
procedure is unary, and it is passed a negative acknowledgement rendezvous, or nack for
short. This nack is enabled if the actual rendezvous was not chosen among a composite
group of rendezvous being synchronized. This allows not only delaying initialization of
rendezvous until necessary but also aborting or rescinding initialized transactions if their
rendezvous are unchosen and therefore unused.

For example, a complex database query might be the object of some rendezvous, but it
is pointless to continue constructing the result if that rendezvous is not chosen. A nack can
be used to prematurely abort the query to the database if another rendezvous was chosen
in the stead of that for the database query.

Chapter 5: Multithreading 89

5.4.3 Rendezvous combinators

The rendezvous structure exports several basic rendezvous combinators.

[Constant]never-rv −→ rendezvous
A rendezvous that is never enabled. If synchronized, this will block the synchronizing
thread indefinitely.

[procedure]always-rv value −→ rendezvous
Returns a rendezvous that is always enabled with the given value. This rendezvous
will never block the synchronizing thread.

[procedure]guard rv-generator −→ rendezvous
[procedure]with-nack rv-generator −→ rendezvous

Guard returns a delayed rendezvous, generated by the given procedure rv-generator,
which is passed zero arguments whenever the resultant rendezvous is synchronized.
With-nack returns a delayed rendezvous for which a negative acknowledgement ren-
dezvous is constructed. If the resultant rendezvous is synchronized as a part of a
composite rendezvous, the procedure rv-generator is passed a nack for the syn-
chronization, and it returns the rendezvous to actually synchronize. If the delayed
rendezvous was synchronized as part of a composite group of rendezvous, and another
rendezvous among that group is enabled and chosen first, the nack is enabled.

[procedure]choose rendezvous . . . −→ composite-rendezvous
Returns a rendezvous that, when synchronized, synchronizes all of the given compo-
nents, and chooses only the first one to become enabled, or the highest priority one if
there are any that are already enabled. If any of the rendezvous that were not chosen
when the composite became enabled were delayed rendezvous with nacks, their nacks
are enabled.

[procedure]wrap rendezvous procedure −→ rendezvous
Returns a rendezvous equivalent to rendezvous but wrapped with procedure, so that,
when the resultant rendezvous is synchronized, rendezvous is transitively synchro-
nized, and when rendezvous is enabled, the resultant rendezvous is also enabled, with
the value that procedure returns when passed the value produced by rendezvous.

(sync (wrap (always-rv 4)
(lambda (x) (* x x)))) −→ 16

[procedure]sync rendezvous −→ value (may block)
[procedure]select rendezvous . . . −→ value (may block)

Sync and select synchronize rendezvous. Sync synchronizes a single one; select
synchronizes any from the given set of them. Select is equivalent to (sync (apply
choose rendezvous ...)), but it may be implemented more efficiently.

5.4.3.1 Timing rendezvous

The rendezvous-time structure exports two constructors for rendezvous that become
enabled only at a specific time or after a delay in time.

Chapter 5: Multithreading 90

[procedure]at-real-time-rv milliseconds −→ rendezvous
[procedure]after-time-rv milliseconds −→ rendezvous

At-real-time-rv returns a rendezvous that becomes enabled at the time milliseconds
relative to the start of the Scheme program. After-time-rv returns a rendezvous
that becomes enabled at least milliseconds after synchronization (not construction).

5.4.4 Rendezvous communication channels

5.4.4.1 Synchronous channels

The rendezvous-channels structure provides a facility for synchronous channels: chan-
nels for communication between threads such that any receiver blocks until another thread
sends a message, or any sender blocks until another thread receives the sent message. In
CML, synchronous channels are also called merely ‘channels.’

[procedure]make-channel −→ channel
[procedure]channel? object −→ boolean

Make-channel creates and returns a new channel. Channel? is the disjoint type
predicate for channels.

[procedure]send-rv channel message −→ rendezvous
[procedure]send channel message −→ unspecified (may block)

Send-rv returns a rendezvous that, when synchronized, becomes enabled when a
reception rendezvous for channel is synchronized, at which point that reception ren-
dezvous is enabled with a value of message. When enabled, the rendezvous returned
by send-rv produces an unspecified value. Send is like send-rv, but it has the effect
of immediately synchronizing the rendezvous, so it therefore may block, and it does
not return a rendezvous; (send channel message) is equivalent to (sync (send-rv
channel message)).

[procedure]receive-rv channel −→ rendezvous
[procedure]receive channel −→ value (may block)

Receive-rv returns a rendezvous that, when synchronized, and when a sender ren-
dezvous for channel with some message is synchronized, becomes enabled with that
message, at which point the sender rendezvous is enabled with an unspecified value.
Receive is like receive-rv, but it has the effect of immediately synchronizing the re-
ception rendezvous, so it therefore may block, and it does not return the rendezvous
but rather the message that was sent; (receive channel) is equivalent to (sync
(receive-rv channel)).

5.4.4.2 Asynchronous channels

The rendezvous-async-channels provides an asynchronous channel2 facility. Like syn-
chronous channels, any attempts to read from an asynchronous channel will block if there

2 Known as mailboxes in Reppy’s original CML.

Chapter 5: Multithreading 91

are no messages waiting to be read. Unlike synchronous channels, however, sending a mes-
sage will never block. Instead, a queue of messages or a queue of recipients is maintained: if
a message is sent and there is a waiting recipient, the message is delivered to that recipient;
otherwise it is added to the queue of messages. If a thread attempts to receive a message
from an asynchronous channel and there is a pending message, it receives that message;
otherwise it adds itself to the list of waiting recipients and then blocks.

Note: Operations on synchronous channels from the structure rendezvous-channels
do not work on asynchronous channels.

[procedure]make-async-channel −→ async-channel
[procedure]async-channel? obj −→ boolean

Make-async-channel creates and returns an asynchronous channel. Async-channel?
is the disjoint type predicate for asynchronous channels.

[procedure]receive-async-rv channel −→ rendezvous
[procedure]receive-async channel −→ value (may block)

Receive-async-rv returns a rendezvous that, when synchronized, becomes enabled
when a message is available in channel’s queue of messages. Receive-async has
the effect of immediately synchronizing such a rendezvous and, when the rendezvous
becomes enabled, returning the value itself, rather than the rendezvous; (receive-
async channel) is equivalent to (sync (receive-async-rv channel)).

[procedure]send-async channel message −→ unspecified
Sends a message to the asynchronous channel channel. Unlike the synchronous chan-
nel send operation, this procedure never blocks arbitrarily long.3 There is, therefore,
no need for a send-async-rv like the send-rv for synchronous channels. If there is
a waiting message recipient, the message is delivered to that recipient; otherwise, it
is added to the channel’s message queue.

5.4.5 Rendezvous-synchronized cells

5.4.5.1 Placeholders: single-assignment cells

Placeholders4 are single-assignment cells on which readers block until they are assigned.
Note: These placeholders are disjoint from and incompatible with the placeholder mech-

anism provided in the placeholders structure, and attempts to apply operations on one
to values of the other are errors.

[procedure]make-placeholder [id] −→empty placeholder
[procedure]placeholder? object −→ boolean

Make-placeholder creates and returns a new, empty placeholder. Id is used only for
debugging purposes; it is included in the printed representation of the placeholder.
Placeholder? is the disjoint type predicate for placeholders.

3 However, asynchronous channels are implemented by a thread that manages two synchronous channels
(one for sends & one for receives), so this may block briefly if the thread is busy receiving other send or
receive requests.

4 Called I-variables in Reppy’s CML, and I-structures in ID-90.

Chapter 5: Multithreading 92

[procedure]placeholder-value-rv placeholder −→ rendezvous
[procedure]placeholder-value placeholder −→ value (may block)

Placeholder-value-rv returns a rendezvous that, when synchronized, becomes en-
abled when placeholder has a value, with that value. Placeholder-value has the
effect of immediately synchronizing such a rendezvous, and it returns the value di-
rectly, but possibly after blocking.

[procedure]placeholder-set! placeholder value −→ unspecified
Sets placeholder’s value to be value, and enables all rendezvous for placeholder’s value
with that value. It is an error if placeholder has already been assigned.

5.4.5.2 Jars: multiple-assignment cells

Jars5 are multiple-assignment cells on which readers block. Reading from a full jar
has the effect of emptying it, enabling the possibility of subsequent assignment, unlike
placeholders; and jars may be assigned multiple times, but, like placeholders, only jars that
are empty may be assigned.

[procedure]make-jar [id] −→ empty jar
[procedure]jar? object −→ boolean

Make-jar creates and returns a new, empty jar. Id is used only for debugging pur-
poses; it is included in the printed representation of the jar. Jar? is the disjoint type
predicate for jars.

[procedure]jar-take-rv jar −→ rendezvous
[procedure]jar-take jar −→ value (may block)

Jar-take-rv returns a rendezvous that, when synchronized, becomes enabled when
jar has a value, which is what value the rendezvous becomes enabled with; when
that rendezvous is enabled, it also removes the value from jar, putting the jar into an
empty state. Jar-take has the effect of synchronizing such a rendezvous, may block
because of that, and returns the value of the jar directly, not a rendezvous.

[procedure]jar-put! jar value −→ unspecified
Jar-put! puts value into the empty jar jar. If any taker rendezvous are waiting, the
first is enabled with the value, and the jar is returned to its empty state; otherwise,
the jar is put in the full state. Jar-put! is an error if applied to a full jar.

5.4.6 Concurrent ML to Scheme correspondence

CML name Scheme name
structure CML structure threads
version (no equivalent)
banner (no equivalent)
spawnc (no equivalent; use spawn and lambda)
spawn spawn
yield relinquish-timeslice

5 Termed M-variables in Reppy’s CML.

Chapter 5: Multithreading 93

exit terminate-current-thread
getTid current-thread
sameTid eq? (R5RS)
tidToString (no equivalent; use the writer)

structure threads-internal
hashTid thread-uid

structure rendezvous
wrap wrap
guard guard
withNack with-nack
choose choose
sync sync
select select
never never-rv
alwaysEvt always-rv
joinEvt (no equivalent)

structure rendezvous-channels
channel make-channel
sameChannel eq? (R5RS)
send send
recv receive
sendEvt send-rv
recvEvt receive-rv
sendPoll (no equivalent)
recvPoll (no equivalent)

structure rendezvous-time
timeOutEvt after-time-rv
atTimeEvt at-real-time-rv
structure SyncVar structure rendezvous-placeholders
exception Put (no equivalent)
iVar make-placeholder
iPut placeholder-set!
iGet placeholder-value
iGetEvt placeholder-value-rv
iGetPoll (no equivalent)
sameIVar eq? (R5RS)

structure jars
mVar make-jar
mVarInit (no equivalent)
mPut jar-put!
mTake jar-take
mTakeEvt jar-take-rv
mGet (no equivalent)
mGetEvt (no equivalent)
mTakePoll (no equivalent)
mGetPoll (no equivalent)
mSwap (no equivalent)

Chapter 5: Multithreading 94

mSwapEvt (no equivalent)
sameMVar eq? (R5RS)
structure Mailbox structure rendezvous-async-channels
mailbox make-async-channel
sameMailbox eq? (R5RS)
send send-async
recv receive-async
recvEvt receive-async-rv
recvPoll (no equivalent)

5.5 Pessimistic concurrency

While Scheme48’s primitive thread synchronization mechanisms revolve around opti-
mistic concurrency, Scheme48 still provides the more well-known mechanism of pessimistic
concurrency, or mutual exclusion, with locks. Note that Scheme48’s pessimistic concur-
rency facilities are discouraged, and very little of the system uses them (at the time this
documentation was written, none of the system uses locks), and the pessimistic concurrency
libraries are limited to just locks; condition variables are integrated only with optimistic
concurrency. Except for inherent applications of pessimistic concurrency, it is usually better
to use optimistic concurrency in Scheme48.

These names are exported by the locks structure.

[procedure]make-lock −→ lock
[procedure]lock? −→ boolean
[procedure]obtain-lock lock −→ unspecified
[procedure]maybe-obtain-lock lock −→ boolean
[procedure]release-lock lock −→ unspecified

Make-lock creates a new lock in the ‘released’ lock state. Lock? is the disjoint type
predicate for locks. Obtain-lock atomically checks to see if lock is in the ‘released’
state: if it is, lock is put into the ‘obtained’ lock state; otherwise, obtain-lock waits
until lock is ready to be obtained, at which point it is put into the ‘obtained’ lock
state. Maybe-obtain-lock atomically checks to see if lock is in the ‘released’ state: if
it is, lock is put into the ‘obtained’ lock state, and maybe-obtain-lock returns #t; if
it is in the ‘obtained’ state, maybe-obtain-lock immediately returns #f. Release-
lock sets lock’s state to be ‘released,’ letting the next thread waiting to obtain it do
so.

5.6 Custom thread synchronization

Along with several useful thread synchronization abstraction facilities built-in to
Scheme48, there is also a simple and lower-level mechanism for suspending & resuming
threads. The following bindings are exported from the threads-internal structure.

Threads have a field for a cell (see Section 4.1.7 [Cells], page 45) that is used when the
thread is suspended. When it is ready to run, it is simply #f. Suspending a thread involves
setting its cell to a cell accessible outside, so the thread can later be awoken. When the
thread is awoken, its cell field and the contents of the cell are both set to #f. Often, objects

Chapter 5: Multithreading 95

involved in the synchronization of threads will have a queue (see Section 4.1.8 [Queues],
page 45) of thread cells. There are two specialized operations on thread cell queues that
simplify filtering out cells of threads that have already been awoken.

[procedure]maybe-commit-and-block cell −→ boolean
[procedure]maybe-commit-and-block-on-queue −→ boolean

These attempt to commit the current proposal. If the commit fails, they immediately
return #f. Otherwise, they suspend the current thread. Maybe-commit-and-block
first sets the current thread’s cell to cell, which should contain the current thread.
Maybe-commit-and-block-on-queue adds a cell containing the current thread to
queue first. When the current thread is finally resumed, these return #t.

[procedure]maybe-commit-and-make-ready thread-or-queue −→ boolean
Attempts to commit the current proposal. If the commit fails, this returns #f. Oth-
erwise, maybe-commit-and-make-ready awakens the specified thread[s] by clearing
the thread/each thread’s cell and sending a message to the relevant scheduler[s] and
returns #t. If thread-or-queue is a thread, it simply awakens that; if it is a queue, it
empties the queue and awakens each thread in it.

[procedure]maybe-dequeue-thread! thread-cell-queue −→ thread or boolean
[procedure]thread-queue-empty? thread-cell-queue −→ boolean

Maybe-dequeue-thread! returns the next thread cell’s contents in the queue of thread
cells thread-cell-queue. It removes cells that have been emptied, i.e. whose threads
have already been awoken. Thread-queue-empty? returns #t if there are no cells in
thread-cell-queue that contain threads, i.e. threads that are still suspended. It too
removes cells that have been emptied.

For example, the definition of placeholders (see Section 5.3 [Higher-level synchronization],
page 85) is presented here. Placeholders contain two fields: the cached value (set when the
placeholder is set) & a queue of threads waiting (set to #f when the placeholder is assigned).

(define-synchronized-record-type placeholder :placeholder
(really-make-placeholder queue)
(value queue) ; synchronized fields
placeholder?
(queue placeholder-queue set-placeholder-queue!)
(value placeholder-real-value set-placeholder-value!))

(define (make-placeholder)
(really-make-placeholder (make-queue)))

(define (placeholder-value placeholder)
;; Set up a new proposal for the transaction.
(with-new-proposal (lose)
(cond ((placeholder-queue placeholder)

;; There’s a queue of waiters. Attempt to commit the
;; proposal and block. We’ll be added to the queue if the
;; commit succeeds; if it fails, retry.
=> (lambda (queue)

Chapter 5: Multithreading 96

(or (maybe-commit-and-block-on-queue queue)
(lose))))))

;; Once our thread has been awoken, the placeholder will be set.
(placeholder-real-value placeholder))

(define (placeholder-set! placeholder value)
;; Set up a new proposal for the transaction.
(with-new-proposal (lose)
(cond ((placeholder-queue placeholder)

=> (lambda (queue)
;; Clear the queue, set the value field.
(set-placeholder-queue! placeholder #f)
(set-placeholder-value! placeholder value)
;; Attempt to commit our changes and awaken all of the
;; waiting threads. If the commit fails, retry.
(if (not (maybe-commit-and-make-ready queue))

(lose))))
(else
;; Someone assigned it first. Since placeholders are
;; single-assignment cells, this is an error.
(error "placeholder is already assigned"

placeholder
(placeholder-real-value placeholder))))))

Chapter 6: Libraries 97

6 Libraries

This chapter details a number of useful libraries built-in to Scheme48.

6.1 Boxed bitwise-integer masks

Scheme48 provides a facility for generalized boxed bitwise-integer masks. Masks repre-
sent sets of elements. An element is any arbitrary object that represents an index into a bit
mask; mask types are parameterized by an isomorphism between elements and their integer
indices. Usual abstract set operations are available on masks. The mask facility is divided
into two parts: the mask-types structure, which provides the operations on the generalized
mask type descriptors; and the masks structure, for the operations on masks themselves.

6.1.1 Mask types

[procedure]make-mask-type name elt? index->elt elt->index size −→ mask-type
[procedure]mask-type? object −→ boolean
[procedure]mask? object −→ boolean

Make-mask-type constructs a mask type with the given name. Elements of this mask
type must satisfy the predicate elt?. Integer->elt is a unary procedure that maps bit
mask indices to possible set elements; elt->integer maps possible set elements to bit
mask indices. Size is the number of possible elements of masks of the new type, i.e.
the number of bits needed to represent the internal bit mask. Mask? is the disjoint
type predicate for mask objects.

[procedure]mask-type mask −→ mask-type
[procedure]mask-has-type? mask type −→ boolean

Mask-type returns mask’s type. Mask-has-type? returns #t if mask’s type is the
mask type type or #f if not.

The mask-types structure, not the masks structure, exports mask? and mask-has-
type?: it is expected that programmers who implement mask types will define type predi-
cates for masks of their type based on mask? and mask-has-type?, along with constructors
&c. for their masks.

[procedure]integer->mask type integer −→ mask
[procedure]list->mask type elts −→ mask

Integer->mask returns a mask of type type that contains all the possible elements
e of the type type such that the bit at e’s index is set. List->mask returns a mask
whose type is type containing all of the elements in the list elts.

6.1.2 Masks

[procedure]mask->integer mask −→ integer
[procedure]mask->list mask −→ element-list

Mask->integer returns the integer bit set that mask uses to represent the element
set. Mask->list returns a list of all the elements that mask contains.

Chapter 6: Libraries 98

[procedure]mask-member? mask elt −→ boolean
[procedure]mask-set mask elt . . . −→ mask
[procedure]mask-clear mask elt . . . −→ mask

Mask-member? returns true if elt is a member of the mask mask, or #f if not. Mask-
set returns a mask with all the elements in mask as well as each elt Mask-clear
returns a mask with all the elements in mask but with none of elt

[procedure]mask-union mask1 mask2 . . . −→ mask
[procedure]mask-intersection mask1 mask2 . . . −→ mask
[procedure]mask-subtract maska maskb −→ mask
[procedure]mask-negate mask −→ mask

Set operations on masks. Mask-union returns a mask containing every element that is
a member of any one of its arguments. Mask-intersection returns a mask containing
every element that is a member of every one of its arguments. Mask-subtract returns
a mask of every element that is in maska but not also in maskb. Mask-negate returns
a mask whose members are every possible element of mask’s type that is not in mask.

6.2 Enumerated/finite types and sets

(This section was derived from work copyrighted (C) 1993-2005 by Richard Kelsey,
Jonathan Rees, and Mike Sperber.)

The structure finite-types has two macros for defining finite or enumerated record
types. These are record types for which there is a fixed set of instances, all of which are
created at the same time as the record type itself. Also, the structure enum-sets has several
utilities for building sets of the instances of those types, although it is generalized beyond
the built-in enumerated/finite type device. There is considerable overlap between the boxed
bitwise-integer mask library (see Section 6.1 [Boxed bitwise-integer masks], page 97) and
the enumerated set facility.

6.2.1 Enumerated/finite types

[syntax]define-enumerated-type
(define-enumerated-type dispatcher type

predicate

instance-vector

name-accessor

index-accessor

(instance-name
...))

This defines a new record type, to which type is bound, with as many instances
as there are instance-names. Predicate is defined to be the record type’s predicate.
Instance-vector is defined to be a vector containing the instances of the type in the
same order as the instance-name list. Dispatcher is defined to be a macro of the form
(dispatcher instance-name); it evaluates to the instance with the given name, which
is resolved at macro-expansion time. Name-accessor & index-accessor are defined to

Chapter 6: Libraries 99

be unary procedures that return the symbolic name & index into the instance vector,
respectively, of the new record type’s instances.
For example,

(define-enumerated-type colour :colour
colour?
colours
colour-name
colour-index
(black white purple maroon))

(colour-name (vector-ref colours 0)) ⇒ black
(colour-name (colour white)) ⇒ white
(colour-index (colour purple)) ⇒ 2

[syntax]define-finite-type
(define-finite-type dispatcher type

(field-tag ...)
predicate

instance-vector

name-accessor

index-accessor

(field-tag accessor [modifier])
...
((instance-name field-value ...)
...))

This is like define-enumerated-type, but the instances can also have added fields
beyond the name and the accessor. The first list of field tags lists the fields that
each instance is constructed with, and each instance is constructed by applying the
unnamed constructor to the initial field values listed. Fields not listed in the first
field tag list must be assigned later.
For example,

(define-finite-type colour :colour
(red green blue)
colour?
colours
colour-name
colour-index
(red colour-red)
(green colour-green)
(blue colour-blue)
((black 0 0 0)
(white 255 255 255)
(purple 160 32 240)
(maroon 176 48 96)))

(colour-name (colour black)) ⇒ black

Chapter 6: Libraries 100

(colour-name (vector-ref colours 1)) ⇒ white
(colour-index (colour purple)) ⇒ 2
(colour-red (colour maroon)) ⇒ 176

6.2.2 Sets over enumerated types

[syntax]define-enum-set-type
(define-enum-set-type set-syntax type

predicate

list->x-set
element-syntax

element-predicate

element-vector

element-index)

This defines set-syntax to be a syntax for constructing sets, type to be an object that
represents the type of enumerated sets, predicate to be a predicate for those sets, and
list->x-set to be a procedure that converts a list of elements into a set of the new
type.
Element-syntax must be the name of a macro for constructing set elements from
names (akin to the dispatcher argument to the define-enumerated-type & define-
finite-type forms). Element-predicate must be a predicate for the element type,
element-vector a vector of all values of the element type, and element-index a proce-
dure that returns the index of an element within element-vector.

[procedure]enum-set->list enum-set −→ element list
[procedure]enum-set-member? enum-set element −→ boolean
[procedure]enum-set=? enum-seta enum-setb −→ boolean
[procedure]enum-set-union enum-seta enum-setb −→ enum-set
[procedure]enum-set-intersection enum-seta enum-setb −→ enum-set
[procedure]enum-set-negation enum-set −→ enum-set

Enum-set->list returns a list of elements within enum-set. Enum-set-member? tests
whether element is a member of enum-set. Enum-set=? tests whether two enumer-
ated sets are equal, i.e. contain all the same elements. The other procedures perform
standard set algebra operations on enumerated sets. It is an error to pass an el-
ement that does not satisfy enum-set’s predicate to enum-set-member? or to pass
two enumerated sets of different types to enum-set=? or the enumerated set algebra
operators.

Here is a simple example of enumerated sets built atop the enumerated types described
in the previous section:

(define-enumerated-type colour :colour
colour?
colours
colour-name
colour-index
(red blue green))

Chapter 6: Libraries 101

(define-enum-set-type colour-set :colour-set
colour-set?
list->colour-set

colour colour? colours colour-index)

(enum-set->list (colour-set red blue))
⇒ (#{Colour red} #{Colour blue})

(enum-set->list (enum-set-negation (colour-set red blue)))
⇒ (#{Colour green})

(enum-set-member? (colour-set red blue) (colour blue))
⇒ #t

6.3 Macros for writing loops

(This section was derived from work copyrighted (C) 1993-2005 by Richard Kelsey,
Jonathan Rees, and Mike Sperber.)

Iterate & reduce are extensions of named-let for writing loops that walk down one or
more sequences, such as the elements of a list or vector, the characters read from a port, or
an arithmetic series. Additional sequences can be defined by the user. Iterate & reduce
are exported by the structure reduce.

6.3.1 Main looping macros

[syntax]iterate
(iterate loop-name ((seq-type elt-var arg ...)

...)
((state-var init)
...)

body

[tail-exp])

Iterate steps the elt-vars in parallel through the sequences, while each state-var has
the corresponding init for the first iteration and later values supplied by the body. If
any sequence has reached the limit, the value of the iterate expression is the value of
tail-exp, if present, or the current values of the state-vars, returned as multiple values.
If no sequence has reached its limit, body is evaluated and either calls loop-name with
new values for the state-vars or returns some other value(s).

The loop-name and the state-vars & inits behave exactly as in named-let, in that
loop-name is bound only in the scope of body, and each init is evaluated parallel in
the enclosing scope of the whole expression. Also, the arguments to the sequence
constructors will be evaluated in the enclosing scope of the whole expression, or in an
extension of that scope peculiar to the sequence type. The named-let expression

(let loop-name ((state-var init) ...)
body

...)

Chapter 6: Libraries 102

is equivalent to an iterate expression with no sequences (and with an explicit let
wrapped around the body expressions to take care of any internal definitions):

(iterate loop-name ()
((state-var init) ...)

(let () body ...))

The seq-types are keywords (actually, macros of a particular form, which makes it
easy to add additional types of sequences; see below). Examples are list*, which
walks down the elements of a list, and vector*, which does the same for vectors. For
each iteration, each elt-var is bound to the next element of the sequence. The args
are supplied to the sequence processors as other inputs, such as the list or vector to
walk down.

If there is a tail-exp, it is evaluated when the end of one or more sequences is reached.
If the body does not call loop-name, however, the tail-exp is not evaluated. Unlike
named-let, the behaviour of a non-tail-recursive call to loop-name is unspecified,
because iterating down a sequence may involve side effects, such as reading characters
from a port.

[syntax]reduce
(reduce ((seq-type elt-var arg ...)

...)
((state-var init)
...)

body

[tail-exp])

If an iterate expression is not meant to terminate before a sequence has reached its
end, the body will always end with a tail call to loop-name. Reduce is a convenient
macro that makes this common case explicit. The syntax of reduce is the same as
that of iterate, except that there is no loop-name, and the body updates the state
variables by returning multiple values in the stead of passing the new values to loop-
name: the body must return as many values as there are state variables. By special
dispension, if there are no state variables, then the body may return any number of
values, all of which are ignored.

The value(s) returned by an instance of reduce is (are) the value(s) returned by the
tail-exp, if present, or the current value(s) of the state variables when the end of one
or more sequences is reached.

A reduce expression can be rewritten as an equivalent iterate expression by adding
a loop-name and a wrapper for the body that calls the loop-name:

(iterate loop ((seq-type elt-var arg ...)
...)

((state-var init)
...)

(call-with-values (lambda () body)
loop)

[tail-exp])

Chapter 6: Libraries 103

6.3.2 Sequence types

[sequence type]list* elt-var list
[sequence type]vector* elt-var vector
[sequence type]string* elt-var string
[sequence type]count* elt-var start [end [step]]
[sequence type]input* elt-var input-port reader-proc
[sequence type]stream* elt-var proc initial-seed

For lists, vectors, & strings, the elt-var is bound to the successive elements of the list
or vector, or the successive characters of the string.

For count*, the elt-var is bound to the elements of the sequence start, start +
step, start + 2*step, ..., end, inclusive of start and exclusive of end. The default
step is 1, and the sequence does not terminate if no end is given or if there is no
N > 0 such that end = start + Nstep. (= is used to test for termination.) For
example, (count* i 0 -1) does not terminate because it begins past the end value,
and (count* i 0 1 2) does not terminate because it skips over the end value.

For input*, the elements are the results of successive applications of reader-proc to
input-port. The sequence ends when the reader-proc returns an end-of-file object,
i.e. a value that satisfies eof-object?.

For stream*, the proc receives the current seed as an argument and must return two
values, the next value of the sequence & the next seed. If the new seed is #f, then
the previous element was the last one. For example, (list* elt list) is the same
as

(stream* elt
(lambda (list)

(if (null? list)
(values ’ignored #f)
(values (car list) (cdr list))))

list)

6.3.3 Synchronous sequences

When using the sequence types described above, a loop terminates when any of its
sequences terminate. To help detect bugs, it is useful to also have sequence types that
check whether two or more sequences end on the same iteration. For this purpose, there
is a second set of sequence types called synchronous sequences. Synchronous sequences are
like ordinary asynchronous sequences in every respect except that they cause an error to
be signalled if a loop is terminated by a synchronous sequence and some other synchronous
sequence did not reach its end on the same iteration.

Sequences are checked for termination in order from left to right, and if a loop is termi-
nated by an asynchronous sequence no further checking is done.

Chapter 6: Libraries 104

[synchronous sequence type]list% elt-var list
[synchronous sequence type]vector% elt-var vector
[synchronous sequence type]string% elt-var string
[synchronous sequence type]count% elt-var start end [step]
[synchronous sequence type]input% elt-var input-port reader-proc
[synchronous sequence type]stream% elt-var proc initial-seed

These are all identical to their asynchronous equivalents above, except that they are
synchronous. Note that count%’s end argument is required, unlike count*’s, because
it would be nonsensical to check for termination of a sequence that does not terminate.

6.3.4 Examples

Gathering the indices of list elements that answer true to some predicate.
(define (select-matching-items list pred)
(reduce ((list* elt list)

(count* i 0))
((hits ’()))

(if (pred elt)
(cons i hits)
hits)

(reverse hits)))

Finding the index of an element of a list that satisfies a predicate.
(define (find-matching-item list pred)

(iterate loop ((list* elt list)
(count* i 0))

() ; no state variables
(if (pred elt)

i
(loop))))

Reading one line of text from an input port.
(define (read-line port)
(iterate loop ((input* c port read-char))

((chars ’()))
(if (char=? c #\newline)

(list->string (reverse chars))
(loop (cons c chars)))

(if (null? chars)
(eof-object) ; from the PRIMITIVES structure
(list->string (reverse chars)))))

Counting the lines in a file. This must be written in a way other than with count*
because it needs the value of the count after the loop has finished, but the count variable
would not be bound then.

(define (line-count filename)
(call-with-input-file filename
(lambda (inport)

Chapter 6: Libraries 105

(reduce ((input* line inport read-line))
((count 0))

(+ count 1)))))

6.3.5 Defining sequence types

The sequence types are object-oriented macros similar to enumerations. An asyn-
chronous sequence macro needs to supply three values: #f to indicate that it is not syn-
chronous, a list of state variables and their initializers, and the code for one iteration. The
first two methods are written in continuation-passing style: they take another macro and
argument to which to pass their result. See [Friedman 00] for more details on the theory
behind how CPS macros work. The sync method receives no extra arguments. The state-
vars method is passed a list of names that will be bound to the arguments of the sequence.
The final method, for stepping the sequence forward, is passed the list of names bound to
the arguments and the list of state variables. In addition, there is a variable to be bound
to the next element of the sequence, the body expression for the loop, and an expression
for terminating the loop.

As an example, the definition of list* is:

(define-syntax list*
(syntax-rules (SYNC STATE-VARS STEP)
((LIST* SYNC (next more))
(next #F more))

((LIST* STATE-VARS (start-list) (next more))
(next ((list-var start-list)) more))

((LIST* STEP (start-list) (list-var) value-var loop-body tail-exp)
(IF (NULL? list-var)

tail-exp
(LET ((value-var (CAR list-var))

(list-var (CDR list-var)))
loop-body)))))

Synchronized sequences are similar, except that they need to provide a termination test
to be used when some other synchronized method terminates the loop. To continue the
example:

(define-syntax list%
(syntax-rules (SYNC DONE)
((LIST% SYNC (next more))
(next #T more))

((LIST% DONE (start-list) (list-var))
(NULL? list-var))

((LIST% . anything-else)
(LIST* . anything-else))))

6.3.6 Loop macro expansion

Here is an example of the expansion of the reduce macro:

Chapter 6: Libraries 106

(reduce ((list* x ’(1 2 3)))
((r ’()))

(cons x r))
7→

(let ((final (lambda (r) (values r)))
(list ’(1 2 3))
(r ’()))

(let loop ((list list) (r r))
(if (null? list)

(final r)
(let ((x (car list))

(list (cdr list)))
(let ((continue (lambda (r)

(loop list r))))
(continue (cons x r)))))))

The only mild inefficiencies in this code are the final & continue procedures, both of
which could trivially be substituted in-line. The macro expander could easily perform the
substitution for continue when there is no explicit proceed variable, as in this case, but
not in general.

6.4 Library data structures

Scheme48 includes several libraries for a variety of data structures.

6.4.1 Multi-dimensional arrays

The arrays structure exports a facility for multi-dimensional arrays, based on Alan
Bawden’s interface.

[procedure]make-array value dimension . . . −→ array
[procedure]array dimensions element . . . −→ array
[procedure]copy-array array . . . −→ array

Array constructors. Make-array constructs an array with the given dimensions, each
of which must be an exact, non-negative integer, and fills all of the elements with
value. Array creates an array with the given list of dimensions, which must be a list
of exact, non-negative integers, and fills it with the given elements in row-major order.
The number of elements must be equal to the product of dimensions. Copy-array
constructs an array with the same dimensions and contents as array.

[procedure]array? object −→ boolean
Disjoint type predicate for arrays.

[procedure]array-dimensions array −→ integer-list
Returns the list of dimensions of array.

Chapter 6: Libraries 107

[procedure]array-ref array index . . . −→ value
[procedure]array-set! array value index . . . −→ unspecified

Array element dereferencing and assignment. Each index must be in the half-open
interval [0,d), where d is the respective dimension of array corresponding with that
index.

[procedure]array->vector array −→ vector
Creates a vector of the elements in array in row-major order.

[procedure]make-shared-array array linear-map dimension . . . −→ array
Creates a new array that shares storage with array and uses the procedure linear-map
to map indices in the new array to indices in array. Linear-map must accept as many
arguments as dimension . . . , each of which must be an exact, non-negative integer;
and must return a list of exact, non-negative integers equal in length to the number
of dimensions of array, and which must be valid indices into array.

6.4.2 Red/black search trees

Along with hash tables for general object maps, Scheme48 also provides red/black binary
search trees generalized across key equality comparison & ordering functions, as opposed to
key equality comparison & hash functions with hash tables. These names are exported by
the search-trees structure.

[procedure]make-search-tree key= key< −→ search-tree
[procedure]search-tree? object −→ boolean

Make-search-tree creates a new search tree with the given key equality comparison &
ordering functions. Search-tree? is the disjoint type predicate for red/black binary
search trees.

[procedure]search-tree-ref search-tree key −→ value or #f
[procedure]search-tree-set! search-tree key value −→ unspecified
[procedure]search-tree-modify! search-tree key modifier −→ unspecified

Search-tree-ref returns the value associated with key in search-tree, or #f if no
such association exists. Search-tree-set! assigns the value of an existing association
in search-tree for key to be value, if the association already exists; or, if not, it
creates a new association with the given key and value. If value is #f, however, any
association is removed. Search-tree-modify! modifies the association in search-tree
for key by applying modifier to the previous value of the association. If no association
previously existed, one is created whose key is key and whose value is the result of
applying modifier to #f. If modifier returns #f, the association is removed. This is
equivalent to (search-tree-set! search-tree key (modifier (search-tree-ref
search-tree key))), but it is implemented more efficiently.

[procedure]search-tree-max search-tree −→ value or #f
[procedure]search-tree-min search-tree −→ value or #f
[procedure]pop-search-tree-max! search-tree −→ value or #f
[procedure]pop-search-tree-min! search-tree −→ value or #f

These all return two values: the key & value for the association in search-tree whose
key is the maximum or minimum of the tree. Search-tree-max and search-tree-

Chapter 6: Libraries 108

min do not remove the association from search-tree; pop-search-tree-max! and
pop-search-tree-min! do. If search-tree is empty, these all return the two values
#f and #f.

[procedure]walk-search-tree proc search-tree −→ unspecified
This applies proc to two arguments, the key & value, for every association in search-
tree.

6.4.3 Sparse vectors

Sparse vectors, exported by the structure sparse-vectors, are vectors that grow as
large as necessary without leaving large, empty spaces in the vector. They are implemented
as trees of subvectors.

[procedure]make-sparse-vector −→ sparse-vector
Sparse vector constructor.

[procedure]sparse-vector-ref sparse-vector index −→ value or #f
[procedure]sparse-vector-set! sparse-vector index value −→ unspecified

Sparse vector element accessor and modifier. In the case of sparse-vector-ref, if
index is beyond the highest index that was inserted into sparse-vector, it returns #f; if
sparse-vector-set! is passed an index beyond what was already assigned, it simply
extends the vector.

[procedure]sparse-vector->list sparse-vector −→ list
Creates a list of the elements in sparse-vector. Elements that uninitialized gaps
comprise are denoted by #f in the list.

6.5 I/O extensions

These facilities are all exported from the extended-ports structure.

Tracking ports track the line & column number that they are on.

[procedure]make-tracking-input-port sub-port −→ input-port
[procedure]make-tracking-output-port sub-port −→ output-port

Tracking port constructors. These simply create wrapper ports around sub-port that
track the line & column numbers.

[procedure]current-row port −→ integer or #f
[procedure]current-column port −→ integer or #f

Accessors for line (row) & column number information. If port is a not a tracking
port, these simply return #f.

[procedure]fresh-line port −→ unspecified
This writes a newline to port with newline, unless it can be determined that the
previous character was a newline — that is, if (current-column port) does not
evaluate to zero.

Chapter 6: Libraries 109

These are ports based on procedures that produce and consume single characters at a
time.

[procedure]char-source->input-port char-producer [readiness-tester closer] −→
input-port

[procedure]char-sink->output-port char-consumer −→ output-port
Char-source->input-port creates an input port that calls char-producer with zero
arguments when a character is read from it. If readiness-tester is present, it is
used for the char-ready? operation on the resulting port; likewise with closer and
close-input-port. Char-sink->output-port creates an output port that calls
char-consumer for every character written to it.

Scheme48 also provides ports that collect and produce output to and from strings.

[procedure]make-string-input-port string −→ input-port
Constructs an input port whose contents are read from string.

[procedure]make-string-output-port −→ output-port
[procedure]string-output-port-output string-port −→ string
[procedure]call-with-string-output-port receiver −→ string

Make-string-output-port makes an output port that collects its output in a string.
String-output-port-output returns the string that string-port collected. Call-
with-string-output-port creates a string output port, applies receiver to it, and
returns the string that the string output port collected.

Finally, there is a facility for writing only a limited quantity of output to a given port.

[procedure]limit-output port count receiver −→ unspecified
Limit-output applies receiver to a port that will write at most count characters to
port.

6.6 TCP & UDP sockets

Scheme48 provides a simple facility for TCP & UDP sockets. Both the structures
sockets and udp-sockets export several general socket-related procedures:

[procedure]close-socket socket −→ unspecified
[procedure]socket-port-number socket −→ integer
[procedure]get-host-name −→ string

Close-socket closes socket, which may be any type of socket. Socket-port-number
returns the port number through which socket is communicating. Get-host-name
returns the network name of the current machine.

Note: Programmers should be wary of storing the result of a call to get-host-name
in a dumped heap image, because the actual machine’s host name may vary from
invocation to invocation of the Scheme48 VM on that image, since heap images may
be resumed on multiple different machines.

Chapter 6: Libraries 110

6.6.1 TCP sockets

The sockets structure provides simple TCP socket facilities.

[procedure]open-socket [port-number] −→ socket
[procedure]socket-accept socket −→ [input-port output-port]

The server interface. Open-socket creates a socket that listens on port-number,
which defaults to a random number above 1024. Socket-accept blocks until there is
a client waiting to be accepted, at which point it returns two values: an input port
& an output port to send & receive data to & from the client.

[procedure]socket-client host-name port-number −→ [input-port output-port]
Connects to the server at port-number denoted by the machine name host-name and
returns an input port and an output port for sending & receiving data to & from
the server. Socket-client blocks the current thread until the server accepts the
connection request.

6.6.2 UDP sockets

The udp-sockets structure defines a UDP socket facility.

[procedure]open-udp-socket [port-number] −→ socket
Opens a UDP socket on port-number, or a random port number if none was passed.
Open-udp-socket returns two values: an input UDP socket and an output UDP
socket.

[procedure]udp-send socket address buffer count −→ count-sent
[procedure]udp-receive socket buffer −→ [count-received remote-address]

Udp-send attempts to send count elements from the string or byte vector buffer from
the output UDP socket socket to the UDP address address, and returns the number
of octets it successfully sent. Udp-receive receives a UDP message from socket,
reading it into buffer destructively. It returns two values: the number of octets read
into buffer and the address whence the octets came.

[procedure]lookup-udp-address name port −→ udp-address
[procedure]udp-address? object −→ boolean
[procedure]udp-address-address address −→ c-byte-vector
[procedure]udp-address-port address −→ port-number
[procedure]udp-address-hostname address −→ string-address

Lookup-udp-address returns a UDP address for the machine name name at the port
number port. Udp-address? is the disjoint type predicate for UDP addresses. Udp-
address-address returns a byte vector that contains the C representation of address,
suitable for passing to C with Scheme48’s C FFI. Udp-address-port returns the port
number of address. Udp-address-hostname returns a string representation of the IP
address of address.

Chapter 6: Libraries 111

6.7 Common-Lisp-style formatting

Scheme48 provides a simple Common-Lisp-style format facility in the formats struc-
ture. It does not provide nearly as much functionality as Common Lisp, however: the
considerable complexity of Common Lisp’s format was deliberately avoided because it was
deemed inconsistent with Scheme48’s design goals. Scheme48’s format is suitable for most
simple purposes, anyhow.

[procedure]format port control-string argument . . . −→ unspecified or string
Prints control-string to port. If, anywhere in control-string, the character ~ (tilde)
occurs, the following character determines what to print in the place of the tilde and
following character. Some formatting directives consume arguments from argument
. . . . Formatting directive characters are case-insensitive. If port is #t, the output
is printed to to the value of (current-output-port); if port is false, the output is
collected in a string and returned.
The complete list of formatting directives:

~~ Prints a single ~ (tilde), and does not consume an argument.

~A Consumes and prints the first remaining argument with display. (‘A’ny)

~D Consumes and prints the first remaining argument as a decimal number
using number->string. (‘D’ecimal)

~S Consumes and prints the first remaining argument with write. (‘S’-
expression)

~% Prints a newline with newline.

~& Prints a newline with newline, unless it can be determined that a new-
line was immediately previously printed to port (see Section 6.5 [I/O
extensions], page 108).

~? Recursively formats. The first remaining argument is consumed and must
be another control string; the argument directly thereafter is also con-
sumed, and it must be a list of arguments corresponding with that con-
trol string. The control string is formatted with those arguments using
format.

Format examples:
(format #t "Hello, ~A!~%" "world")

a Hello, world!
a

(format #t "Hello~?~S~%" "~A world" ’(#\,) ’!)
a Hello, world!
a

(format #f "~A~A ~A." "cH" "uMBLE" "spuZz")
⇒ "cHuMBLE spuZz."

Chapter 6: Libraries 112

(let ((x 10) (y .1))
(format #t "x: ~D~%~&y: ~D~%~&" x y))
a x: 10
a y: .1

6.8 Library utilities

Scheme48 provides various miscellaneous library utilities for common general-purpose
tasks.

6.8.1 Destructuring

The destructuring structure exports a form for destructuring S-expressions.

[syntax]destructure ((pattern value) . . .) body
For each (pattern value) pair, binds every name in pattern to the corresponding
location in the S-expression value. For example,

(destructure (((x . y) (cons 5 3))
((#(a b) c) ’(#((1 2) 3) (4 5))))

body)

binds x to 5, y to 3, a to (1 2), b to 3, and c to (4 5), in body.

6.8.2 Pretty-printing

The pp structure exports a simple pretty-printer.

[procedure]p object [port] −→ unspecified
[procedure]pretty-print object port position −→ unspecified

P is a convenient alias for pretty-print; it passes 0 for position and the value of
(current-output-port) if port is not passed. Pretty-print pretty-prints object to
port, using a left margin of position. For example:

(p ’(define (fact n)
(let loop ((p 1) (c 1))

(if (> c n) p (loop (* p c) (+ c 1))))))
a (define (fact n)
a (let loop ((p 1) (c 1))
a (if (> c n)
a p
a (loop (* p c) (+ c 1)))))

The pretty-printer is somewhat extensible as well:

[procedure]define-indentation name count −→ unspecified
Sets the number of subforms to be indented past name in pretty-printed output to
be count. For example:

Chapter 6: Libraries 113

(define-indentation ’frobozz 3)
(p ’(frobozz (foo bar baz quux zot) (zot quux baz bar foo)

(mumble frotz gargle eek) (froomble zargle hrumph)))
a (frobozz (foo bar baz quux zot)
a (zot quux baz bar foo)
a (mumble frotz gargle eek)
a (froomble zargle hrumph))

6.8.3 Strongly connected graph components

The strong structure exports a routine for finding a list of the strongly connected
components in a graph.

[procedure]strongly-connected-components vertices to slot set-slot! −→
sorted-strong-vertices

Returns the components of a graph containing vertices from the list vertices that are
strongly connected, in a reversed topologically sorted list. To should be a procedure
of one argument, a vertex, that returns a list of all vertices that have an edge to its
argument. Slot & set-slot! should be procedures of one & two arguments, respectively,
that access & modify arbitrary slots used by the algorithm. The slot for every vertex
should initially be #f before calling strongly-connected-components, and the slots
are reverted to #f before strongly-connected-components returns.

6.8.4 Nondeterminism

The nondeterminism structure provides a simple nondeterministic ambivalence opera-
tor, like McCarthy’s AMB, and a couple utilities atop it, built with Scheme’s call-with-
current-continuation.

[procedure]with-nondeterminism thunk −→ values
Initializes the nondeterminism system and calls thunk; this returns the values thunk
returns after then tearing down what was set up.

[syntax]either option . . . −→ value
[syntax]one-value exp −→ value
[syntax]all-values exp −→ list

Either evaluates to the value of any one of the options. It is equivalent to McCarthy’s
AMB. It may return any number of times. One-value returns the only value that exp
could produce; it will return only once, although it may actually return any number
of values (if exp contains a call to values). All-values returns a list of all of the
single values, not multiple values, that exp could nondeterministically evaluate to.

[procedure]fail −→ does not return
Signals a nondeterministic failure. This is invalid outside of a with-nondeterminism-
protected dynamic extent.

Chapter 6: Libraries 114

6.8.5 Miscellaneous utilities

The big-util structure exports a variety of miscellaneous utilities.

[procedure]concatenate-symbol elt . . . −→ symbol
Returns a symbol containing the contents of the sequence elt Each elt may be
another symbol, a string, or a number. Numbers are converted to strings in base ten.

[procedure]error format-string argument . . . −→ values (may not return)
[procedure]breakpoint format-string argument . . . −→ values (may not return)

Error signals an error whose message is formatted by format (see Section 6.7
[Common-Lisp-style formatting], page 111) with the given formatting template
string and arguments. Breakpoint signals a breakpoint with a message similarly
constructed and causes the command processor to push a new command level (see
Section 2.4.5 [Command levels], page 13).

[procedure]atom? x −→ boolean
Returns true if x is not a pair or false if it is.

[procedure]neq? x y −→ boolean
[procedure]n= x y −→ boolean

Negations of the eq? and = predicates.

[procedure]identity value −→ value
[procedure]no-op value −→ value

These simply return their arguments. The difference between them is that no-op is
guaranteed not to be integrated by the compiler, whereas identity may be.

[procedure]null-list? object −→ boolean
Returns #t if object is the null list, returns #f if object is a pair, or signals an error
if object is neither the null list nor a pair.

[procedure]reverse! list −→ reversed-list
Returns a list containing the reverse elements of list. Note that the original list is not
reversed; it becomes garbage. Reverse! simply re-uses its structure.

[procedure]memq? object list −→ boolean
Returns #t if object is a member of list, as determined by eq?; or #f if not.

[procedure]first predicate list −→ elt or #f
[procedure]any predicate list −→ elt or #f

First returns the first element of list that satisfies predicate, or #f if no element does.
Any returns an element of list that satisfies predicate. Note that any may choose any
element of the list, whereas first explicitly returns the first element that satisfies
predicate.

[procedure]any? predicate list −→ boolean
[procedure]every? predicate list −→ boolean

Any? returns #t if any element of list satisfies predicate, or #f if none do. Every?
returns #t if every element of list satisfies predicate, or #f if there exists an element
that does not.

Chapter 6: Libraries 115

[procedure]filter predicate list −→ filtered-list
[procedure]filter! predicate list −→ filtered-list

These return a list of all elements in list that satisfy predicate. Filter is not allowed
to modify list’s structure; filter! may, however.

[procedure]filter-map proc list −→ list
This is a combination of filter and map. For each element e in list: if (proc e)
returns a true value, that true value is collected in the output list. Filter-map does
not modify list’s structure.

[procedure]remove-duplicates list −→ uniquified-list
Returns a unique list of all elements in list; that is, if there were any duplicates of any
element e in list, only a single e will occur in the returned list. Remove-duplicates
does not modify list’s structure.

[procedure]partition-list predicate list −→ [satisfied unsatisfied]
[procedure]partition-list! predicate list −→ [satisfied unsatisfied]

These return two values: a list of all elements in list that do satisfy predicate and
a list of all elements that do not. Partition-list is not allowed to modify list’s
structure; partition-list! is.

[procedure]delq object list −→ list
[procedure]delq! object list −→ list

These return a list containing all elements of list except for object. Delq is not allowed
to modify list’s structure; delq! is.

[procedure]delete predicate list −→ list
Returns a list of all elements in list that do not satisfy predicate. Note that, despite
the lack of exclamation mark in the name, this may modify list’s structure.

[procedure]string->immutable-string string −→ immutable-string
Returns an immutable string with string ’s contents. If string is already immutable,
it is returned; otherwise, an immutable copy is returned.

6.8.6 Multiple value binding

The receiving structure exports the receive macro, a convenient syntax atop R5RS’s
call-with-values.

[syntax]receive formals producer body
Binds the variables in the lambda parameter list formals to the return values of
producer in body.

(receive formals

producer

body)
≡

(call-with-values
(lambda () producer)

(lambda formals body))

Chapter 6: Libraries 116

For sequences of multiple value bindings, the mvlet structure exports two convenient
macros.

[syntax]mvlet*
[syntax]mvlet

Mvlet* is a multiple-value version of let or a linearly nested version of receive:
(mvlet* ((formals 0 producer 0)

(formals 1 producer 1)
...)

body)
≡

(call-with-values
(lambda () producer 0)

(lambda formals 0

(call-with-values
(lambda () producer 1)

(lambda formals 1

...body...))))

Mvlet is similar, but each producer is evaluated in an environment where none of
the variables in any of the formals is bound, and the order in which each producer
expression is evaluated is unspecified.

6.8.7 Object dumper

Scheme48 has a rudimentary object dumper and retriever in the structure dump/restore.
It is not a ‘real’ object dumper in the sense that it will not handle cycles in object graphs
correctly; it simply performs a recursive descent and will diverge if it reaches a cycle or stop
after a recursive depth parameter.

The types of objects that the dumper supports are: several miscellaneous constants ((),
#t, #f, & the unspecific token), pairs, vectors, symbols, numbers, strings, characters, and
byte vectors.

[procedure]dump object char-writer depth −→ unspecified
Dumps object by repeatedly calling char-writer, which must be a procedure that
accepts exactly one character argument, on the characters of the serialized represen-
tation. If the dumper descends into the object graph whose root is object for more
than depth recursions, an ellipsis token is dumped in the place of the vertex at depth.

[procedure]restore char-reader −→ object
Restores the object whose serialized components are retrieved by repeatedly calling
char-reader, which must be a procedure that accepts zero arguments and returns a
character.

6.8.8 Simple time access

The time structure exports a simple facility for accessing time offsets in two different
flavours.

Chapter 6: Libraries 117

[procedure]real-time −→ milliseconds
Returns the real time in milliseconds that has passed since some unspecified moment in
time.1 Though not suitable for measurements relative to entities outside the Scheme48
image, the real time is useful for measuring time differences within the Scheme image
with reasonable precision; for example, thread sleep timing is implemented with this
real time primitive.

[procedure]run-time −→ ticks
Returns the run time as an integer representing processor clock ticks since the start
of the Scheme48 process. This is much less precise than the real time, but it is useful
for measuring time actually spent in the Scheme48 process, as opposed to time in
general.

1 In the current implementation on Unix, this moment happens to be the first call to real-time; on Win32,
this is the start of the Scheme process.

Chapter 7: C interface 118

7 C interface

(This chapter was derived from work copyrighted (C) 1993-2005 by Richard Kelsey,
Jonathan Rees, and Mike Sperber.)

This chapter describes an interface for calling C functions from Scheme, calling Scheme
procedures from C, and working with the Scheme heap in C. Scheme48 manages stub
functions in C that negotiate between the calling conventions of Scheme & C and the
memory allocation policies of both worlds. No stub generator is available yet, but writing
stubs is a straightforward task.

7.1 Overview of the C interface

The following facilities are available for interfacing between Scheme48 & C:
• Scheme code can call C functions.
• The external interface provides full introspection for all Scheme objects. External code

may inspect, modify, and allocate Scheme objects arbitrarily.
• External code may raise exceptions back to Scheme48 to signal errors.
• External code may call back into Scheme. Scheme48 correctly unrolls the process stack

on non-local exits.
• External modules may register bindings of names to values with a central registry

accessible from Scheme. Conversely, Scheme code can register shared bindings for
access by C code.

7.1.1 Scheme structures

On the Scheme side of the C interface, there are three pertinent structures:
shared-bindings (see Section 7.2 [Shared bindings between Scheme and C], page 119),
which provides the Scheme side of the facility for sharing data between Scheme and C;
external-calls (see Section 7.3 [Calling C functions from Scheme], page 121), which
exports several ways to call C functions from Scheme, along with some useful facilities, such
as object finalizers, which are also available from elsewhere; and load-dynamic-externals
(see Section 7.4 [Dynamic loading of C modules], page 123), which provides a dynamic
external object loading facility. Also, the old dynamic loading facility is still available from
the dynamic-externals structure, but its use is deprecated, and it will most likely vanish
in a later release.

7.1.2 C naming conventions

Scheme48’s C bindings all have strict naming conventions. Variables & procedures have
s48_ prefixed to them; macros, S48_. Whenever a C name is derived from a Scheme iden-
tifier, hyphens are replaced with underscores. Also, procedures or variables are converted
to lowercase, while macros are converted to uppercase. The ? suffix, generally appended to
predicates, is converted to _p (or _P in macro names). Trailing ! is dropped. For example,
the C macro that corresponds with Scheme’s pair? predicate is named S48_PAIR_P, and

Chapter 7: C interface 119

the C macro to assign the car of a pair is named S48_SET_CAR. Procedures and macros
that do not verify the types of their arguments have ‘unsafe’ in their names.

All of the C functions and macros described have prototypes or definitions in the file
‘c/scheme48.h’ of Scheme48’s standard distribution. The C type for Scheme values is
defined there to be s48_value.

7.1.3 Garbage collection

Scheme48 uses a copying garbage collector. The collector must be able to locate all
references to objects allocated in the Scheme48 heap in order to ensure that storage is not
reclaimed prematurely and to update references to objects moved by the collector. The
garbage collector may run whenever an object is allocated in the heap. C variables whose
values are Scheme48 objects and which are live across heap allocation calls need to be
registered with the garbage collector. For more information, see Section 7.7 [Interacting
with the Scheme heap in C], page 128.

7.2 Shared bindings between Scheme and C

Shared bindings are the means by which named values are shared between Scheme & C
code. There are two separate tables of shared bindings, one for values defined in Scheme
and accessed from C and the other for the opposite direction. Shared bindings actually
bind names to cells, to allow a name to be resolved before it has been assigned. This is
necessary because C initialization code may run before or after the corresponding Scheme
code, depending on whether the Scheme code is in the resumed image or run in the current
session. The Scheme bindings described here are available from the shared-bindings
structure.

7.2.1 Scheme shared binding interface

[Scheme procedure]shared-binding? object −→ boolean
[Scheme procedure]shared-binding-is-import? shared-binding −→ boolean

Shared-binding? is the disjoint type predicate for all shared bindings, imported or
exported; shared-binding-is-import? returns true if shared-binding was imported
into Scheme from C, and false if it has the converse direction.

[Scheme procedure]shared-binding-ref shared-binding −→ value
[Scheme procedure]shared-binding-set! shared-binding value −→ unspecified

Shared-binding-ref returns the value of shared-binding ; shared-binding-set!
sets the value of shared-binding to be value.

[Scheme procedure]lookup-imported-binding name −→ shared-binding
[Scheme procedure]define-imported-binding name value −→ unspecified
[Scheme procedure]undefine-imported-binding name −→ unspecified

Lookup-imported-binding returns the binding imported from C to Scheme with the
given name; a binding is created if none exists. Define-imported-binding creates
a new such binding, anomalously from within Scheme; such bindings are usually

Chapter 7: C interface 120

created instead from within C using the C s48_define_exported_binding function.
Undefine-imported-binding removes the shared binding whose name is name from
the table of imported bindings.

[Scheme procedure]lookup-exported-binding name −→ shared-binding
[Scheme procedure]define-exported-binding name value −→ unspecified
[Scheme procedure]undefine-exported-binding name −→ unspecified

Equivalents of the above three procedures, but for bindings exported from Scheme
to C. Define-imported-binding, unlike define-exported-binding, is customary
to use in Scheme, as its intended use is to make a Scheme value available to C code
from within Scheme.

[Scheme procedure]find-undefined-imported-bindings −→ vector
Returns a vector of all bindings imported into Scheme from C with undefined values,
i.e. those created implicitly by lookups that have not yet been assigned rather than
those created explicitly by the shared binding definers (define-exported-binding,
&c.).

7.2.2 C shared binding interface

[C macro]s48_value S48 SHARED BINDING P (s48_value obj)
[C macro]s48_value S48 SHARED BINDING NAME (s48_value

shared_binding)
[C macro]s48_value S48 SHARED BINDING IS IMPORTP

(s48_value shared-binding)
[C macro]s48_value S48 SHARED BINDING REF (s48_value

shared_binding)
[C macro]void S48 SHARED BINDING SET (s48_value

shared_binding, s48_value value)
These macros are C counterparts to Scheme’s shared-binding?, shared-binding-
name, shared-binding-is-import?, shared-binding-ref, and shared-binding-
set!, respectively.

[C macro]statement S48 SHARED BINDING CHECK (s48_value
binding)

Signals an exception if and only if binding ’s value is Scheme48’s ‘unspecific’ value.
Huh?: Undefined shared bindings are not initialized with the ‘unspecific’ value, but
rather with an entirely different special token referred to internally as ‘undefined,’
used in circumstances such as this — yet S48_SHARED_BINDING_CHECK, as defined in
‘scheme48.h’, definitely checks whether binding ’s value is the ‘unspecific’ value.

[C function]s48_value s48 get imported binding (char *name)
Returns the shared binding defined in Scheme for name, creating it if necessary.

[C function]void s48 define exported binding (char *name, s48_value
value)

Defines a shared binding named name with the value value that can be accessed from
Scheme.

Chapter 7: C interface 121

[C macro]void S48 EXPORT FUNCTION (fn)
This is a convenience for the common case of exporting a C function to Scheme. This
expands into

s48_define_exported_binding("fn",
s48_enter_pointer(fn))

which boxes the function into a Scheme48 byte vector and then exports it as a shared
binding. Note that s48_enter_pointer allocates space in the Scheme heap and may
trigger a garbage collection; see Section 7.7 [Interacting with the Scheme heap in C],
page 128.

7.3 Calling C functions from Scheme

The external-calls structure exports several ways to call C functions from Scheme,
along with several other related utilities, many of which are also available from other struc-
tures. There are two different ways to call C functions from Scheme, depending on how the
C function was obtained:

[Scheme procedure]call-imported-binding binding argument . . . −→ value
[Scheme procedure]call-external-value byte-vector name argument . . . −→ value

Each of these applies its first argument, a C function, to the rest of the arguments. For
call-imported-binding, the function argument must be an imported binding. For
call-external-value, the function argument must be a byte vector that contains a
pointer to a C function, and name should be a string that names the function. The
name argument is used only for printing error messages.

For both of these, the C function is passed the argument values, and the value returned
is that returned by the C function. No automatic representation conversion occurs
for either arguments or return values. Up to twelve arguments may be passed. There
is no method supplied for returning multiple values to Scheme from C or vice versa
(mainly because C does not have multiple return values).

Keyboard interrupts that occur during a call to a C function are ignored until the
function returns to Scheme.1

[Scheme syntax]import-definition name [c-string]
[Scheme syntax]import-lambda-definition name formals [c-string]

These macros simplify importing bindings from C into Scheme and wrapping such
bindings in Scheme procedures. Import-definition defines name to be the shared
binding named by c-string, whose value, if it is not supplied, is by default a string of
name, downcased and with all hyphens translated to underscores.

(define name (lookup-imported-binding c-string))

For example,

(import-definition my-foo)
7→ (define my-foo (lookup-imported-binding "my_foo"))

1 This is clearly a problem; we are working on a solution.

Chapter 7: C interface 122

Import-lambda-definition imports the named C binding, using either the provided
C binding name or by translating the Scheme name as with import-definition, and
defines name to be a procedure with the given formal parameter list that calls the
imported C binding with its arguments:

(define binding (lookup-imported-binding c-string))
(define (name formal ...)

(call-imported-binding binding formal ...))

Examples:

(import-lambda-definition integer->process-id (int)
"posix_getpid")

7→
(define binding 0

(lookup-imported-binding "posix_getpid"))
(define (integer->process-id int)

(call-imported-binding binding 0 int))

(import-lambda-definition s48-system (string))
7→

(define binding 1

(lookup-imported-binding "s48_system"))
(define (s48-system string)

(call-imported-binding binding 1 string))

where binding0 and binding1 are fresh, unused variable names.

Warning: Import-lambda-definition, as presently implemented, requires a fixed
parameter list; it does not allow ‘rest list’ arguments.

[Scheme procedure]lookup-imported-binding name −→ shared-binding
[Scheme procedure]define-exported-binding shared-binding −→ unspecified
[Scheme procedure]shared-binding-ref shared-binding −→ value

These are identical to the procedures accessible with the same names from the
shared-bindings structure (see Section 7.2 [Shared bindings between Scheme and
C], page 119).

[Scheme procedure]add-finalizer! object procedure −→ unspecified
Registers procedure as the finalizer for object. When object is later about to be
reclaimed by the garbage collector, procedure is applied to one argument, object. All
finalizers are applied in a child of the root scheduler thread that is spawned after
every garbage collection. If an error occurs in any finalizer, it will be printed to
the standard error output port, and all other finalizers will be aborted before they
are given a chance to run. Because of this, and the fact that finalizers are collected
and run after every garbage collection, they should perform as little computation as
possible. Procedure may also create new references to object elsewhere in the heap,
in which case the object will not be reclaimed, but its associated finalizer will be
forgotten.

Warning: Finalizers are expensive. Use sparingly.

Chapter 7: C interface 123

[Scheme procedure]define-record-resumer record-type resumer −→ unspecified
Identical to the procedure accessible with the same name from the record-types
structure (see Section 4.7 [Records], page 73). Record resumers are often useful in
working with foreign C data, which is in many cases specific to the program image
within the operating system, and which cannot straightforwardly be relocated to a
different address space.

7.4 Dynamic loading of C modules

External code can be loaded into a running Scheme48 on most Unices and on Windows.
Such external code must be stored in shared objects; see below on details of the C side.
The relevant Scheme procedures are available in the load-dynamic-external structure:

[procedure]load-dynamic-externals filename add-file-type? reload-on-repeat?
reload-on-resume? −→ dynamic-externals

[procedure]import-dynamic-externals filename −→dynamic-externals
[procedure]unload-dynamic-externals dynamic-externals −→ unspecified

Load-dynamic-external loads a shared object from filename, with an appropriate
file type appended if add-file-type? is true (.so on Unix and .dll on Windows),
and returns a dynamic externals object representing the loaded shared object. If the
shared object was already loaded, then if reload-on-repeat? is true, it is reloaded;
otherwise, the load-dynamic-externals call has no effect. If the dynamic externals
descriptor is stored in a dumped heap image, when that heap image is resumed, if
reload-on-resume? is true, the shared object corresponding with that dynamic ex-
ternal descriptor is reloaded. Unload-dynamic-externals unloads the given dynamic
externals object.
Import-dynamic-externals is a convenient wrapper for the common case of load-
dynamic-externals; it is equivalent to (load-dynamic-externals #t #f #t), i.e. it
will append a file type, it will not reload the shared object if it was already loaded,
and the shared object will be loaded if part of a resumed heap image.

[procedure]reload-dynamic-externals filename −→ unspecified
Reloads the shared object named by filename. This is intended as an interactive
utility, which is why it accepts the filename of the shared object and not a dynamic
externals descriptor.

Shared objects intended to be loaded into Scheme48 must define two functions:

[C function]void s48 on load (void)
[C function]void s48 on reload (void)

s48_on_load is called when the shared object is initially loaded by Scheme48. It
typically consists of a number of invocations of S48_EXPORT_FUNCTION to make C
functions available to Scheme48 code. s48_on_reload is called when the shared
object is reloaded after it has been initially loaded once; it typically just calls s48_
on_load, but it may perform other reinitializations.

On Linux, the following commands compile the C source file ‘foo.c’ into a shared object
‘foo.so’ that can be loaded dynamically by Scheme48:

Chapter 7: C interface 124

% gcc -c -o foo.o foo.c
% ld -shared -o foo.so foo.o

7.4.1 Old dynamic loading interface

The old dynamic-externals structures, which exported dynamic-load, get-external,
lookup-external, lookup-all-externals, external?, external-name, external-
value, and call-external, is still supported, but it will not work on Windows, its use
is deprecated, and it is likely to vanish in a future release. The old documentation is
preserved to aid updating of old code:

On architectures that support it, external code can be loaded into a running Scheme48
process, and C object file bindings can be accessed at runtime & their values called. These
Scheme procedures are exported by the structure dynamic-externals.

In some Unices, retrieving a value from the current process may require a non-trivial
amount of computation. We recommend that a dynamically loaded file contain a single
initialization function that creates shared bindings for the values exported by the file.

[Scheme procedure]dynamic-load string −→ unspecified
Loads the filename named by string into the current process. An exception is raised if
the file cannot be found or if dynamic loading is not supported by the host operating
system. The file must have been compiled & linked appropriately. For Linux, for
example, the following commands compile ‘foo.c’ into a file ‘foo.so’ that can be
loaded dynamically:

% gcc -c -o foo.o foo.c
% ld -shared -o foo.so foo.o

[Scheme procedure]get-external string −→ external
[Scheme procedure]external? object −→ boolean
[Scheme procedure]external-name external −→ string
[Scheme procedure]external-value external −→ byte-vector

These procedures access external values bound in the current process. Get-external
returns a external object that contains the value of the C binding with the name string.
It signals a warning if there is no such binding in the current process. External?
is the disjoint type predicate for externals, and external-name & external-value
return the name & value of an external. The value is represented as a byte vector (see
Section 4.3 [Bitwise manipulation], page 56) of length four on 32-bit architectures.
The value is that of the C binding from when get-external (or lookup-external,
as described below) was called.

[Scheme procedure]lookup-external external −→ boolean
[Scheme procedure]lookup-all-externals −→ boolean

Lookup-external updates the value of external by looking up its binding in the
current process. It returns #t if the external is bound and #f if not. Lookup-all-
externals calls lookup-external on all externals in the current Scheme48 image.
It returns #t if all were bound and #f if there was at least one unbound external.

Chapter 7: C interface 125

[Scheme procedure]call-external external argument . . . −→ value
Calls the C function pointed to by external with the given arguments, and returns the
value that the C function returned. This is like call-imported-binding and call-
external-value except that the function argument is represented as an external,
not as an imported binding or byte vector containing a pointer. For more details, see
Section 7.3 [Calling C functions from Scheme], page 121.

7.5 Accessing Scheme data from C

The C header file ‘scheme48.h’ provides access to Scheme48 data structures. The type
s48_value is used for Scheme values. When the type of a value is known, such as the integer
returned by the Scheme procedure vector-length or the boolean returned by pair, the
corresponding C function returns a C value of the appropriate type, not an s48_value.
Predicates return 1 for true and 0 for false.

[C macro]s48_value S48 FALSE
[C macro]s48_value S48 TRUE
[C macro]s48_value S48 NULL
[C macro]s48_value S48 UNSPECIFIC
[C macro]s48_value S48 EOF
[C macro]long S48 MAX FIXNUM VALUE
[C macro]long S48 MIN FIXNUM VALUE

These C macros denote various Scheme constants. S48_FALSE is the boolean false
value, written in Scheme as #f. S48_TRUE is the boolean true value, or #t. S48_NULL
is the empty list (). S48_UNSPECIFIC is a miscellaneous value returned by procedures
that have no meaningful return value (accessed in Scheme48 by the nullary procedure
unspecific in the util structure). S48_EOF is the end-of-file object (which the
Scheme procedure eof-object? answers true for). S48_MAX_FIXNUM_VALUE is the
maximum integer as a long that can be represented in a Scheme48 fixnum. S48_
MIN_FIXNUM_VALUE is similar, but the minimum integer.

[C macro]int S48 EXTRACT BOOLEAN (s48_value boolean)
[C function]unsigned char s48 extract char (s48_value char)
[C function]char * s48 extract string (s48_value string)
[C function]char * s48 extract byte vector (s48_value bytev)
[C function]long s48 extract integer (s48_value integer)
[C function]double s48 extract double (s48_value double)

[C macro]s48_value S48 ENTER BOOLEAN (int boolean)
[C function]s48_value s48 enter char (unsigned char char)
[C function]s48_value s48 enter string (char *string)
[C function]s48_value s48 enter byte vector (char *bytev, long length)
[C function]s48_value s48 enter integer (long integer)
[C function]s48_value s48 enter double (double double)

These functions & macros convert values between their respective Scheme & C rep-
resentations.
S48_EXTRACT_BOOLEAN returns 0 if boolean is #f and 1 otherwise. S48_ENTER_
BOOLEAN returns the Scheme value #f if its argument is zero and #t otherwise.

Chapter 7: C interface 126

s48_extract_char & s48_enter_char convert between Scheme characters and C
chars.

s48_extract_string & s48_extract_byte_vector return pointers to the actual
storage used by string or bytev. These pointers are valid only until the next garbage
collection, however; see Section 7.7 [Interacting with the Scheme heap in C], page 128.
s48_enter_string & s48_enter_byte_vector allocate space on the Scheme48 heap
for the given strings or byte vectors. s48_enter_string copies the data starting from
the pointer it is given up to the first ASCII NUL character, whereas s48_enter_byte_
vector is given the number of bytes to copy into the Scheme heap.

s48_extract_integer returns a C long that represents the Scheme integer as input.
If the Scheme integer is too large to be represented in a long, an exception is signalled.
(The Scheme integer may be a fixnum or a bignum.) s48_enter_integer converts
back to Scheme integers, and it will never signal an exception.

s48_extract_double & s48_enter_double convert between Scheme & C double-
precision floating point representations.

Of these, s48_enter_string, s48_enter_byte_vector, s48_enter_integer, &
s48_enter_double may cause the garbage collector to be invoked: the former two
copy the string or byte vector onto the Scheme heap first, s48_enter_integer may
need to allocate a bignum (since C longs are wider than Scheme48 fixnums), and
floats are heap-allocated in Scheme48.

[C macro]int S48 TRUE P (s48_value object)
[C macro]int S48 FALSE P (s48_value object)

S48_TRUE_P returns true if object is the true constant S48_TRUE and false if otherwise.
S48_FALSE_P returns true if its argument is the false constant S48_FALSE and false if
otherwise.

[C macro]int S48 FIXNUM P (s48_value object)
[C function]long s48 extract fixnum (s48_value fixnum)
[C function]s48_value s48 enter fixnum (long integer)

S48_FIXNUM_P is the C predicate for Scheme48 fixnums, delimited in range by S48_
MIN_FIXNUM_VALUE & S48_MAX_FIXNUM_VALUE. s48_extract_fixnum returns the
C long representation of the Scheme fixnum, and s48_enter_fixnum returns the
Scheme fixnum representation of the C long. These are identical to s48_extract_
integer & s48_enter_integer, except that s48_extract_fixnum will never raise a
range exception, but s48_enter_fixnum may, and s48_enter_fixnum will never re-
turn a bignum; this is due to the fact that C longs have a wider range than Scheme48
fixnums.

Chapter 7: C interface 127

[C macro]int S48 EQ P (s48_value a, s48_value b)
[C macro]int S48 CHAR P (s48_value object)
[C macro]int S48 PAIR P (s48_value object)
[C macro]int S48 VECTOR P (s48_value object)
[C macro]int S48 STRING P (s48_value object)
[C macro]int S48 SYMBOL P (s48_value object)
[C macro]int S48 BYTE VECTOR P (s48_value object)
[C macro]s48_value S48 CAR (s48_value pair)
[C macro]s48_value S48 CDR (s48_value pair)
[C macro]void S48 SET CAR (s48_value pair, s48_value object)
[C macro]void S48 SET CDR (s48_value pair, s48_value object)

[C function (may GC)]s48_value s48 cons (s48_value car, s48_value cdr)
[C function]s48_value s48 length (s48_value list)

[C macro]long S48 VECTOR LENGTH (s48_value vector)
[C macro]s48_value S48 VECTOR REF (s48_value vector, long index)
[C macro]void S48 VECTOR SET (s48_value vector, long index,

s48_value object)
[C function (may GC)]s48_value s48 make vector (long length, s48_value

fill)
[C macro]long S48 STRING LENGTH (s48_value string)
[C macro]char S48 STRING REF (s48_value string, long index)
[C macro]void S48 STRING SET (s48_value string, long index, char

char)
[C function (may GC)]s48_value s48 make string (long length, char fill)

[C macro]s48_value S48 SYMBOL TO STRING (s48_value symbol)
[C macro]long S48 BYTE VECTOR LENGTH (s48_value bytev)
[C macro]char S48 BYTE VECTOR REF (s48_value bytev, long index)
[C macro]void S48 BYTE VECTOR SET (s48_value bytev, long index,

char byte)
[C function (may GC)]s48_value s48 make byte vector (long length)

C versions of miscellaneous Scheme procedures. The names were derived from their
Scheme counterparts by replacing hyphens with underscores, ? suffixes with _P, and
dropping ! suffixes.

7.6 Calling Scheme procedures from C

[C function]s48_value s48 call scheme (s48_value proc, long nargs, ...)
Calls the Scheme procedure proc on nargs arguments, which are passed as additional
arguments to s48_call_scheme. There may be at most twelve arguments. The value
returned by the Scheme procedure is returned to the C procedure. Calling any Scheme
procedure may potentially cause a garbage collection.

There are some complications that arise when mixing calls from C to Scheme with con-
tinuations & threads. C supports only downward continuations (via longjmp()). Scheme
continuations that capture a portion of the C stack have to follow the same restriction. For
example, suppose Scheme procedure s0 captures continuation a and then calls C function
c0, which in turn calls Scheme procedure s1. S1 can safely call the continuation a, because

Chapter 7: C interface 128

that is a downward use. When a is called, Scheme48 will remove the portion of the C stack
used by the call to c0. On the other hand, if s1 captures a continuation, that continuation
cannot be used from s0, because, by the time control returns to s0, the C stack used by s0
will no longer be valid. An attempt to invoke an upward continuation that is closed over a
portion of the C stack will raise an exception.

In Scheme48, threads are implemented using continuations, so the downward restriction
applies to them as well. An attempt to return from Scheme to C at a time when the
appropriate C frame is not on the top of the C stack will cause the current thread to block
until the frame is available. For example, suppose thread t0 calls a C function that calls
back to Scheme, at which point control switches to thread t1, which also calls C & then
back to Scheme. At this point, both t0 & t1 have active calls to C on the C stack, with t1’s
C frame above t0’s. If t0 attempts to return from Scheme to C, it will block, because the
frame is not yet accessible. Once t1 has returned to C and from there back to Scheme, t0
will be able to resume. The return to Scheme is required because context switches can occur
only while Scheme code is running. T0 will also be able to resume if t1 uses a continuation
to throw past its call out to C.

7.7 Interacting with the Scheme heap in C

Scheme48 uses a precise copying garbage collector. Any code that allocates objects
within the Scheme48 heap may trigger a garbage collection. Variables bound to values in
the Scheme48 heap need to be registered with the garbage collector so that the value will
be safely held and so that the variables will be updated if the garbage collector moves the
object. The garbage collector has no facility for updating pointers to the interiors of objects,
so such pointers, for example the ones returned by S48_EXTRACT_STRING, will likely become
invalid when a garbage collection occurs.

[C macro]S48 DECLARE GC PROTECT (n)
[C macro]void S48 GC PROTECT n (s48_value var 1, ..., s48_value

varn)
[C macro]void S48 GC UNPROTECT ()

S48_DECLARE_GC_PROTECT, where 1 <= n <= 9, allocates storage for registering n
variables. At most one use of S48_DECLARE_GC_PROTECT may occur in a block. Af-
ter declaring a GC protection, S48_GC_PROTECT_n registers the n variables with the
garbage collector. It must be within the scope that the S48_DECLARE_GC_PROTECT oc-
curred in and before any code that can cause a garbage collection. S48_GC_UNPROTECT
removes the current block’s protected variables from the garbage collector’s list. It
must be called at the end of the block after any code that may cause a garbage collec-
tion. Omitting any of the three may cause serious and hard-to-debug problems,
because the garbage collector may relocate an object and invalidate unprotected
s48_value pointers. If not S48_DECLARE_GC_PROTECT is matched with a S48_GC_
UNPROTECT or vice versa, a gc-protection-mismatch exception is raised when a C
procedure returns to Scheme.

Chapter 7: C interface 129

[C macro]void * S48 GC PROTECT GLOBAL (global)
[C macro]void S48 GC UNPROTECT GLOBAL (void *handle)

S48_GC_PROTECT_GLOBAL permanently registers the l-value global with the system
as a garbage collection root. It returns a pointer which may then be supplied to
S48_GC_UNPROTECT_GLOBAL to unregister the l-value as a root.

7.7.1 Keeping C data structures in the Scheme heap

C data structures can be stored within the Scheme heap by embedding them inside byte
vectors (see Section 4.3 [Bitwise manipulation], page 56). The following macros can be used
to create and access embedded C objects.

[C macro]s48_value S48 MAKE VALUE (type)
[C macro]type S48 EXTRACT VALUE (s48_value bytev, type)
[C macro]type * S48 EXTRACT VALUE (s48_value bytev, type)
[C macro]void S48 SET VALUE (s48_value bytev, type, type value)

S48_MAKE_VALUE allocates a byte vector large enough to hold a C value whose type
is type. S48_EXTRACT_VALUE returns the contents of the byte vector bytev cast to
type, and S48_EXTRACT_VALUE_POINTER returns a pointer to the contents of the byte
vector, which is valid only until the next garbage collection. S48_SET_VALUE stores a
value into the byte vector.

7.7.2 C code and heap images

Scheme48 uses dumped heap images to restore a previous system state. The Scheme48
heap is written into a file in a machine-independent and operating-system-independent
format. The procedures described above, however, may be used to create objects in the
Scheme heap that contain information specific to the current machine, operating system,
or process. A heap image containing such objects may not work correctly when resumed.

To address this problem, a record type may be given a resumer procedure. On startup,
the resumer procedure for a record type is applied to each record of that type in the image
being restarted. This procedure can update the record in a manner appropriate to the
machine, operating system, or process used to resume the image. Note, though, that there is
no reliable order in which record resumer procedures are applied. To specify the resumer for
a record type, use the define-record-resumer procedure from the record-types structure
(see Section 4.7 [Records], page 73).

7.8 Using Scheme records in C

External C code can create records and access record slots positionally using these func-
tions & macros. Note, however, that named access to record fields is not supported, only
indexed access, so C code must be synchronized carefully with the corresponding Scheme
that defines record types.

Chapter 7: C interface 130

[C function (may GC)]s48_value s48 make record (s48_value record-type)
[C macro]int S48 RECORD P (s48_value object)
[C macro]s48_value S48 RECORD TYPE (s48_value record)
[C macro]s48_value S48 RECORD REF (s48_value record, long index)
[C macro]void S48 RECORD SET (s48_value record, long index,

s48_value value)
[C function]void s48 check record type (s48_value record, s48_value

type-binding)
s48_make_record allocates a record on Scheme’s heap with the given record type;
its arguments must be a shared binding whose value is a record type descriptor (see
Section 4.7 [Records], page 73). S48_RECORD_P is the type predicate for records. S48_
RECORD_TYPE returns the record type descriptor of record. S48_RECORD_REF & S48_
RECORD_SET operate on records similarly to how S48_VECTOR_REF & S48_VECTOR_SET
work on vectors. s48_check_record_type checks whether record is a record whose
type is the value of the shared binding type binding. If this is not the case, it signals
an exception. (It also signals an exception if type binding ’s value is not a record.)
Otherwise, it returns normally.

For example, with this record type definition:
(define-record-type thing :thing
(make-thing a b)
thing?
(a thing-a)
(b thing-b))

the identifier :thing is bound to the record type and can be exported to C thus:
(define-exported-binding "thing-record-type" :thing)

and thing records can be made in C:
static s48_value thing_record_type = S48_FALSE;
void initialize_things(void)
{
S48_GC_PROTECT_GLOBAL(thing_record_type);
thing_record_type = s48_get_imported_binding("thing-record-type");

}

s48_value make_thing(s48_value a, s48_value b)
{

s48_value thing;

S48_DECLARE_GC_PROTECT(2);
S48_GC_PROTECT_2(a, b);

thing = s48_make_record(thing_record_type);
S48_RECORD_SET(thing, 0, a);
S48_RECORD_SET(thing, 1, b);

S48_GC_UNPROTECT();

Chapter 7: C interface 131

return thing;
}

Note that the variables a & b must be protected against the possibility of a garbage collection
occurring during the call to s48_make_record.

7.9 Raising exceptions from C

The following macros raise certain errors, immediately returning to Scheme48. Rais-
ing an exception performs all necessary clean-up actions to properly return to Scheme48,
including adjusting the stack of protected variables.

[C function]s48 raise scheme exception (int type, int nargs, ...)
The base procedure for raising exceptions. Type is the type of exception; it should
be one of the S48_EXCEPTION_... constants defined in ‘scheme48.h’. Nargs is the
number of additional values to be included in the exception; these follow the nargs
argument and should all have the type s48_value. Nargs may not be greater than
ten. s48_raise_scheme_exception never returns.

[C function]s48 raise argument type error (s48_value arg)
[C function]s48 raise argument number error (s48_value nargs,

s48_value min, s48_value max)
[C function]s48 raise range error (s48_value value, s48_value min,

s48_value max)
[C function]s48 raise closed channel error ()
[C function]s48 raise os error (int errno)
[C function]s48 raise out of memory error ()

Conveniences for raising certain kinds of exceptions. Argument type errors are due
to procedures receiving arguments of the incorrect type. Argument number errors
are due to the number of arguments being passed to a procedure, nargs, not being
between min or max, inclusive. Range errors are similar, but they are intended for
larger ranges, not argument numbers. Closed channel errors occur when a channel
(see Section 4.5.4 [Channels], page 67) was operated upon with the expectation that
it would not be closed. OS errors originate from the OS, and they are denoted with
Unix errno values.

[C macro]void S48 CHECK BOOLEAN (s48_value object)
[C macro]void S48 CHECK SYMBOL (s48_value object)
[C macro]void S48 CHECK PAIR (s48_value object)
[C macro]void S48 CHECK STRING (s48_value object)
[C macro]void S48 CHECK INTEGER (s48_value object)
[C macro]void S48 CHECK CHANNEL (s48_value object)
[C macro]void S48 CHECK BYTE VECTOR (s48_value object)
[C macro]void S48 CHECK RECORD (s48_value object)
[C macro]void S48 CHECK SHARED BINDING (s48_value object)

Conveniences for checking argument types. These signal argument type errors with
s48_raise_argument_type_error if their argument is not of the type being tested.

Chapter 7: C interface 132

7.10 Unsafe C macros

All of the C functions & macros described previously verify that their arguments have the
appropriate types and lie in the appropriate ranges. The following macros are identical to
their safe counterparts, except that the unsafe variants, by contrast, do not verify coherency
of their arguments. They are provided for the purpose of writing more efficient code; their
general use is not recommended.

[C macro]char S48 UNSAFE EXTRACT CHAR (s48_value char)
[C macro]char * S48 UNSAFE EXTRACT STRING (s48_value string)

[C macro]long S48 UNSAFE EXTRACT INTEGER (s48_value
integer)

[C macro]double S48 UNSAFE EXTRACT DOUBLE (s48_value
double)

[C macro]long S48 UNSAFE EXTRACT FIXNUM (s48_value fixnum)
[C macro]s48_value S48 UNSAFE ENTER FIXNUM (long integer)

[C macro]s48_value S48 UNSAFE CAR (s48_value pair)
[C macro]s48_value S48 UNSAFE CDR (s48_value pair)
[C macro]void S48 UNSAFE SET CAR (s48_value pair, s48_value

value)
[C macro]void S48 UNSAFE SET CDR (s48_value pair, s48_value

value)

[C macro]long S48 UNSAFE VECTOR LENGTH (s48_value vector)
[C macro]s48_value S48 UNSAFE VECTOR REF (s48_value vector,

long index)
[C macro]void S48 UNSAFE VECTOR SET (s48_value vector, long

index, s48_value value)

[C macro]long S48 UNSAFE STRING LENGTH (s48_value string)
[C macro]char S48 UNSAFE STRING REF (s48_value string, long

index)
[C macro]void S48 UNSAFE STRING SET (s48_value string, long

index, char char)

[C macro]void S48 UNSAFE SYMBOL TO STRING (s48_value
symbol)

Chapter 7: C interface 133

[C macro]long S48 UNSAFE BYTE VECTOR LENGTH (s48_value
bytev)

[C macro]char S48 UNSAFE BYTE VECTOR REF (s48_value bytev,
long index)

[C macro]void S48 UNSAFE BYTE VECTOR SET (s48_value bytev,
long index, char byte)

[C macro]s48_value S48 UNSAFE SHARED BINDING REF
(s48_value shared_binding)

[C macro]int S48 UNSAFE SHARED BINDING IS IMPORTP
(s48_value shared_binding)

[C macro]s48_value S48 UNSAFE SHARED BINDING NAME
(s48_value shared_binding)

[C macro]void S48 UNSAFE SHARED BINDING SET (s48_value
shared_binding, s48_value value)

[C macro]type S48 UNSAFE EXTRACT VALUE (s48_value bytev,
type)

[C macro]type * S48 UNSAFE EXTRACT VALUE POINTER
(s48_value bytev, type)

[C macro]void S48 UNSAFE SET VALUE (s48_value bytev, type, type

value)

Chapter 8: POSIX interface 134

8 POSIX interface

(This chapter was derived from work copyrighted (C) 1993-2005 by Richard Kelsey,
Jonathan Rees, and Mike Sperber.)

This chapter describes Scheme48’s interface to POSIX C calls. Scheme versions of most
of the C functions in POSIX are provided. Both the interface and implementation are new
and likely to change significantly in future releases. The implementation may also contain
many bugs.

The POSIX bindings are available in several structures:

posix-processes
fork, exec, and other process manipulation procedures

posix-process-data
procedures for accessing information about processes

posix-files
POSIX file system access procedures

posix-i/o
pipes and various POSIX I/O controls

posix-time
POSIX time operations

posix-users
user and group manipulation procedures

posix-regexps
POSIX regular expression construction and matching

posix all of the above

Scheme48’s POSIX interface differs from scsh [Shivers 94; Shivers 96; Shivers et al. 04]
in several ways. The interface here lacks scsh’s high-level constructs and utilities such as the
process notation, awk facility, and parsing utilities. Scheme48 uses disjoint types for some
values that scsh leaves as symbols or simple integers; these include file types, file modes,
and user & group ids. Many of the names and other interface details are different as well.

8.1 Processes

The procedures described in this section control the creation of subprocesses and the
execution of programs. They exported by both the posix-processes and posix structures.

[procedure]fork −→ process id or #f
[procedure]fork-and-forget thunk −→ unspecified

Fork creates a new child process. In the parent process, it returns the child’s process
id; in the child process, it returns #f. Fork-and-forget calls thunk in a new process;
no process id is returned. Fork-and-forget uses an intermediate process to avoid
creating a zombie.

Chapter 8: POSIX interface 135

[procedure]process-id? object −→ boolean
[procedure]process-id=? pida pidb −→ boolean
[procedure]process-id->integer pid −→ integer
[procedure]integer->process-id integer −→ pid

Process-id? is the disjoint type predicate for process ids. Process-id=? tests
whether two process ids are the same. Process-id->integer & integer->process-
id convert between Scheme48’s opaque process id type and POSIX process id integers.

[procedure]process-id-exit-status pid −→ integer or #f
[procedure]process-id-terminating-signal pid −→ signal or #f
[procedure]wait-for-child-process pid −→ unspecified

If the process identified by pid exited normally or is running, process-id-exit-
status and process-id-terminating-signal will both return #f. If, however, it
terminated abnormally, process-id-exit-status returns its exit status, and if it
exited due to a signal then process-id-terminating-signal returns the signal due
to which it exited. Wait-for-child-process blocks the current process until the
process identified by pid has terminated. Scheme48 may reap child processes before
the user requests their exit status, but it does not always do so.

[procedure]exit status −→ does not return
Terminates the current process with the integer status as its exit status.

[procedure]exec program argument . . . −→ does not return
[procedure]exec-with-environment program env argument . . . −→ does not

return
[procedure]exec-file filename argument . . . −→ does not return
[procedure]exec-file-with-environment filename env argument . . . −→ does not

return
These all replace the current program with a new one. They differ in how the program
is found and what process environment the program should receive. Exec & exec-
with-environment look up the program in the search path (the PATH environment
variable), while exec-file & exec-file-with-environment execute a particular
file. The environment is either inherited from the current process, in the cases of
exec & exec-file, or explicitly specified, in the cases of exec-with-environment
& exec-file-with-environment. Program, filename, & all arguments should be
strings. Env should be a list of strings of the form "name=value". When the new
program is invoked, its arguments consist of the program name prepended to the
remaining specified arguments.

[procedure]exec-with-alias name lookup? maybe-env arguments −→ does not
return

General omnibus procedure that subsumes the other exec variants. Name is looked
up in the search path if lookup? is true or used as an ordinary filename if it is
false. Maybe-env is either #f, in which case the new program’s environment should
be inherited from the current process, or a list of strings of the above form for envi-
ronments, which specifies the new program’s environment. Arguments is a list of all
of the program’s arguments; exec-with-alias does not prepend name to that list
(hence -with-alias).

Chapter 8: POSIX interface 136

8.2 Signals

There are two varieties of signals available, named & anonymous. A named signal is one
for which there is provided a symbolic name, such as kill or pipe. Anonymous signals are
those that the operating system provided but for which POSIX does not define a symbolic
name, only a number, and which may not have meaning on other operating systems. Named
signals preserve their meaning through heap image dumps; anonymous signals may not be
dumped in heap images. (If they are, a warning is signalled, and they are replaced with a
special token that denotes a non-portable signal.) Not all named signals are available from
all operating systems, and there may be multiple names for a single operating system signal
number.

[syntax]signal name −→ signal
[procedure]name->signal symbol −→ signal or #f
[procedure]integer->signal integer −→ signal
[procedure]signal? object −→ boolean
[procedure]signal-name signal −→ symbol or #f
[procedure]signal-os-number signal −→ integer
[procedure]signal=? signala signalb −→ boolean

Signal evaluates to the signal object with the known symbolic name name. It is
an error if name is not recognized as any signal’s name. Name->signal returns the
signal corresponding with the given name or #f if no such signal is known. Integer-
>signal returns a signal, named or anonymous, with the given OS number. Signal?
is the disjoint type predicate for signal objects. Signal-name returns the symbolic
name of signal if it is a named signal or #f if it is an anonymous signal. Signal-OS-
number returns the operating system’s integer value of signal. Signal=? tests whether
two signals are the same, i.e. whether their OS numbers are equal equal.
These are all of the symbols that POSIX defines.

abrt abnormal termination (as by abort(3))

alrm timeout signal (as by alarm(2))

fpe floating point exception

hup hangup on controlling terminal or death of controlling process

ill illegal instruction

int interrupt — interaction attention

kill termination signal, cannot be caught or ignored

pipe write was attempted on a pipe with no readers

quit interaction termination

segv segmentation violation — invalid memory reference

term termination signal

usr1
usr2 for use by applications

Chapter 8: POSIX interface 137

chld child process stopped or terminated

cont continue if stopped

stop stop immediately, cannot be caught or ignored

tstp interactive stop

ttin read from control terminal attempted by a background process

ttou write to control terminal attempted by a background process

bus bus error — access to undefined portion of memory

There are also several other signals whose names are allowed to be passed to signal
that are not defined by POSIX, but that are recognized by many operating systems.

trap trace or breakpoint trap

iot synonym for abrt

emt

sys bad argument to routine (SVID)

stkflt stack fault on coprocessor

urg urgent condition on socket (4.2 BSD)

io I/O now possible (4.2 BSD)

poll synonym for io (System V)

cld synonym for chld

xcpu CPU time limit exceeded (4.2 BSD)

xfsz file size limit exceeded (4.2 BSD)

vtalrm virtual alarm clock (4.2 BSD)

prof profile alarm clock

pwr power failure (System V)

info synonym for pwr

lock file lock lost

winch Window resize signal (4.3 BSD, Sun)

unused

8.2.1 Sending & receiving signals

[procedure]signal-process pid signal −→ unspecified
Sends a signal represented by signal to the process identified by pid.

Signals received by the Scheme process can be obtained via one or more signal queues.
Each signal queue has a list of monitored signals and a queue of received signals that have
yet to be consumed from the queue. When the Scheme process receives a signal, that signal
is added to the signal queues that are currently monitoring the signal received.

Chapter 8: POSIX interface 138

[procedure]make-signal-queue signal-list −→ signal-queue
[procedure]signal-queue? object −→ boolean
[procedure]signal-queue-monitored-signals signal-queue −→ signal-list
[procedure]dequeue-signal! signal-queue −→ signal (may block)
[procedure]maybe-dequeue-signal! signal-queue −→ signal or #f

Make-signal-queue returns a new signal queue that will monitor all of the signals in
the given list. Signal-queue? is the disjoint type predicate for signal queues. Signal-
queue-monitored-signals returns a freshly-allocated list of the signals currently
monitored by signal-queue. Dequeue-signal! & maybe-dequeue-signal! both ac-
cess the next signal ready to be read from signal-queue. If the signal queue is empty,
dequeue-signal! will block until a signal is received, while maybe-dequeue-signal!
will immediately return #f.

Note: There is a bug in the current system that causes an erroneous deadlock to occur
if threads are blocked waiting for signals and no other threads are available to run. A
workaround is to create a thread that sleeps for a long time, which prevents any deadlock
errors (including real ones):

> ,open threads
> (spawn (lambda ()

;; Sleep for a year.
(sleep (* 1000 60 60 24 365))))

[procedure]add-signal-queue-signal! signal-queue signal −→ unspecified
[procedure]remove-signal-queue-signal! signal-queue signal −→ unspecified

These add & remove signals from signal queues’ list of signals to monitor. Note that
remove-signal-queue-signal! also removes any pending signals from the queue, so
dequeue-signal! & maybe-dequeue-signal! will only ever return signals that are
on the queue’s list of monitored signals when they are called.

8.3 Process environment

These procedures are exported by the structures posix & posix-process-data.

[procedure]get-process-id −→ process-id
[procedure]get-parent-process-id −→ process-id

These return the process id (see Section 8.1 [POSIX processes], page 134) of the
current process or the current process’s parent, respectively.

[procedure]get-user-id −→ user-id
[procedure]get-effective-user-id −→ user-id
[procedure]set-user-id! user-id −→ unspecified
[procedure]get-group-id −→ group-id
[procedure]get-effective-group-id −→ group-id
[procedure]set-group-id! group-id −→ unspecified

These access the original and effective user & group ids (see Section 8.4 [POSIX users
and groups], page 139) of the current process. The effective ids may be set, but not
the original ones.

Chapter 8: POSIX interface 139

[procedure]get-groups −→ group-id list
[procedure]get-login-name −→ string

Get-groups returns a list of the supplementary groups of the current process. Get-
login-name returns a user name for the current process.

[procedure]lookup-environment-variable string −→ string or #f
[procedure]environment-alist −→ alist

Lookup-environment-variable looks up its argument in the environment list of
the current process and returns the corresponding string, or #f if there is none.
Environment-alist returns the entire environment as a list of (name-string .
value-string) pairs.

8.4 Users and groups

User ids & group ids are boxed integers that represent Unix users & groups. Also,
every user & group has a corresponding user info or group info record, which contains
miscellaneous information about the user or group. The procedures in this section are
exported by the structures posix-users & posix.

[procedure]user-id? object −→ boolean
[procedure]user-id=? uida uidb −→ boolean
[procedure]user-id->integer uid −→ integer
[procedure]integer->user-id integer −→ uid
[procedure]group-id? object −→ boolean
[procedure]group-id=? gida gidb −→ boolean
[procedure]group-id->integer gid −→ integer
[procedure]integer->group-id integer −→ gid

User-id? & group-id? are the disjoint type predicates for user & group ids. User-
id=? & group-id=? test whether two user or group ids, respectively, are the same,
i.e. whether their numbers are equal. User-id->integer, group-id->integer,
integer->user-id, & integer->group-id convert between user or group ids and
integers.

[procedure]user-id->user-info uid −→ user-info
[procedure]name->user-info string −→ user-info
[procedure]group-id->group-info gid −→ group-info
[procedure]name->group-info string −→ group-info

These provide access for the user or group info records that correspond with the given
user or group ids or names.

Chapter 8: POSIX interface 140

[procedure]user-info? object −→ boolean
[procedure]user-info-name user-info −→ string
[procedure]user-info-id user-info −→ user-id
[procedure]user-info-group user-info −→ group-id
[procedure]user-info-home-directory user-info −→ string
[procedure]user-info-shell user-info −→ string
[procedure]group-info? object −→ boolean
[procedure]group-info-name group-info −→ string
[procedure]group-info-id group-info −→ group-id
[procedure]group-info-members group-info −→ user-id-list

User-info? & group-info? are the disjoint type predicates for user info & group
info records. The others are accessors for the various data available in those records.

8.5 Host OS and machine identification

[procedure]host-name −→ string
[procedure]os-node-name −→ string
[procedure]os-release-name −→ string
[procedure]os-version-name −→ string
[procedure]machine-name −→ string

These procedures return strings that are intended to identify various aspects of the
current operating system and physical machine. POSIX does not specify the format
of the strings. These procedures are provided by both the structure posix-platform-
names and the structure posix.

8.6 File system access

These procedures operate on the file system via the facilities defined by POSIX and offer
more than standard & portable R5RS operations. All of these names are exported by the
structures posix-files and posix.

[procedure]open-directory-stream filename −→ dir-stream
[procedure]directory-stream? object −→ boolean
[procedure]read-directory-stream dir-stream −→ filename or #f
[procedure]close-directory-stream dir-stream −→ unspecified

Directory streams are the low-level interface provided by POSIX to enumerate the
contents of a directory. Open-directory-stream opens a new directory stream that
will enumerate all of the files within the directory named by filename. Directory-
stream? is the disjoint type predicate for directory streams. Read-directory-stream
consumes the next filename from dir-stream and returns it, or returns #f if the stream
has finished. Note that read-directory-stream will return only simple filenames,
not full pathnames. Close-directory-stream closes dir-stream, removing any stor-
age it required in the operating system. Closing an already closed directory stream
has no effect.

Chapter 8: POSIX interface 141

[procedure]list-directory filename −→ string list
Returns the list of filenames in the directory named by filename. This is equivalent
to opening a directory stream, repeatedly reading from it & accumulating the list of
filenames, and closing the stream.

[procedure]working-directory −→ string
[procedure]set-working-directory! string −→ unspecified

These access the working directory’s filename of the current process.

[procedure]open-file pathname file-options [file-mode] −→ port
Opens a port to the file named by the string pathname. File-options specifies various
aspects of the port. The optional file-mode argument is used only if the file to be
opened does not already exist; it specifies the permissions to be assigned to the file if it
is created. The returned port is an input port if the given options include read-only;
otherwise open-file returns an output port. Because Scheme48 does not support
combined input/output ports, dup-switching-mode can be used to open an input
port for output ports opened with the read-write option.

File options are stored in a boxed mask representation. File option sets are created with
file-options and tested with file-options-on?.

[syntax]file-options name . . . −→ file-options
[procedure]file-options-on? optionsa optionsb −→ boolean

File-options evaluates to a file option set, suitable for passing to open-file, that
includes all of the given named options. File-options-on? returns true if optionsa

includes all of the options in optionsb, or false if otherwise.

The following file option names are supported as arguments to the file-options
syntax:

create create file if it does not already exist; a file-mode argument is required to
be passed to open-file if the create option is specified

exclusive
an error will be signalled if this option & create are both set and the file
already exists

no-controlling-tty
if the pathname being opened is a terminal device, the terminal will not
become the controlling terminal of the process

truncate file is truncated

append written data to the newly opened file will be appended to the existing
contents

nonblocking
read & write operations will not block

read-only
file may not be written to, only read from

Chapter 8: POSIX interface 142

read-write
file may be both read from & written to

write-only
file may not be read from, only written to

The last three are all mutually exclusive.

Examples:

(open-file "some-file.txt"
(file-options create write-only)
(file-mode read owner-write))

returns an output port that writes to a newly-created file that can be read from by anyone
but written to only by the owner. Once the file ‘some-file.txt’ exists,

(open-file "some-file.txt"
(file-options append write-only))

will open an output port that appends to the file.

I/o-flags & set-i/o-flags! (see Section 8.8 [POSIX I/O utilities], page 145) can be
used to access the append, nonblocking, and read/write file options of ports, as well as
modify the append & nonblocking options.

To keep port operations from blocking in the Scheme48 process, output ports are set to be
nonblocking at the time of creation. (Input ports are managed using select(2).) Set-i/o-
flags! can be used to make an output port blocking, for example directly before forking,
but care should be exercised, because the Scheme48 run-time system may be confused if an
I/O operation blocks.

[procedure]set-file-creation-mask! file-mode −→ file-mode
Sets the file creation mask to be file-mode. Bits set in file-mode are cleared in the
modes of any files or directories subsequently created by the current process.

[procedure]link existing-pathname new-pathname −→ unspecified
[procedure]make-directory pathname file-mode −→ unspecified
[procedure]make-fifo pathname file-mode −→ unspecified

Link creates a hard link for the file at existing-pathname at new-pathname. Make-
directory creates a new directory at the locations specified by pathname with the
the file mode file-mode. Make-fifo does similarly, but it creates a FIFO (first-in
first-out) file instead of a directory.

[procedure]unlink pathname −→ unspecified
[procedure]remove-directory pathname −→ unspecified
[procedure]rename old-pathname new-pathname −→ unspecified

Unlink removes a link at the location pathname. Remove-directory removes a
directory at the location specified by pathname. The directory must be empty; an
exception is signalled if it is not. Rename moves the file at the location old-pathname
to the new location new-pathname.

Chapter 8: POSIX interface 143

[procedure]accessible? pathname access-mode more-modes . . . −→ boolean
[syntax]access-mode name −→ access mode

Accessible? returns true if pathname is accessible by all of the given access modes.
(There must be at least one access mode argument.) Access-mode evaluates to an
access mode, suitable for passing to accessible?, from the given name. The allowed
names are read, write, execute, & exists.

Information about files can be queried using the file info abstraction. Every file has a
corresponding file info record, which contains various data about the file including its name,
its type, its device & inode numbers, the number of links to it, its size in bytes, its owner,
its group, its file mode, and its access times.

[procedure]get-file-info pathname −→ file-info
[procedure]get-file/link-info pathname −→ file-info
[procedure]get-port-info fd-port −→ file-info

Get-file-info & get-file/link-info return a file info record for the files named
by pathname. Get-file-info follows symbolic links, however, while get-file/link
info does not. Get-port-info returns a file info record for the file that fd-port is
a port atop a file descriptor for. If fd-port does not read from or write to a file
descriptor, an error is signalled.

[procedure]file-info? object −→ boolean
[procedure]file-info-name file-info −→ string
[procedure]file-info-device file-info −→ integer
[procedure]file-info-inode file-info −→ integer
[procedure]file-info-link-count file-info −→ integer
[procedure]file-info-size file-info −→ integer
[procedure]file-info-owner file-info −→ user-id
[procedure]file-info-group file-info −→ group-id
[procedure]file-info-mode file-info −→ file-mode
[procedure]file-info-last-access file-info −→ time
[procedure]file-info-last-modification file-info −→ time
[procedure]file-info-last-change file-info −→ time

Accessors for various file info record fields. The name is the string passed to get-
file-info or get-file/link-info, if the file info record was created with either
of those two, or the name of the file that the file descriptor of the port queried was
created on, if the file info record was obtained with get-port-info.

[procedure]file-info-type file-info −→ file-type
[syntax]file-type name −→ file-type

[procedure]file-type? object −→ boolean
[procedure]file-type-name file-type −→ symbol

File-info-type returns the type of the file as a file type object. File types may
be compared using eq?. File-type evaluates to a file type of the given name. The
disjoint type predicate for file types is file-type?. File-type-name returns the
symbolic name that represents file-type.
The valid file type names are:

regular

Chapter 8: POSIX interface 144

directory

character-device

block-device

fifo

symbolic-link (not required by POSIX)
socket (not required by POSIX)
other

File modes are boxed integers that represent POSIX file protection masks.

[syntax]file-mode permission-name . . . −→ file-mode
[procedure]file-mode? object −→ boolean

File-mode evaluates to a file mode object that contains all of the specified permis-
sions. File-mode? is the disjoint type predicate for file mode descriptor objects.
These are all of the names, with their corresponding octal bit masks and meanings,
allowed to be passed to file-mode:
Permission name Octal mask Description
set-uid #o4000 set user id when executing
set-gid #o2000 set group id when executing
owner-read #o0400 read by owner
owner-write #o0200 write by owner
owner-exec #o0100 execute (or search) by owner
group-read #o0040 read by group
group-write #o0020 write by group
group-exec #o0010 execute (or search) by group
other-read #o0004 read by others
other-write #o0002 write by others
other-exec #o0001 execute (or search) by others
Also, several compound masks are supported for convenience:
Permission set name Octal mask Description
owner #o0700 read, write, & execute by owner
group #o0070 read, write, & execute by group
other #o0007 read, write, & execute by others
read #o0444 read by anyone
write #o0111 write by anyone
exec #o0777 read, write, & execute by anyone

[procedure]file-mode+ file-mode . . . −→ file-mode
[procedure]file-mode- file-modea file-modeb −→ file-mode
[procedure]file-mode=? file-modea file-modeb −→ boolean
[procedure]file-mode<=? file-modea file-modeb −→ boolean
[procedure]file-mode>=? file-modea file-modeb −→ boolean

File-mode+ returns a file mode that contains all of the permissions specified in any
of its arguments. File-mode- returns a file mode that contains all of file-modea’s
permissions not in file-modeb. File-mode=? tests whether two file modes are the
same. File-mode<=? returns true if each successive file mode argument has the same

Chapter 8: POSIX interface 145

or more permissions as the previous one. File-mode>=? returns true if each successive
file mode argument has the same or fewer permissions as the previous one.

[procedure]file-mode->integer file-mode −→ integer
[procedure]integer->file-mode integer −→ file-mode

These convert between file mode objects and Unix file mode masks as integers. The
integer representations may or may not be the masks used by the underlying operating
system.

8.7 Time

A time record contains an integer that represents a time as the number of seconds since
the Unix epoch (00:00:00 GMT, January 1, 1970). These procedures for operating on time
records are in the structures posix-time & posix.

[procedure]make-time seconds −→ time
[procedure]current-time −→ time
[procedure]time? object −→ boolean
[procedure]time-seconds time −→ integer

Make-time & current-time construct time records; make-time uses the number of
seconds that is its argument, and current-time uses the current number of seconds
since the epoch. Time? is the disjoint type predicate for time objects. Time-seconds
returns the number of seconds recorded by time.

[procedure]time=? timea timeb −→ boolean
[procedure]time<? timea timeb −→ boolean
[procedure]time<=? timea timeb −→ boolean
[procedure]time>? timea timeb −→ boolean
[procedure]time>=? timea timeb −→ boolean

Various time comparators. Time=? returns true if its two arguments represent the
same number of seconds since the epoch. Time<?, time<=?, time>?, & time>= return
true if their arguments are monotonically increasing, monotonically non-decreasing,
monotonically decreasing, or monotonically non-increasing, respectively.

[procedure]time->string time −→ string
Returns a string representation of time in the format of "DDD MMM HH:MM:SS YYYY".
For example,

(time->string (make-time 1234567890))
⇒ "Fri Feb 13 18:31:30 2009"

Note: The string has a newline suffix.

8.8 I/O utilities

These procedures for manipulating pipes and ports built on file descriptors are provided
by the structures posix-i/o & posix.

Chapter 8: POSIX interface 146

[procedure]open-pipe −→ [input-port output-port]
Creates a pipe and returns the two ends of the pipe as an input port & an output
port.

A file descriptor port (or fd-port) is a port or a channel (see Section 4.5.4 [Channels],
page 67) that reads from or writes to an OS file descriptor. File descriptor ports are returned
by the standard Scheme procedures open-input-file & open-output-file as well as the
procedures open-file & open-pipe from this POSIX interface.

[procedure]fd-port? port −→ boolean
[procedure]port->fd port −→ integer or #f

Fd-port? returns true if port is a port that reads from or writes to a file descriptor,
or false if not. Port->fd returns the file descriptor that port reads from or writes to,
if it is a file descriptor port, or #f if it is not. It is an error to pass a value that is not
a port to either of these procedures.

Note: Channels may not be passed to these procedures. To access a channel’s file
descriptor, use channel-os-index; see Section 4.5.4 [Channels], page 67 for more
details.

[procedure]remap-file-descriptors! fd-spec . . . −→ unspecified
Reassigns file descriptors to ports. Each fd-spec specifies what port is to be mapped
to what file descriptor: the first port gets file descriptor 0; the second, 1; and so on.
An fd-spec is either a port that reads from or writes to a file descriptor or #f; in the
latter case, the corresponding file descriptor is not used. Any open ports not listed are
marked close-on-exec. The same port may be moved to multiple new file descriptors.

For example,

(remap-file-descriptors (current-output-port)
#f
(current-input-port))

moves the current output port to file descriptor 0 (i.e. stdin) and the current input
port to file descriptor 2 (i.e. stderr). File descriptor 1 (stdout) is not mapped to
anything, and all other open ports (including anything that had the file descriptor 1)
are marked close-on-exec.

[procedure]dup fd-port −→ fd-port
[procedure]dup-switching-mode fd-port −→ fd-port
[procedure]dup2 fd-port fdes −→ fd-port

These change fd-port’s file descriptor and return new ports that have the ports’ old
file descriptors. Dup uses the lowest unused file descriptor; dup2 uses the one provided.
Dup-switching-mode is the same as dup except that the returned port is an input
port if the argument was an output port and vice versa. If any existing port uses the
file descriptor passed to dup2, that port is closed.

[procedure]close-all-port port-or-channel . . . −→unspecified
Closes all ports or channels not listed as arguments.

Chapter 8: POSIX interface 147

[procedure]close-on-exec? channel −→ boolean
[procedure]set-close-on-exec?! channel boolean −→ unspecified

These access the boolean flag that specifies whether channel will be closed when a
new program is exec’d.

[procedure]i/o-flags fd-port −→ file-options
[procedure]set-i/o-flags! fd-port file-options −→ unspecified

These access various file options (see Section 8.6 [POSIX file system access], page 140)
for fd-port. The options that may be read are append, nonblocking, read-only,
read-write, and write-only; only the append and nonblocking options can be
written.

[procedure]port-is-a-terminal? port −→ boolean
[procedure]port-terminal-name port −→ string or #f

Port-is-a-terminal? returns true of port is a port that has an underlying file de-
scriptor associated with a terminal. For such ports, port-terminal-name returns the
name of the terminal; for all others, it returns #f.
Note: These procedures accept only ports, not channels.

8.9 Regular expressions

The procedures in this section provide access to POSIX regular expression matching.
The regular expression syntax and semantics are far too complex to be described here.

Note: Because the C interface uses ASCII NUL bytes to mark the ends of strings, patterns
& strings that contain NUL characters will not work correctly.

8.9.1 Direct POSIX regular expression interface

The first interface to regular expressions is a thin layer over the interface that POSIX
provides. It is exported by the structures posix-regexps & posix.

[procedure]make-regexp string option . . . −→ regexp
[procedure]regexp? object −→ boolean

Make-regexp creates a regular expression with the given string pattern. The argu-
ments after string specify various options for the regular expression; see regexp-
option below. The regular expression is not compiled until it is matched against
a string, so any errors in the pattern string will not be reported until that point.
Regexp? is the disjoint type predicate for regular expression objects.

[syntax]regexp-option name −→ regexp-option
Evaluates to a regular expression option, suitable to be passed to make-regexp, with
the given name. The possible option names are:

extended use the extended patterns

ignore-case
ignore case differences when matching

Chapter 8: POSIX interface 148

submatches
report submatches

newline treat newlines specially

[procedure]regexp-match regexp string start submatches? starts-line? ends-line?
−→ boolean or list of matches

Regexp-match matches regexp against the characters in string, starting at position
start. If the string does not match the regular expression, regexp-match returns
#f. If the string does match, then a list of match records is returned if submatches?
is true or #t if submatches? is false. The first match record gives the location of
the substring that matched regexp. If the pattern in regexp contained submatches,
then the submatches are returned in order, with match records in the positions where
submatches succeeded and #f in the positions where submatches failed.
Starts-line? should be true if string starts at the beginning of a line, and ends-line?
should be true if it ends one.

[procedure]match? object −→ boolean
[procedure]match-start match −→ integer
[procedure]match-end match −→ integer
[procedure]match-submatches match −→ alist

Match? is the disjoint type predicate for match records. Match records contain three
values: the beginning & end of the substring that matched the pattern and an associa-
tion list of submatch keys and corresponding match records for any named submatches
that also matched. Match-start returns the index of the first character in the match-
ing substring, and match-end gives the index of the first character after the matching
substring. Match-submatches returns the alist of submatches.

8.9.2 High-level regular expression construction

This section describes a functional interface for building regular expressions and match-
ing them against strings, higher-level than the direct POSIX interface. The matching is
done using the POSIX regular expression package. Regular expressions constructed by pro-
cedures listed here are compatible with those in the previous section; that is, they satisfy
the predicate regexp? from the posix-regexps structure. These names are exported by
the structure regexps.

8.9.2.1 Character sets

Character sets may be defined using a list of characters and strings, using a range or
ranges of characters, or by using set operations on existing character sets.

[procedure]set char-or-string . . . −→ char-set-regexp
[procedure]range low-char high-char −→ char-set-regexp
[procedure]ranges low-char high-char . . . −→ char-set-regexp
[procedure]ascii-range low-char high-char −→ char-set-regexp
[procedure]ascii-ranges low-char high-char . . . −→ char-set-regexp

Set returns a character set that contains all of the character arguments and all of the
characters in all of the string arguments. Range returns a character set that contains

Chapter 8: POSIX interface 149

all characters between low-char and high-char, inclusive. Ranges returns a set that
contains all of the characters in the given set of ranges. Range & ranges use the
ordering imposed by char->integer. Ascii-range & ascii-ranges are like range
& ranges, but they use the ASCII ordering. Ranges & ascii-ranges must be given
an even number of arguments. It is an error for a high-char to be less than the
preceding low-char in the appropriate ordering.

[procedure]negate char-set −→ char-set-regexp
[procedure]union char-seta char-setb −→ char-set-regexp
[procedure]intersection char-seta char-setb −→ char-set-regexp
[procedure]subtract char-seta char-setb −→ char-set-regexp

Set operations on character sets. Negate returns a character set of all characters that
are not in char-set. Union returns a character set that contains all of the characters
in char-seta and all of the characters in char-setb. Intersection returns a character
set of all of the characters that are in both char-seta and char-setb. Subtract returns
a character set of all the characters in char-seta that are not also in char-setb.

[character set]lower-case = (set "abcdefghijklmnopqrstuvwxyz")
[character set]lower-case = (set "abcdefghijklmnopqrstuvwxyz")
[character set]upper-case = (set "ABCDEFGHIJKLMNOPQRSTUVWXYZ")
[character set]alphabetic = (union lower-case upper-case)
[character set]numeric = (set "0123456789")
[character set]alphanumeric = (union alphabetic numeric)
[character set]punctuation = (set "!\"#$%&’()*+,-./:;<=>?@[\\]^_‘{|}~")
[character set]graphic = (union alphanumeric punctuation)
[character set]printing = (union graphic (set #\space))
[character set]control = (negate printing)
[character set]blank = (set #\space (ascii->char 9)) ; ASCII 9 = TAB
[character set]whitespace = (union (set #\space) (ascii-range 9 13))
[character set]hexdigit = (set "0123456789ABCDEF")

Predefined character sets.

8.9.2.2 Anchoring

[procedure]string-start −→ regexp
[procedure]string-end −→ regexp

String-start returns a regular expression that matches the beginning of the string
being matched against; string-end returns one that matches the end.

8.9.2.3 Composite expressions

[procedure]sequence regexp . . . −→ regexp
[procedure]one-of regexp . . . −→ regexp

Sequence returns a regular expression that matches concatenation of all of its argu-
ments; one-of returns a regular expression that matches any one of its arguments.

[procedure]text string −→ regexp
Returns a regular expression that matches exactly the characters in string, in order.

Chapter 8: POSIX interface 150

[procedure]repeat regexp −→ regexp
[procedure]repeat count regexp −→ regexp
[procedure]repeat min max regexp −→ regexp

Repeat returns a regular expression that matches zero or more occurrences of its reg-
exp argument. With only one argument, the result will match regexp any number of
times. With two arguments, i.e. one count argument, the returned regular expression
will match regexp exactly that number of times. The final case will match from min
to max repetitions, inclusive. Max may be #f, in which case there is no maximum
number of matches. Count & min must be exact, non-negative integers; max should
be either #f or an exact, non-negative integer.

8.9.2.4 Case sensitivity

Regular expressions are normally case-sensitive, but case sensitivity can be manipulated
simply.

[procedure]ignore-case regexp −→ regexp
[procedure]use-case regexp −→ regexp

The regular expression returned by ignore-case is identical to its argument except
that the case will be ignored when matching. The value returned by use-case is
protected from future applications of ignore-case. The expressions returned by
use-case and ignore-case are unaffected by any enclosing uses of these procedures.
By way of example, the following matches "ab", but not "aB", "Ab", or "AB":

(text "ab")

while
(ignore-case (text "ab"))

matches all of those, and
(ignore-case (sequence (text "a")

(use-case (text "b"))))

matches "ab" or "Ab", but not "aB" or "AB".

8.9.2.5 Submatches and matching

A subexpression within a larger expression can be marked as a submatch. When an
expression is matched against a string, the success or failure of each submatch within that
expression is reported, as well as the location of the substring matched by each successful
submatch.

[procedure]submatch key regexp −→ regexp
[procedure]no-submatches regexp −→ regexp

Submatch returns a regular expression that is equivalent to regexp in every way except
that the regular expression returned by submatch will produce a submatch record in
the output for the part of the string matched by regexp. No-submatches returns
a regular expression that is equivalent to regexp in every respect except that all
submatches generated by regexp will be ignored & removed from the output.

Chapter 8: POSIX interface 151

[procedure]any-match? regexp string −→ boolean
[procedure]exact-match? regexp string −→ boolean
[procedure]match regexp string −→ match or #f

Any-match? returns #t if string matches regexp or contains a substring that does, or
#f if otherwise. Exact-match? returns #t if string matches regexp exactly, or #f if
it does not.
Match returns #f if string does not match regexp, or a match record if it does, as
described in the previous section. Matching occurs according to POSIX. The match
returned is the one with the lowest starting index in string. If there is more than
one such match, the longest is returned. Within that match, the longest possible
submatches are returned.
All three matching procedures cache a compiled version of regexp. Subsequent calls
with the same input regular expression will be more efficient.

Here are some examples of the high-level regular expression interface:
(define pattern (text "abc"))

(any-match? pattern "abc") ⇒ #t
(any-match? pattern "abx") ⇒ #f
(any-match? pattern "xxabcxx") ⇒ #t

(exact-match? pattern "abc") ⇒ #t
(exact-match? pattern "abx") ⇒ #f
(exact-match? pattern "xxabcxx") ⇒ #f

(let ((m (match (sequence (text "ab")
(submatch ’foo (text "cd"))
(text "ef")))

"xxabcdefxx"))
(list m (match-submatches m)))
⇒ (#{Match 3 9} ((foo . #{Match 5 7})))

(match-submatches
(match (sequence (set "a")

(one-of (submatch ’foo (text "bc"))
(submatch ’bar (text "BC"))))

"xxxaBCd"))
⇒ ((bar . #{Match 4 6}))

8.10 C to Scheme correspondence

access accessible?

chdir set-working-directory!

close close-input-port, close-output-port, close-channel, close-socket

closedir close-directory-stream

Chapter 8: POSIX interface 152

creat open-file

ctime time->string

dup dup, dup-switching-mode

dup2 dup2

exec[l|v][e|p|eps]
exec, exec-with-environment, exec-file, exec-file-with-
environment, exec-with-alias

_exit exit

fcntl i/o-flags, set-i/o-flags!, close-on-exec?, set-close-on-exec?!

fork fork, fork-and-forget

fstat get-port-info

getcwd working-directory

getegid get-effective-group-id

getenv lookup-environment-variable, environment-alist

geteuid get-effective-user-id

getgid get-group-id

getgroups
get-login-name

getpid get-process-id

getppid get-parent-process-id

getuid get-user-id

isatty port-is-a-terminal?

link link

lstat get-file/link-info

mkdir make-directory

mkfifo make-fifo

open open-file

opendir open-directory-stream

pipe open-pipe

read read-char, read-block

readdir read-directory-stream

rename rename

rmdir remove-directory

setgid set-group-id!

Chapter 8: POSIX interface 153

setuid set-user-id!

stat get-file-info

time current-time

ttyname port-terminal-name

umask set-file-creation-mask!

uname os-name, os-node-name, os-release-name, os-version-name, machine-
name

unlink unlink

waitpid wait-for-child-process

write write-char, write-block

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 154

9 Pre-Scheme: A low-level dialect of Scheme

Pre-Scheme [Kelsey 97] is a low-level dialect of Scheme, designed for systems program-
ming with higher-level abstractions. For example, the Scheme48 virtual machine is written
in Pre-Scheme. Pre-Scheme is a particularly interesting alternative to C for many systems
programming tasks, because not only does it operate at about the same level as C, but it
also may be run in a regular high-level Scheme development with no changes to the source,
without resorting to low-level stack munging with tools such as gdb. Pre-Scheme also sup-
ports two extremely important high-level abstractions of Scheme: macros and higher-order,
anonymous functions. Richard Kelsey’s Pre-Scheme compiler, based on his PhD research
on transformational compilation [Kelsey 89], compiles Pre-Scheme to efficient C, applying
numerous intermediate source transformations in the process.

This chapter describes details of the differences between Scheme and Pre-Scheme, listings
of the default environment and other packages available to Pre-Scheme, the operation of
Richard Kelsey’s Pre-Scheme compiler, and how to run Pre-Scheme code as if it were Scheme
in a regular Scheme environment.

9.1 Differences between Pre-Scheme & Scheme

Pre-Scheme is often considered either a dialect of Scheme or a subset of Scheme. However,
there are several very important fundamental differences between the semantics of Pre-
Scheme & Scheme to detail.

There is no garbage collector in Pre-Scheme.
All memory management is manual, as in C, although there are two levels
to memory management, for higher- and lower-level purposes: pointers & ad-
dresses. Pointers represent higher-level data that are statically checked for type
coherency, such as vectors of a certain element type, or strings. Addresses rep-
resent direct, low-level memory indices.

Pre-Scheme has no closures.
Lambda expressions that would require full closures at run-time — e.g., those
whose values are stored in the heap — are not permitted in Pre-Scheme. How-
ever, the Pre-Scheme compiler can hoist many lambda expressions to the top
level, removing the need of closures for them. (Closures would be much less
useful in the absence of garbage collection, in any case.) If the Pre-Scheme
compiler is unable to move a lambda to a place where it requires no closure, it
signals an error to the user.

Tail call optimization is not universal.
The Pre-Scheme compiler optimizes tail calls where it is possible — typically,
just in local loops and top-level procedures that are not exported from the
package, but there are other heuristics —, but it is not universal. Programmers
may force tail call optimization with Pre-Scheme’s goto special form (see Sec-
tion 9.3.2 [Tail call optimization in Pre-Scheme], page 158), but, in situations
where the compiler would not have optimized the tail call, this can make the
generated code have to jump through many hoops to be a tail call — often

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 155

necessitating code bloat, because the code of the tail-called procedure is in-
tegrated into the caller’s driver loop —; and, where the compiler would have
otherwise optimized the tail call, goto has no effect anyway.

Types are strictly verified with Hindley-Milner type inference.
The types of Pre-Scheme programs are statically verified based on Hindley-
Milner type inference, with some modifications specific to Pre-Scheme. Type
information is not retained at run-time; any tagging must be performed explic-
itly.

Pre-Scheme does not support first-class continuations.
There is no call-with-current-continuation or other continuation manipu-
lation interface. It has been suggested that downward-only continuations, based
on C’s setjmp & longjmp, might be implemented in the future, but this is not
yet the case.1

The full numeric tower of R5RS is not supported by Pre-Scheme.
Pre-Scheme’s only numeric types are fixnums and flonums, with precision de-
termined by the architecture on which the Pre-Scheme code runs. Fixnums are
translated to C as the long type; flonums are translated as the float type.

Top-level Pre-Scheme code is evaluated at compile-time.
Closures actually are available, as long as they may be eliminated before run-
time. Code evaluated at compile-time also does not require satisfaction of
strict static typing. Moreover, certain procedures, such as vector-length, are
available only at compile-time.

9.2 Type specifiers

Although Pre-Scheme’s static type system is based mostly on Hindley-Milner type in-
ference, with as little explicit type information as possible, there are still places where it is
necessary to specify types explicitly; for example, see Section 9.3.7 [Pre-Scheme access to
C functions and macros], page 161. There are several different kinds of types with different
syntax:

type-name

Symbols denote either record type or base types. Record types are defined with
the define-record-type special form described later; the following base types
are defined:

integer Fixed-size integers (fixnums). This type is translated into C as
long. The actual size depends on the size of C’s long, which on
most architectures is 32 bits.

float Floating-point data. This type translates to C as double.

null Type which has no value. The null type translates to the C void
type.

1 It may be possible to use Pre-Scheme’s C FFI to manually use setjmp & longjmp, but the author of this
manual cannot attest to this working.

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 156

unit Type which has one value. Actually, this, too, translates to C’s
void, so that it has one value is not strictly true.

boolean Booleans translate to the C char type. #t is emitted as TRUE, and
#f, as FALSE; these are usually the same as 1 & 0, respectively.

input-port
output-port

I/O ports. On Unix, since Pre-Scheme uses stdio, these are trans-
lated to FILE *s, stdio file streams.

char Characters. The size of characters is dependent on the underlying
C compiler’s implementation of the char type.

address Simple addresses for use in Pre-Scheme’s low-level memory manip-
ulation primitives (see Section 9.4.4 [Low-level Pre-Scheme memory
manipulation], page 163); see that section for more details.

(=> (argument-type ...) return-type ...)
The types of procedures, known as ‘arrow’ types.

(^ type) The type of pointers that point to type. Note that these are distinct from
the address type. Pointer types are statically verified to be coherent data,
with no defined operations except for accessing offsets in memory from the
pointer — i.e. operations such as vector-ref —; addresses simply index bytes,
on which only direct dereferencing, but also arbitrary address arithmetic, is
available. Pointers and addresses are not interchangeable, and and there is no
way to convert between them, as that would break the type safety of Pre-Scheme
pointers.

(tuple type ...)
Multiple value types, internally used for argument & return types.

9.3 Standard environment

Pre-Scheme programs usually open the prescheme structure. There are several other
structures built-in to Pre-Scheme as well, described in the next section. This section de-
scribes the prescheme structure.

9.3.1 Scheme bindings

Bindings for all the names specified here from R5RS Scheme are available in Pre-Scheme.
The remainder of the sections after this one detail Pre-Scheme specifics that are not a part
of Scheme.

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 157

[syntax]define name value
[syntax]define (name . argument-list) value
[syntax]if condition consequent [alternate]
[syntax]let ((name expression) . . .) body
[syntax]let* ((name expression) . . .) body
[syntax]and conjunct . . .
[syntax]or disjunct . . .
[syntax]cond cond-clause . . .
[syntax]do ((name init-exp [step-exp]) . . .) (test-exp [return-exp]) body

These special forms & macros are all unchanged from their R5RS specifications.

[syntax]define-syntax name transformer-expression [aux-names]
[syntax]let-syntax ((name transformer-expression) . . .) body
[syntax]letrec-syntax ((name transformer-expression) . . .) body

Pre-Scheme’s macro facility is exactly the same as Scheme48’s. Transformer-
expression may be either a syntax-rules or an explicit renaming transformer,
just as in Scheme48; in the latter case, it is evaluated either in a standard Scheme
environment or however the for-syntax clause specified of the package in whose
code the transformer appeared. For details on the extra aux-names operand to
define-syntax, see Section 4.1.12 [Explicit renaming macros], page 49.

[procedure]not boolean −→ boolean
[procedure]eq? valuea valueb −→ boolean
[procedure]char=? chara charb −→ boolean
[procedure]char<? chara charb −→ boolean
[procedure]values value . . . −→ values
[procedure]call-with-values producer consumer −→ values
[procedure]current-input-port −→ input-port
[procedure]current-output-port −→ input-port

These procedures are all unchanged from their R5RS specifications.

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 158

[procedure]+ addend . . . −→ integer
[procedure]- integer −→ integer
[procedure]- minuend subtrahend −→ integer
[procedure]* multiplicand . . . −→ integer
[procedure]= integera integerb −→ boolean
[procedure]< integera integerb −→ boolean
[procedure]> integera integerb −→ boolean
[procedure]<= integera integerb −→ boolean
[procedure]>= integera integerb −→ boolean
[procedure]min integer1 integer2 . . . −→ integer
[procedure]max integer1 integer2 . . . −→ integer
[procedure]abs integer −→ integer
[procedure]quotient divisor dividend −→ integer
[procedure]remainder divisor dividend −→ integer
[procedure]expt base exponent −→ integer

These numerical operations are all unchanged from their R5RS counterparts, except
that they are applicable only to fixnums, not to flonums, and they always return
fixnums.

9.3.2 Tail call optimization

[syntax]goto procedure argument . . .
The Pre-Scheme compiler can be forced to optimize tail calls, even those it would
not have otherwise optimized, by use of the goto special form, rather than simple
procedure calls. In every respect other than tail call optimization, this is equivalent
to calling procedure with the given arguments. Note, however, that uses of goto may
cause code to blow up if the Pre-Scheme compiler had reason not to optimize the tail
call were it not for the goto: it may need to merge the tail-called procedure into the
caller’s code.

9.3.3 Bitwise manipulation

Pre-Scheme provides basic bitwise manipulation operators.

[procedure]bitwise-and integera integerb −→ integer
[procedure]bitwise-ior integera integerb −→ integer
[procedure]bitwise-xor integera integerb −→ integer
[procedure]bitwise-not integer −→ integer

Bitwise boolean logical operations.

[procedure]shift-left integer count −→ integer
[procedure]arithmetic-shift-right integer count −→ integer
[procedure]logical-shift-right integer count −→ integer

Three ways to shift bit strings: shift-left shifts integer left by count, arithmetic-
shift-right shifts integer right by count arithmetically, and logical-shift-right
shifts integer right by count logically.

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 159

9.3.4 Compound data manipulation

Pre-Scheme has somewhat lower-level vector & string facilities than Scheme, with more
orientation towards static typing. It also provides a statically typed record facility, which
translates to C structs, though not described here, as it is not in the prescheme structure;
see Section 9.4.2 [Pre-Scheme record types], page 162.

[procedure]make-vector length init −→ vector
[procedure]vector-length vector −→ integer
[procedure]vector-ref vector index −→ value
[procedure]vector-set! vector index value −→ unit

Vectors in Pre-Scheme are almost the same as vectors in regular Scheme, but with a
few differences. Make-vector initializes what it returns with null pointers (see below);
it uses the required (unlike Scheme) init argument only to determine the type of the
vector: vectors are statically typed; they can contain only values that have the same
static type as init. Vector-length is available only at the top level, where calls to
it can be evaluated at compile-time; vectors do not at run-time store their lengths.
Vectors must also be explicitly deallocated.

Warning: As in C, there is no vector bounds checking at run-time.

[procedure]make-string length −→ string
[procedure]string-length string −→ integer
[procedure]string-ref string index −→ char
[procedure]string-set! string index char −→ unit

Strings in Pre-Scheme are the nearly same as strings in R5RS Scheme. The only three
differences here are that make-string accepts exactly one argument, strings must be
explicitly deallocated, and strings are nul-terminated: string-length operates by
scanning for the first ASCII nul character in a string.

Warning: As in C, there is no string bounds checking at run-time.

[procedure]deallocate pointer −→ unit
Deallocates the memory pointed to by pointer. This is necessary at the end of a
string, vector, or record’s life, as Pre-Scheme data are not automatically garbage-
collected.

[procedure]null-pointer −→ null-pointer
[procedure]null-pointer? pointer −→ boolean

Null-pointer returns the distinguished null pointer object. It corresponds with 0
in a pointer context or NULL in C. Null-pointer? returns true if pointer is a null
pointer, or false if not.

9.3.5 Error handling

Pre-Scheme’s method of error handling is similar to the most common one in C: er-
ror codes. There is an enumeration errors of some error codes commonly and portably
encountered in Pre-Scheme.

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 160

[enumeration]errors
(define-enumeration errors
(no-errors
parse-error
file-not-found
out-of-memory
invalid-port))

Each enumerand has the following meaning:

(enum errors no-errors)
Absence of error: success.

(enum errors parse-error)
Any kind of parsing error. The Scheme48 VM uses this when someone
attempts to resume a malformed suspended heap image.

(enum errors file-not-found)
Used when an operation that operates on a file given a string filename
found that the file for that filename was absent.

(enum errors out-of-memory)
When there is no more memory to allocate.

(enum errors invalid-port)
Unused.

[procedure]error-string error-status −→ string
Returns a string describing the meaning of the errors enumerand error-status.

[procedure]error message irritant . . .
Signals a fatal error with the given message & related irritants and halts the program.
On Unix, the program’s exit code is -1.

9.3.6 Input & output

Pre-Scheme’s I/O facilities are somewhat different from Scheme’s, given the low level
and the static type strictness. There is no exception mechanism in Pre-Scheme; everything
is maintained by returning a status token, as in C. Pre-Scheme’s built-in I/O facilities are
buffered.2 (see Section 9.4.4 [Low-level Pre-Scheme memory manipulation], page 163, for
two other I/O primitives, read-block & write-block, for reading & writing blocks of
direct memory.)

2 Scheme48’s VM does not use Pre-Scheme’s built-in I/O facilities to implement channels (see Section 4.5.4
[Channels], page 67) — it builds its own lower-level facilities that are still OS-independent, but, because
they’re written individually for different OSs, they integrate better as low-level I/O channels with the
OS. On Unix, the Scheme48 VM uses file descriptors; Pre-Scheme’s built-in I/O uses stdio. Scheme48’s
VM uses Pre-Scheme’s built-in I/O only to read heap images.

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 161

[procedure]open-input-file filename −→ [port status]
[procedure]open-output-file filename −→ [port status]
[procedure]close-input-port input-port −→ status
[procedure]close-output-port output-port −→ status

Open-input-file & open-output-file open ports for the given filenames. They
each return two values: the newly open port and an errors enumerand status. Users
of these procedures should always check the error status before proceeding to operate
with the port. Close-input-port & close-output-port close their port arguments
and return the errors enumerand status of the closing.

[procedure]read-char input-port −→ [char eof? status]
[procedure]peek-char input-port −→ [char eof? status]
[procedure]read-integer input-port −→ [integer eof? status]

Read-char reads & consumes a single character from its input-port argument. Peek-
char reads, but does not consume, a single character from input-port. Read-integer
parses an integer literal, including sign. All of these also return two other values:
whether or not the file is at the end and any errors enumerand status. If any error
occurred, the first two values returned should be ignored. If status is (enum errors
no-errors), users of these three procedures should then check eof? ; it is true if input-
port was at the end of the file with nothing more left to read and false otherwise.
Finally, if both status is (enum errors no-errors) and eof? is false, the first value
returned may be safely used.

[procedure]write-char char output-port −→ status
[procedure]newline output-port −→ status
[procedure]write-string string output-port −→ status
[procedure]write-integer integer output-port −→ status

These all write particular elements to their output-port arguments. Write-char
writes individual characters. Newline writes newlines (line-feed, or ASCII codepoint
10, on Unix). Write-string writes the contents of string. Write-integer writes an
ASCII representation of integer to port, suitable to be read by read-integer. These
all return an errors enumerand status. If it is no-errors, the write succeeded.

[procedure]force-output output-port −→ status
Forces all buffered output in output-port. Status tells whether or not the operation
was successful.

9.3.7 Access to C functions and macros

[syntax]external c-name ps-type −→ procedure
Special form for accessing C functions & macros. Calls in Pre-Scheme to the resulting
procedure are compiled to calls in C to the function or macro named by c-name, which
should be a string. PS-type is the Pre-Scheme type (see Section 9.2 [Pre-Scheme type
specifiers], page 155) that the procedure should have, which is necessary for type
inference.

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 162

9.4 More Pre-Scheme packages

Along with the prescheme structure, there are several other structures built-in to Pre-
Scheme.

9.4.1 Floating point operation

Since Pre-Scheme’s strict static type system would not permit overloading of the arith-
metic operators for integers & floats, it provides a different set of operators for floats. These
names are all exported by the ps-flonums structure.

[procedure]fl+ augend addend . . . −→ float
[procedure]fl- float −→ float
[procedure]fl- minuend subtrahend −→ float
[procedure]fl* multiplier multiplicand . . . −→ float
[procedure]fl/ divisor dividend −→ float
[procedure]fl= floata floatb −→ boolean
[procedure]fl< floata floatb −→ boolean
[procedure]fl> floata floatb −→ boolean
[procedure]fl<= floata floatb −→ boolean
[procedure]fl>= floata floatb −→ boolean

All of these operations flop correspond as floating point variations of their op integer
equivalents.

9.4.2 Record types

The ps-record-types structure defines the following special form for introducing record
types. Pre-Scheme record types are translated to C as structs.

[syntax]define-record-type
(define-record-type type type-descriptor

(constructor argument-field-tag ...)
(field-tag 1 field-type-spec 1

field-accessor 1 [field-modifier 1])
(field-tag 2 field-type-spec 2

field-accessor 2 [field-modifier 2])
...
(field-tag n field-type-spec n

field-accessor n [field-modifier n])

Defines a record type. Type is mangled to the C struct type name (type-descriptor-
name is unused unless running Pre-Scheme as Scheme). Constructor is defined to
construct a record of the new type and initialize the fields argument-type-field . . .
with its arguments, respectively. If it cannot allocate a sufficient quantity of memory,
constructor returns a null pointer. The initial values of fields that are not passed to
the constructor are undefined. For each field fieldi specified,
• fieldi is specified to have the type field-type-speci;

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 163

• field-accessori is defined to be a procedure of one argument, a record of type
type-name, that returns the value of the field fieldi of that record — its type is
defined to be (=> (type-name) field-type-speci); and

• if present, field-modifieri is defined to be a procedure of two arguments, a record
of type type-name and a value of type field-type-spec, that assigns the value of
the field fieldi in its first argument to be the value of its second argument; its
type is (=> (type-name field-type-spec) unit).

Records must be deallocated explicitly when their lifetime has expired with
deallocate.

9.4.3 Multiple return values

Pre-Scheme support multiple return values, like in Scheme. The only difference is that
one cannot operate on multiple return values as lists, since Pre-Scheme does not have lists.
Multiple return values are implemented in C as returning in C the first value and passing
pointers to the remaining values, which the function returning multiple values assigns. The
prescheme structure exports the two multiple return value primitives, call-with-values
and values, but the ps-receive structure exports this macro for more conveniently binding
multiple return values.

[syntax]receive formals producer body
Binds the lambda parameter list formals to the multiple values that producer returns,
and evaluates body with the new variables bound.

(receive formals

producer

body)
≡

(call-with-values
(lambda () producer)

(lambda formals

body))

9.4.4 Low-level memory manipulation

Pre-Scheme is a low-level language. It provides very low-level, direct memory manipu-
lation. ‘Addresses’ index a flat store of sequences of bytes. While Pre-Scheme ‘pointers’
are statically checked for data coherency, allow no arbitrary arithmetic, and in general are
high-level abstract data to some extent, addresses are much lower-level, have no statically
checked coherency — the values an address represents are selected by what operation used
to read or write from it —, permit arbitrary address arithmetic, and are a much more con-
crete interface into direct memory. The ps-memory structure exports these direct memory
manipulation primitives.

[procedure]allocate-memory size −→ address
[procedure]deallocate-memory address −→ unit

Allocate-memory reserves a sequence of size bytes in the store and returns an ad-
dress to the first byte in the sequence. Deallocate-memory releases the memory at

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 164

address, which should have been the initial address of a contiguous byte sequence, as
allocate-memory would return, not an offset address from such an initial address.

[procedure]unsigned-byte-ref address −→ unsigned-byte
[procedure]unsigned-byte-set! address unsigned-byte −→ unit
[procedure]word-ref address −→ word
[procedure]word-set! address word −→ unit
[procedure]flonum-ref address −→ float
[procedure]flonum-set! address float −→ unit

Procedures for reading from & storing to memory. Unsigned-byte-ref & unsigned-
byte-set! access & store the first unsigned byte at address. Word-ref & word-set!
access & store the first word — Pre-Scheme integer — beginning at address. Flonum-
ref & flonum-set! access & store 64-bit floats beginning at address..
Bug: Flonum-ref & flonum-set! are unimplemented in the Pre-Scheme-as-Scheme
layer (see Section 9.7 [Running Pre-Scheme as Scheme], page 169).

[procedure]address? value −→ boolean
Disjoint type predicate for addresses.
Note: Address? is available only at the top level, where code is evaluated at compile-
time. Do not use this in any place where it may be called at run-time.

[constant]null-address −→ address
The null address. This is somewhat similar to the null pointer, except that it is an
address.
Note: One acquires the null pointer by calling the procedure null-pointer, whereas
the constant value of the binding named null-address is the null address.

[procedure]null-address? address −→ boolean
Null-address? returns true if address is the null address and false if not.

[procedure]address+ address increment −→ address
[procedure]address- address decrement −→ address
[procedure]address-difference addressa addressb −→ integer

Address arithmetic operators. Address+ adds increment to address; address- sub-
tracts decrement from address; and address-difference returns the integer dif-
ference between addressa and addressb. For any addressp & addressq, (address+
addressp (address-difference addressp addressq)) is equal to addressq.

[procedure]address= addressa addressb −→ boolean
[procedure]address< addressa addressb −→ boolean
[procedure]address> addressa addressb −→ boolean
[procedure]address<= addressa addressb −→ boolean
[procedure]address>= addressa addressb −→ boolean

Address comparators.

[procedure]integer->address integer −→ address
[procedure]address->integer address −→ integer

Integers and addresses, although not the same type, may be converted to and from
each other; integer->address & address->integer perform this conversion. Note

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 165

that Pre-Scheme pointers may not be converted to addresses or integers, and the
converse is also true.

[procedure]copy-memory! source-address target-address count −→ unit
Copies count bytes starting at source-address to target-address. This is similar to C’s
memcpy.

[procedure]memory-equal? addressa addressb count −→ boolean
Compares the two sequences of count bytes starting at addresses addressa & addressb.
It returns true if every byte is equal and false if not.

[procedure]char-pointer->string address size −→ string
[procedure]char-pointer->nul-terminated-string address −→ string

Char-pointer->string returns a string with size bytes from the contiguous sequence
of bytes starting at address. Char-pointer->nul-terminated-string does similarly,
but it returns a string whose contents include every byte starting at address until,
but not including, the first 0 byte, i.e. ASCII nul character, following address.

[procedure]read-block port address count −→ [count-read eof? status]
[procedure]write-block port address count −→ status

Read-block attempts to read count bytes from port into memory starting at address.
Write-block attempts to write count bytes to port from the contiguous sequence in
memory starting at address. Read-block returns three values: the number of bytes
read, whether or not the read went to the end of the file, and the error status (see
Section 9.3.5 [Pre-Scheme error handling], page 159). Write-block returns the error
status.

9.5 Invoking the Pre-Scheme compiler

Richard Kelsey’s Pre-Scheme compiler is a whole-program compiler based on techniques
from his research in transformational compilation [Kelsey 89]. It compiles the restricted
dialect of Scheme to efficient C, and provides facilities for programmer direction in several
optimizations.

9.5.1 Loading the compiler

There is a script, a Scheme48 command program (see Section 2.4.10 [Command
programs], page 19), that comes with Scheme48 to load the Pre-Scheme compiler,
which is in the file ‘ps-compiler/load-ps-compiler.scm’. It must be loaded
from the ‘ps-compiler/’ directory, from Scheme48’s main distribution, into the
exec package, after having loaded ‘../scheme/prescheme/interface.scm’ &
‘../scheme/prescheme/package-defs.scm’ into the config package. The Pre-Scheme
compiler takes some time to load, so it may be easier to load it once and dump a
heap image of the suspended command processor after having loaded everything; see
Section 2.4.11 [Image-building commands], page 20.

To load the Pre-Scheme compiler and dump an image to the file ‘ps-compiler.image’
that contains prescheme-compiler in the user package, send this sequence of commands to
the command processor while in the ‘ps-compiler/’ directory of Scheme48’s distribution:

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 166

,config ,load ../scheme/prescheme/interface.scm
,config ,load ../scheme/prescheme/package-defs.scm
,exec ,load load-ps-compiler.scm
,in prescheme-compiler prescheme-compiler
,user (define prescheme-compiler ##)
,dump ps-compiler.image "(Pre-Scheme)"

9.5.2 Calling the compiler

After having loaded the Pre-Scheme compiler, the prescheme-compiler structure is the
front end to the compiler that exports the prescheme-compiler procedure.

[procedure]prescheme-compiler structure-spec config-filenames init-name
c-filename command . . .

Invokes the Pre-Scheme compiler. Config-filenames contain module descriptions (see
Chapter 3 [Module system], page 23) for the components of the program. Structure-
spec may be a symbol or a list of symbols, naming the important structure or struc-
tures. All structures that it relies/they rely on are traced in the packages’ open
clauses. Modules that are not traced in the dependency graph with root vertices of
the given structure[s]. C-filename is a string naming the file to which the C code
generated by the Pre-Scheme compiler should be emitted. Init-name is the name for
an initialization routine, generated automatically by the Pre-Scheme compiler to ini-
tialize some top-level variables. The command arguments are used to control certain
aspects of the compilation. The following commands are defined:

(copy (structure copyable-procedure) ...)
Specifies that each the body of each copyable-procedure from the re-
spective structure (from one of config-filenames) may be integrated &
duplicated.

(no-copy (structure uncopyable-procedure) ...)
Specifies that the given procedures may not be integrated.

(shadow ((proc-structure procedure) (var-structure variable-to-shadow)
...) ...)

Specifies that, in procedure from proc-structure, the global variables
variable-to-shadow from their respective var-structures should be shad-
owed with local variables, which are more likely to be kept in registers
for faster operation on them.

(integrate (client-procedure integrable-procedure) ...)
Forces integrable-procedure to be integrated in client-procedure.
Note: The integrate command operates on the global program, not on
one particular module; each client-procedure and integrable-procedure is
chosen from all variables defined in the entirety of the program, across
all modules. It is advised that there be only one of each.

(header header-line ...)
Each header-line is added to the top of the generated C file, after a cpp
inclusion of <stdio.h> and "prescheme.h".

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 167

The command arguments to prescheme-compiler are optional; they are used only
to optimize the compiled program at the programmer’s request.

9.6 Example Pre-Scheme compiler usage

The ‘ps-compiler/compile-vm.scm’, ‘ps-compiler/compile-gc.scm’, and
‘ps-compiler/compile-vm-no-gc.scm’ files give examples of running the Pre-Scheme
compiler. They are Scheme48 command programs (see Section 2.4.10 [Command
programs], page 19), to be loaded into the exec package after having already loaded the
Pre-Scheme compiler. ‘compile-vm.scm’ & ‘compile-vm-no-gc.scm’ generate a new
‘scheme48vm.c’ in the ‘scheme/vm/’ directory — ‘compile-vm.scm’ includes the garbage
collector, while ‘compile-vm-no-gc.scm’ does not3 —, and ‘compile-gc.scm’ generates
a new ‘scheme48heap.c’, ‘scheme48read-image.c’, & ‘scheme48write-image.c’ in the
‘scheme/vm/’ directory.

Here is a somewhat simpler example. It assumes a pre-built image with the Pre-Scheme
compiler loaded is in the ‘ps-compiler.image’ file in the current directory (see Section 9.5
[Invoking the Pre-Scheme compiler], page 165, where there is a description of how to dump
an image with the Pre-Scheme compiler loaded).

% ls
hello.scm packages.scm ps-compiler.image
% cat hello.scm
(define (main argc argv)
(if (= argc 2)

(let ((out (current-output-port)))
(write-string "Hello, world, " out)
(write-string (vector-ref argv 1) out)
(write-char #\! out)
(newline out)
0)

(let ((out (current-error-port)))
(write-string "Usage: " out)
(write-string (vector-ref argv 0) out)
(write-string " <user>" out)
(newline out)
(write-string " Greets the world & <user>." out)
(newline out)
-1)))

% cat packages.scm
(define-structure hello (export main)
(open prescheme)
(files hello))

% scheme48 -i ps-compiler.image
heap size 3000000 is too small, using 4770088
Welcome to Scheme 48 1.3 (Pre-Scheme)

3 The actual distribution of Scheme48 separates the garbage collector and the main virtual machine.

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 168

Copyright (c) 1993-2005 by Richard Kelsey and Jonathan Rees.
Please report bugs to scheme-48-bugs@s48.org.
Get more information at http://www.s48.org/.
Type ,? (comma question-mark) for help.
> (prescheme-compiler ’hello ’("packages.scm") ’hello-init "hello.c")
packages.scm
hello.scmChecking types
main : ((integer **char) -> integer)
In-lining single-use procedures
Call Graph:
<procedure name>
<called non-tail-recursively>
<called tail-recursively>

main (exported)
Merging forms
Translating
main
#{Unspecific}
> ,exit
% cat hello.c
#include <stdio.h>
#include "prescheme.h"

long main(long, char**);

long main(long argc_0X, char **argv_1X)
{

FILE * out_3X;
FILE * out_2X;
{ if ((1 == argc_0X)) {

out_2X = stdout;
ps_write_string("Hello, world, ", out_2X);
ps_write_string((*(argv_1X + 1)), out_2X);
{ long ignoreXX;
PS_WRITE_CHAR(33, out_2X, ignoreXX) }
{ long ignoreXX;
PS_WRITE_CHAR(10, out_2X, ignoreXX) }
return 0;}

else {
out_3X = stderr;
ps_write_string("Usage: ", out_3X);
ps_write_string((*(argv_1X + 0)), out_3X);
ps_write_string(" <user>", out_3X);
{ long ignoreXX;
PS_WRITE_CHAR(10, out_3X, ignoreXX) }
ps_write_string(" Greets the world & <user>.", out_3X);

Chapter 9: Pre-Scheme: A low-level dialect of Scheme 169

{ long ignoreXX;
PS_WRITE_CHAR(10, out_3X, ignoreXX) }
return -1;}}

}
%

9.7 Running Pre-Scheme as Scheme

To facilitate the operation of Pre-Scheme systems within a high-level Scheme devel-
opment environment, Scheme48 simply defines the prescheme, ps-memory, ps-record-
types, ps-flonums, and ps-receive structures in terms of Scheme; Pre-Scheme structures
can be loaded as regular Scheme structures because of this. Those structures and the in-
terfaces they implement are defined in the files ‘scheme/prescheme/interface.scm’ and
‘scheme/prescheme/package-defs.scm’ from the main Scheme48 distribution; simply load
these files into the config package (see Section 2.4.6 [Module commands], page 15) before
loading any Pre-Scheme configuration files.

The Pre-Scheme emulation layer in Scheme has some shortcomings:
No more than sixteen megabytes can be allocated at once.
More than thirty-two or sixty-four or so allocations result in addresses overflowing
bignums, which deallocations does not affect.
Flonum memory access is unimplemented. (Flonum arithmetic works, though.)
The layer is very slow.

References 170

References

[Cejtin et al. 95]
Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-Order Dis-
tributed Objects. In ACM Transactions on Programming Languages and Sys-
tems, vol. 17, pp. 704–739, ACM Press, September 1995.

[Clinger 91]
William D. Clinger. Hygienic Macros through Explicit Renaming. In Lisp
Pointers, IV(4): 25-28, December 1991.

[Donald 92]
Bruce Donald and Jonathan A. Rees. Program Mobile Robots in Scheme!
In Proceedings of the 1992 IEEE International Conference on Robotics and
Automation, 2681-2688.

[Friedman 00]
Daniel Friedman and Erik Hilsdale. Writing Macros in Continuation-Passing
Style. Worksop on Scheme and Functional Programming, September 2000.

[Kelsey 89]
Richard Kelsey. Compilation by Program Transformation. PhD thesis, Yale
University, 1989.

[Kelsey 97]
Richard Kelsey. Pre-Scheme: A Scheme Dialect for Systems Programming.
June 1997.

[Museme] Franklyn Turbak and Dan Winship. Museme: a multi-user simulation environ-
ment for Scheme.
http://www.bloodandcoffee.net/campbell/code/museme.tar.gz

[Rees 96] Jonathan A. Rees. A Security Kernel based on the Lambda-Calculus. PhD
thesis, AI Memo 1564, Massachusetts Institute of Technology, Artificial Intelli-
gence Laboratory, 1996.

[Reppy 99]
John Reppy. Concurrent Programming in ML. Cambridge University Press,
1999.

[Shivers 94]
Olin Shivers. A Scheme Shell. Tech Report 635, Massachusetts Institute of
Technology, Laboratory for Computer Science, 1994.

[Shivers 96]
Olin Shivers. A Universal Scripting Framework, or Lambda: the Ultimate
“Little Language”. Concurrency and Parallelism, Programming, Networking,
and Security, pp. 254-265, 1996, Joxan Jaffar and Roland H. C. Yap (eds).

[Shivers et al. 04]
Olin Shivers, Brian D. Carlstrom, Martin Gasbichler, and Michael Sperber.
Scsh Reference Manual, for scsh release 0.6.6
http://www.scsh.net/docu/docu.html

References 171

[SRFI 1] Olin Shivers. SRFI 1: List Library Scheme Requests for Implementation, 1999.
http://srfi.schemers.org/srfi-1/

[SRFI 7] Richard Kelsey. SRFI 7: Feature-Based Program Configuration Language
Scheme Requests for Implementation, 1999.
http://srfi.schemers.org/srfi-7/

[SRFI 9] Richard Kelsey. SRFI 9: Defining Record Types Scheme Requests for Imple-
mentation, 1999.
http://srfi.schemers.org/srfi-9/

[SRFI 22] Martin Gasbichler and Michael Sperber SRFI 22: Running Scheme Scripts on
Unix Scheme Requests for Implementation, 2002.
http://srfi.schemers.org/srfi-22/

[SRFI 34] Richard Kelsey and Michael Sperber. SRFI 34: Exception Handling for Pro-
grams. Scheme Requests for Implementation, 2002.
http://srfi.schemers.org/srfi-34/

[SRFI 35] Richard Kelsey and Michael Sperber. SRFI 35: Conditions. Scheme Requests
for Implementation, 2002.
http://srfi.schemers.org/srfi-35/

Concept index 172

Concept index

=
=scheme48/ . 41

A
abstract data types . 73
accessing file ports’ channels 70
accessing structures . 24
amb operator . 113
anonymous structures . 26
arrays . 106
asynchronous channels . 90
asynchronous thread communication channels . . 86
atomic regions . 80
auto-integrate optimizer . 25

B
backtrace . 17
backtracking . 113
batch mode . 4, 11
binary data operation . 56
binary search trees . 107
binding multiple values . 115
bitwise integer operations . 56
block input and output . 59
blocking I/O . 142
buffered input and output . 64
buffered output forcing 35, 59
byte manipulation . 56

C
C access to Scheme byte vectors 127
C access to Scheme fixnums 126
C access to Scheme pairs . 127
C access to Scheme strings 127
C access to Scheme vectors 127
C and Scheme data conversion 125
C dynamic loading . 123
C macros for Scheme constants 125
C macros on Scheme booleans 126
C naming conventions . 118
C predicates for Scheme data 126
C shared objects . 123
callbacks from C and continuations 127
callbacks from C and threads 127
channel utilities, higher-level 68
channels . 67, 90
character sink output ports 109
character source input ports 109
closing channels . 67
closure flattening . 25
closures in Pre-Scheme . 154

code reloading . 8, 15
command levels . 12, 13
command processor help . 10
command processor settings 11
committing proposals . 84
compile-time evaluation in Pre-Scheme 155
compiler optimization . 25
compound interfaces . 24, 26
condition handlers . 52
condition messages . 53
condition restarting . 17
condition types . 52, 54
conditions . 52, 54
config package . 15
configuration language . 23, 24
configuration language macros 27
configuring the command processor 11
continuation previews . 17
continuations and callbacks from C 127
continuations in Pre-Scheme 155
creating directories . 142
creating POSIX FIFOs . 142
creating POSIX links . 142
customized writer . 71, 72

D
debug data storage control 21
defining record types . 73
deleting directories . 142
deleting files . 142
destructuring S-expressions 112
directory creation . 142
directory deletion . 142
directory listing . 140
directory streams . 140
disabling command levels 12, 13
disassembly . 17
displaying conditions . 55
displaying heap usage . 21
dumping heap images . 20, 77
dumping Scheme heap images with C data 129
dynamic bindings . 41

E
environment flattening . 25
environment variables . 139
error messages . 53
errors . 52
evaluation of top-level code in Pre-Scheme 155
event . 87
exceptions . 52
exec language . 19

Concept index 173

exec package . 19
executing processes . 135
execution timing . 20
exiting processes . 135
exiting Scheme . 10
expanding macros . 17
exporting bindings from C to Scheme 120
exporting bindings from Scheme to C 120
exporting C functions to Scheme 121

F
fcntl . 147
fd-port dup’ing . 146
fd-port I/O flags . 147
fd-ports . 146
FIFOs . 45
file access probing . 142
file channels . 67
file deletion . 142
file descriptor ports . 146
file descriptor reassignment 146
file info . 143
file permissions . 144
filename translations . 40
flat closures . 25
flat environments . 25
flat-environments optimizer 25
fluid bindings . 41
flushing output buffers . 35, 59
for-syntax . 28, 29
forcing buffered output 35, 59
forcing garbage collection . 20
forking . 134
functors . 24

G
garbage collection in Pre-Scheme 154
garbage collection, forcing . 20
GC protection in C . 128
generic functions . 57
generic modules . 24
generic predicate dispatch . 57
graph algorithms . 113
group ids . 138, 139
growing vectors . 108

H
heap image dumping. 20, 77
heap image resumption . 3, 77
heap image writing . 20, 77
heap size . 3
heap space analysis . 21
heap traversal . 22
help . 10
higher-level channel utilities 68

higher-order modules . 24
hygiene of macros in modules 28

I
I/O flags . 147
image dumping . 20, 77
image writing . 20, 77
immutability . 35
importing bindings into C from Scheme 120
importing bindings into Scheme from C 119
importing C functions to Scheme. 121
in-line procedures . 25
input and output of blocks 59
input ports from strings . 109
installing condition handlers 53
installing proposals . 84
integrated procedures . 25
interaction between continuations and C 127
interface abstraction . 24
interface definition forms . 26
interface reüse . 24
interfaces . 9, 23

J
join types . 31

L
limiting output . 109
line- & column-tracking ports 108
listing directories . 140
locks for mutual exclusion . 94
logging operations . 62, 81
logs . 80
loopholes in the type system 48
low-level access to records . 76
low-level macros . 49

M
macro expansion . 17
macro hygiene in modules . 28
macro referential transparency in modules 28
macros in the module configuration language. . . 27
macros, low-level . 49
macros, unhygienic . 49
making directories . 142
marshalling . 116
meet types . 31
memory management in Pre-Scheme 154, 159,

163
memory size . 3
message-passing . 90
modified interfaces . 26
modified structures . 26
module language . 23, 24

Concept index 174

module language macros . 27
modules . 23
multimethod dispatch . 57
multiple value binding . 115
mutability . 35
mutex locks . 94
mutual exclusion . 94

N
namelists . 40
networking . 109
noise output . 35, 60
nonblocking I/O . 142
nondeterminism . 113
numbers in Pre-Scheme . 155

O
object dumping . 116
object reference analysis . 22
opaque data types . 73
opening structures . 15, 23, 24
optimistic concurrency logging operations . . 62, 81
optimistic concurrency logs 80
optimistic concurrency proposals 80
optimistically concurrent record types 81
optimizer . 25
output port buffer forcing 35, 59
output ports to strings . 109

P
package clauses . 24
packages . 23
parameterized modules . 24
parametric polymorphism . 31
phase separation . 28
pipe I/O . 145
port to channel conversion . 70
ports that track line & column numbers 108
ports with line & column numbers 108
POSIX directory access . 140
POSIX environment variables 139
POSIX exec . 135
POSIX fcntl . 147
POSIX FIFOs . 142
POSIX file creation masks 142
POSIX file opening . 141
POSIX file permissions . 144
POSIX fork . 134
POSIX group ids . 138
POSIX group info . 139
POSIX links. 142
POSIX pipe I/O . 145
POSIX process exiting . 135
POSIX process ids . 134, 138
POSIX process termination 135

POSIX terminal ports . 147

POSIX user ids . 138

POSIX user info . 139

POSIX working directory. 141

Pre-Scheme closures . 154

Pre-Scheme garbage collection 154

Pre-Scheme memory management . . . 154, 159, 163

Pre-Scheme numbers . 155

Pre-Scheme strings . 159

Pre-Scheme tail call optimization 154, 158

Pre-Scheme top-level evaluation 155

Pre-Scheme type inference 155

Pre-Scheme vectors . 159

pretty-printing . 112

previewing continuations . 17

printing . 112

printing conditions . 55

procedure integration . 25

procedures, tracing . 17

proceeding from errors . 17

process forking . 134

process ids . 134, 138

process termination . 135

programmatic record types 75

proposals . 80, 84

proposals, committing . 84

proposals, installing . 84

Q
quitting Scheme . 10

R
real time . 116

record resumers. 129

record types, defining . 73

record types, programmatic 75

records, low-level access to. 76

referential transparency of macros in modules . . 28

reflective tower . 28

reloading code . 8, 15

removing directories . 142

removing files . 142

renaming files . 142

rendezvous . 87

resizable vectors . 108

restoring C data after resuming images 129

resuming heap images . 3, 77

resuming suspended threads 94

returning from errors . 17

run time . 116

Concept index 175

S
S-expression destructuring 112
Scheme and C data conversion 125
Scheme boolean testing in C 126
Scheme byte vector operations in C 127
Scheme callbacks in C . 127
Scheme constants in C . 125
Scheme data predicates in C 126
Scheme fixnums from C . 126
Scheme pair operations in C 127
Scheme string operations in C 127
Scheme vector operations in C 127
‘scheme48.h’ . 125
separate compilation . 28
serialization . 116
sharing data between Scheme and C. 119
signal queues . 137
signalling conditions . 52
simple character sink output ports 109
simple character source input ports 109
simple interfaces . 26
sleeping threads . 79
space usage analysis. 21
spawning threads . 79
stack size. 3
static type analysis . 30
static types in Pre-Scheme. 155
storage control of debug data 21
storage leak analysis . 22
storing C data in the Scheme heap 129
string input ports . 109
string matching . 147
string output ports . 109
string ports . 109
strings in Pre-Scheme . 159
strongly-connected graph components 113
structure definition forms . 25
structures . 23
structures, accessing . 24
structures, opening . 15, 23, 24
suspending threads . 94
synchronous channels . 90
syntactic tower . 28
syntax expansion . 17

T
tail call optimization in Pre-Scheme 154, 158
tail recursion in Pre-Scheme 154, 158

terminal ports . 147
terminating threads . 79
thread cells . 94
thread communication channels, asynchronous

. 86
thread descriptors . 79
thread queues . 94
thread sleeping . 79
thread termination . 79
thread yielding . 79
threads and callbacks from C 127
threads, spawning. 79
time . 89, 116
timing execution . 20
top-level evaluation in Pre-Scheme 155
towers of evaluation phases 28
tracing . 17
transaction logs . 80
type dispatch . 57
type inference . 30
type lattice . 31
type system loopholes . 48

U
undefined imported bindings 3
unhygienic macros . 49
unspecific . 37
unspecified . 37
user ids . 138, 139
user package. 15
usual resumer . 77

V
vectors in Pre-Scheme . 159

W
waiting for POSIX processes 135
warnings . 52
working directory . 141
writer, customized . 71, 72
writing heap images . 20, 77

Y
yielding threads . 79

Binding index 176

Binding index

&
&disclose-condition . 55

*
* . 158
load-file-type . 39
scheme-file-type . 39

+
+ . 157

,
,? . 10
,config . 15
,config-package-is . 16
,dis . 17
,dump . 20
,end . 12
,exec . 19
,exit . 10
,exit-when-done . 10
,expand . 17
,flush . 21
,for-syntax . 15
,help . 10
,in . 15
,inspect . 18
,keep . 21
,load-srfi-7-script . 16
,new-package . 15
,pop . 14
,proceed . 18
,reload-package . 15
,reset . 14
,resume . 14
,set . 11
,threads . 14, 17
,trace . 17
,unset . 11
,untrace . 17
,user . 15
,where . 16

-
- . 158

:
:record-type . 76

<
< . 158
<= . 158

=
= . 158

>
> . 158
>= . 158

,bound?
,bound? . 16

,build
,build . 20

,collect
,collect . 20

,condition
,condition . 14, 17

,debug
,debug . 17

,exec
,exec . 19

,exit
,exit . 10

,expand
,expand . 17

,forget
,forget . 12

,from-file
,from-file . 12

Binding index 177

,go
,go . 10

,help
,help . 10

,inspect
,inspect . 18

,keep
,keep . 21

,load-package
,load-package . 15

,load-srfi-7-program
,load-srfi-7-program . 16

,load
,load . 11

,open
,open . 15

,preview
,preview . 17

,proceed
,proceed . 18

,push
,push . 13

,run
,run . 10

,set
,set . 11

,structure
,structure . 16

,time
,time . 21

,trace
,trace . 17

,translate
,translate . 11

,undefine
,undefine . 11

,user-package-is
,user-package-is . 16

,user
,user . 15

A
abs . 158
access . 24
access-mode . 143
accessible? . 143
add-finalizer! . 122
add-signal-queue-signal! 138
add-to-population! . 48
address+ . 164
address- . 164
address->integer . 164
address-difference . 164
address< . 164
address<= . 164
address= . 164
address> . 164
address>= . 164
address? . 164
after-time-rv . 90
alias . 27
all-values . 113
allocate-memory . 163
alphabetic . 149
alphanumeric . 149
always-rv . 89
and . 157
any . 38, 114
any-match? . 151
any? . 114
arithmetic-shift . 56
arithmetic-shift-right 158
array . 106
array->vector . 107

Binding index 178

array-dimensions . 106
array-ref . 106
array-set! . 107
array? . 106
ascii->char . 43
ascii-limit . 43
ascii-range . 148
ascii-ranges . 148
ascii-whitespaces . 43
async-channel? . 91
at-real-time-rv . 90
atom? . 114
atomically . 80
atomically! . 80
attempt-copy-bytes! . 81

B
begin . 25, 27
bit-count . 56
bitwise-and . 56, 158
bitwise-ior . 56, 158
bitwise-not . 56, 158
bitwise-xor . 56, 158
blank . 149
breakpoint . 114
byte-vector . 56
byte-vector-length . 56
byte-vector-ref . 56
byte-vector-set! . 56
byte-vector? . 56

C
call-atomically . 80
call-atomically! . 80
call-ensuring-atomicity 80
call-ensuring-atomicity! 80
call-error . 53
call-error? . 55
call-external . 125
call-external-value . 121
call-imported-binding . 121
call-with-current-input-port 60
call-with-current-noise-port 60
call-with-current-output-port 60
call-with-input-file . 70
call-with-output-file . 70
call-with-string-output-port 109
call-with-values . 157
cell-ref . 45
cell-set! . 45
cell? . 45
channel-abort . 68
channel-id . 67
channel-maybe-commit-and-close 69
channel-maybe-commit-and-read 69
channel-maybe-commit-and-write 69

channel-maybe-read . 67

channel-maybe-write . 68

channel-os-index . 67

channel-ready? . 67

channel-status . 67

channel-status-option . 68

channel-write . 69

channel? . 67, 90

char->ascii . 43

char-pointer->nul-terminated-string 165

char-pointer->string. 165

char-ready? . 59

char-sink->output-port 109

char-source->input-port 109

char<? . 157

char=? . 157

check-buffer-timestamp! 65

choose . 89

close-all-port . 146

close-channel . 67

close-directory-stream 140

close-input-port . 59, 161

close-on-exec? . 147

close-output-port . 59, 161

close-socket . 109

code-quote . 36

components . 44

compound-interface . 26

concatenate-symbol . 114

cond . 157

condition-predicate . 54

condition-stuff . 54

condition-type . 54

condvar-has-value? . 85

condvar-value . 85

condvar? . 85

control . 149

copy-array . 106

copy-memory! . 165

count% . 104

count* . 103

current-column . 108

current-error-port . 60

current-input-port . 60, 157

current-noise-port . 35, 60

current-output-port 60, 157

current-proposal . 84

current-row . 108

current-thread . 79

current-time . 145

Binding index 179

D
d . 19
deallocate . 159
deallocate-memory . 163
debug-message . 36
def . 26
default-buffer-size . 65
default-hash-function . 47
define . 156, 157
define-condition-type . 54
define-enum-set-type. 100
define-enumerated-type . 98
define-enumeration . 43
define-exported-binding 120, 122
define-finite-type . 99
define-generic . 57
define-imported-binding 119
define-indentation . 112
define-interface . 26
define-method . 57
define-module . 25
define-record-discloser 75
define-record-resumer 76, 123
define-record-type 73, 74, 162
define-sharp-macro . 71
define-simple-type . 57
define-structure . 25
define-structures . 25
define-synchronized-record-type 81
define-syntax . 28, 49, 157
delete . 115
delete-from-queue! . 46
delq . 115
delq! . 115
dequeue! . 45
dequeue-signal! . 138
destructure . 112
directory-stream? . 140
disclose-port . 59
disclose-record . 76
display . 71
display-condition . 55
display-type-name . 72
do . 157
dump . 116
dup . 146
dup-switching-mode . 146
dup2 . 146
dynamic-load . 124

E
either . 113
empty-pipe! . 86
empty-pipe? . 86
empty-queue! . 45
enqueue! . 45
ensure-atomicity . 80

ensure-atomicity! . 80
enum . 44
enum-case . 44
enum-set->list . 100
enum-set-intersection . 100
enum-set-member? . 100
enum-set-negation . 100
enum-set-union . 100
enum-set=? . 100
enumerand->name . 44
environment-alist . 139
eof-object . 66
eq? . 157
error . 52, 114, 160
error-string . 160
error? . 54
errors . 160
every . 38
every? . 114
exact-match? . 151
exception-arguments . 55
exception-opcode . 55
exception-reason . 55
exception? . 55
exec . 135
exec-file . 135
exec-file-with-environment 135
exec-with-alias . 135
exec-with-environment . 135
exit . 135
export . 26
expose . 27
expt . 158
external . 161
external-name . 124
external-value . 124
external? . 124

F
fail . 113
fd-port? . 146
file-info-device . 143
file-info-group . 143
file-info-inode . 143
file-info-last-access . 143
file-info-last-change . 143
file-info-last-modification 143
file-info-link-count. 143
file-info-mode . 143
file-info-name . 143
file-info-owner . 143
file-info-size . 143
file-info-type . 143
file-info? . 143
file-mode . 144
file-mode+ . 144
file-mode- . 144

Binding index 180

file-mode->integer . 145
file-mode<=? . 144
file-mode=? . 144
file-mode>=? . 144
file-mode? . 144
file-name-directory . 39
file-name-nondirectory . 39
file-options . 141
file-options-on? . 141
file-type . 143
file-type-name . 143
file-type? . 143
files . 25
filter . 38, 115
filter! . 115
filter-map . 115
find-undefined-imported-bindings 120
first . 114
fl* . 162
fl+ . 162
fl- . 162
fl/ . 162
fl< . 162
fl<= . 162
fl= . 162
fl> . 162
fl>= . 162
flonum-ref . 164
flonum-set! . 164
fluid . 41
fluid-cell-ref . 41
fluid-cell-set! . 41
fold . 37
fold->2 . 38
fold->3 . 38
for-syntax . 25
force-channel-output-ports! 70
force-output . 35, 59, 161
force-output-if-open . 66
fork . 134
fork-and-forget . 134
format . 111
fresh-line . 108

G
get-effective-group-id 138
get-effective-user-id . 138
get-external . 124
get-file-info . 143
get-file/link-info . 143
get-group-id . 138
get-groups . 139
get-host-name . 109
get-login-name . 139
get-parent-process-id . 138
get-port-info . 143
get-process-id . 138

get-user-id . 138
gobble-line . 71
goto . 158
graphic . 149
group-id->group-info. 139
group-id->integer . 139
group-id=? . 139
group-id? . 139
group-info-id . 140
group-info-members . 140
group-info-name . 140
group-info? . 140
guard . 89

H
hexdigit . 149
hide . 27
host-name . 140

I
i/o-flags . 147
identity . 114
if . 157
ignore-case . 150
ignore-errors . 54
immutable? . 35
import-definition . 121
import-dynamic-externals 123
import-lambda-definition 121
input% . 104
input* . 103
input-channel+closer->port 70
input-channel->port . 70
input-port-option . 60
input-port? . 59
insert . 39
integer->address . 164
integer->file-mode . 145
integer->group-id . 139
integer->mask . 97
integer->process-id . 135
integer->signal . 136
integer->user-id . 139
integrate . 25
interrupt? . 55
intersection . 149
invalidate-current-proposal! 84
iterate . 101

J
jar-put! . 92
jar-take . 92
jar-take-rv . 92
jar? . 92
join . 31

Binding index 181

L
last . 39
let . 27, 157
let* . 157
let-fluid . 42
let-fluids . 42
let-syntax . 157
letrec-syntax . 157
limit-output . 109
limited-write . 55
link . 142
list% . 103
list* . 103
list->mask . 97
list->queue . 46
list-directory . 140
list-interface . 9
load-dynamic-externals 123
lock? . 94
logical-shift-right . 158
lookup-all-externals. 124
lookup-environment-variable 139
lookup-exported-binding 120
lookup-external . 124
lookup-imported-binding 119, 122
lookup-udp-address . 110
loophole . 48
lower-case . 149

M
m . 18
machine-name . 140
make-array . 106
make-async-channel . 91
make-buffered-input-port 64
make-buffered-input-port-handler 64
make-buffered-output-port 64
make-buffered-output-port-handler 65
make-byte-vector . 56
make-cell . 45
make-channel . 90
make-condition . 52
make-condvar . 85
make-directory . 142
make-exception . 55
make-fifo . 142
make-fluid . 41
make-immutable! . 35
make-input-port-closed! 66
make-integer-table . 46
make-jar . 92
make-lock . 94
make-mask-type . 97
make-null-output-port . 59
make-output-port-closed! 66
make-pipe . 86
make-placeholder . 86, 91

make-population . 48
make-port . 61
make-port-handler . 62
make-proposal . 84
make-queue . 45
make-record . 77
make-record-type . 75
make-regexp . 147
make-search-tree . 107
make-shared-array . 107
make-signal-queue . 138
make-sparse-vector . 108
make-string . 159
make-string-input-port 109
make-string-output-port 109
make-string-table . 46
make-symbol-table . 46
make-table . 46
make-table-immutable! . 47
make-table-maker . 47
make-time . 145
make-tracking-input-port 108
make-tracking-output-port 108
make-unbuffered-input-port 64
make-unbuffered-output-port 64
make-vector . 159
make-weak-pointer . 48
mask->integer . 97
mask->list . 97
mask-clear . 98
mask-has-type? . 97
mask-intersection . 98
mask-member? . 98
mask-negate . 98
mask-set . 98
mask-subtract . 98
mask-type . 97
mask-type? . 97
mask-union . 98
mask? . 97
match . 151
match-end . 148
match-start . 148
match-submatches . 148
match? . 148
max . 158
maybe-commit . 84
maybe-commit-and-block . 95
maybe-commit-and-block-on-queue 95
maybe-commit-and-make-ready 95
maybe-commit-and-set-condvar! 85
maybe-commit-and-wait-for-condvar 85
maybe-dequeue! . 45
maybe-dequeue-signal! . 138
maybe-dequeue-thread! . 95
maybe-obtain-lock . 94
meet . 31
memory-equal? . 165

Binding index 182

memq? . 114
menu . 18
min . 158
modify . 26
mvlet . 116
mvlet* . 116

N
n= . 114
name->enumerand . 44
name->group-info . 139
name->signal . 136
name->user-info . 139
namestring . 40
negate . 149
neq? . 114
never-rv . 89
newline . 59, 161
no-op . 114
no-submatches . 150
not . 157
note . 53
note-buffer-reuse! . 65
note? . 55
null-address . 164
null-address? . 164
null-list? . 114
null-pointer . 159
null-pointer? . 159
numeric . 149

O
obtain-lock . 94
on-queue? . 46
one-of . 149
one-value . 113
open . 24
open-channel . 67
open-channels-list . 68
open-directory-stream . 140
open-file . 141
open-input-file. 70, 160
open-input-port-status . 66
open-input-port? . 66
open-output-file . 70, 161
open-output-port-status 66
open-output-port? . 66
open-pipe . 146
open-socket . 110
open-udp-socket . 110
optimize . 25
or . 157
os-node-name . 140
os-release-name . 140
os-version-name . 140
output-channel+closer->port 70

output-channel->port . 70
output-port-option . 60
output-port-ready? . 59
output-port? . 59

P
p . 112
partition-list . 115
partition-list! . 115
peek-char . 161
periodically-flushed-ports 66
periodically-force-output! 66
pipe-maybe-read! . 86
pipe-maybe-read?! . 86
pipe-maybe-write! . 87
pipe-push! . 87
pipe-read! . 86
pipe-write! . 87
pipe? . 86
placeholder-set! . 86, 92
placeholder-value . 86, 92
placeholder-value-rv . 92
placeholder? . 86, 91
pop-search-tree-max!. 107
pop-search-tree-min!. 107
population->list . 48
port->channel . 70
port->fd . 146
port-buffer . 61
port-data . 61
port-handler . 61
port-index . 61
port-is-a-terminal? . 147
port-limit . 61
port-lock . 61
port-pending-eof? . 61
port-status . 61
port-status-options . 66
port-terminal-name . 147
position . 38
posq . 38
posv . 38
prefix . 27
prescheme-compiler . 166
pretty-print . 112
printing . 149
proc . 32, 34
procedure . 32, 34
process-id->integer . 135
process-id-exit-status 135
process-id-terminating-signal 135
process-id=? . 135
process-id? . 135
provisional-byte-vector-ref 81
provisional-byte-vector-set! 81
provisional-car . 81
provisional-cdr . 81

Binding index 183

provisional-cell-ref . 81
provisional-cell-set! . 81
provisional-port-data . 62
provisional-port-handler 62
provisional-port-index . 62
provisional-port-limit . 62
provisional-port-lock . 62
provisional-port-pending-eof? 62
provisional-port-status 62
provisional-set-car! . 81
provisional-set-cdr! . 81
provisional-set-port-data! 62
provisional-set-port-index! 62
provisional-set-port-limit! 62
provisional-set-port-lock! 62
provisional-set-port-pending-eof?! 62
provisional-set-port-status! 62
provisional-string-ref . 81
provisional-string-set! 81
provisional-vector-ref . 81
provisional-vector-set! 81
punctuation . 149

Q
q . 19
queue->list . 46
queue-empty? . 45
queue-head . 45
queue-length . 46
queue? . 45
quotient . 158

R
range . 148
ranges . 148
read . 71
read-block . 59, 165
read-char . 161
read-directory-stream . 140
read-error? . 55
read-integer . 161
reading-error . 71
real-time . 117
receive . 27, 90, 115, 163
receive-async . 91
receive-async-rv . 91
receive-rv . 90
record . 77
record-accessor . 75
record-constructor . 75
record-length . 77
record-modifier . 75
record-predicate . 75
record-ref . 77
record-set! . 77
record-space . 21

record-type . 77
record-type-field-names 75
record-type-name . 75
record-type? . 75
record? . 77
recurring-write . 71
reduce . 37, 102
regexp-match . 148
regexp-option . 147
regexp? . 147
release-lock . 94
relinquish-timeslice . 79
reload-dynamic-externals 123
remainder . 158
remap-file-descriptors! 146
remove-current-proposal! 84
remove-directory . 142
remove-duplicates . 115
remove-signal-queue-signal! 138
rename . 27, 142
repeat . 150
report-errors-as-warnings 54
restore . 116
reverse! . 114
reverse-list->string . 36
run-scheme . 6
run-time . 117

S
S48_BYTE_VECTOR_LENGTH 127
S48_BYTE_VECTOR_P . 127
S48_BYTE_VECTOR_REF . 127
S48_BYTE_VECTOR_SET . 127
s48_call_scheme . 127
S48_CAR . 127
S48_CDR . 127
S48_CHAR_P . 127
S48_CHECK_BOOLEAN . 131
S48_CHECK_BYTE_VECTOR . 131
S48_CHECK_CHANNEL . 131
S48_CHECK_INTEGER . 131
S48_CHECK_PAIR . 131
S48_CHECK_RECORD . 131
s48_check_record_type . 130
S48_CHECK_SHARED_BINDING 131
S48_CHECK_STRING . 131
S48_CHECK_SYMBOL . 131
s48_cons . 127
S48_DECLARE_GC_PROTECT 128
s48_define_exported_binding 120
S48_ENTER_BOOLEAN . 125
s48_enter_byte_vector . 125
s48_enter_char . 125
s48_enter_double . 125
s48_enter_fixnum . 126
s48_enter_integer . 125
s48_enter_string . 125

Binding index 184

S48_EOF . 125
S48_EQ_P . 126
S48_EXPORT_FUNCTION . 121
S48_EXTRACT_BOOLEAN . 125
s48_extract_byte_vector 125
s48_extract_char . 125
s48_extract_double . 125
s48_extract_fixnum . 126
s48_extract_integer . 125
s48_extract_string . 125
S48_EXTRACT_VALUE . 129
S48_FALSE . 125
S48_FALSE_P . 126
S48_FIXNUM_P . 126
S48_GC_PROTECT_GLOBAL . 128
S48_GC_PROTECT_n . 128
S48_GC_UNPROTECT . 128
S48_GC_UNPROTECT_GLOBAL 129
s48_get_imported_binding 120
s48_length . 127
s48_make_byte_vector. 127
s48_make_record . 129
s48_make_string . 127
S48_MAKE_VALUE . 129
s48_make_vector . 127
S48_MAX_FIXNUM_VALUE. 125
S48_MIN_FIXNUM_VALUE. 125
S48_NULL . 125
s48_on_load . 123
s48_on_reload . 123
S48_PAIR_P . 127
s48_raise_argument_number_error 131
s48_raise_argument_type_error 131
s48_raise_closed_channel_error 131
s48_raise_os_error . 131
s48_raise_out_of_memory_error 131
s48_raise_range_error . 131
s48_raise_scheme_exception 131
S48_RECORD_P . 130
S48_RECORD_REF . 130
S48_RECORD_SET . 130
S48_RECORD_TYPE . 130
S48_SET_CAR . 127
S48_SET_CDR . 127
S48_SET_VALUE . 129
S48_SHARED_BINDING_CHECK 120
S48_SHARED_BINDING_IS_IMPORTP 120
S48_SHARED_BINDING_NAME 120
S48_SHARED_BINDING_P. 120
S48_SHARED_BINDING_REF 120
S48_SHARED_BINDING_SET 120
S48_STRING_LENGTH . 127
S48_STRING_P . 127
S48_STRING_REF . 127
S48_STRING_SET . 127
S48_SYMBOL_P . 127
S48_SYMBOL_TO_STRING. 127
S48_TRUE . 125

S48_TRUE_P . 126
S48_UNSAFE_BYTE_VECTOR_LENGTH 133
S48_UNSAFE_BYTE_VECTOR_REF 133
S48_UNSAFE_BYTE_VECTOR_SET 133
S48_UNSAFE_CAR . 132
S48_UNSAFE_CDR . 132
S48_UNSAFE_ENTER_FIXNUM 132
S48_UNSAFE_EXTRACT_CHAR 132
S48_UNSAFE_EXTRACT_DOUBLE 132
S48_UNSAFE_EXTRACT_FIXNUM 132
S48_UNSAFE_EXTRACT_INTEGER 132
S48_UNSAFE_EXTRACT_STRING 132
S48_UNSAFE_EXTRACT_VALUE 133
S48_UNSAFE_EXTRACT_VALUE_POINTER 133
S48_UNSAFE_SET_CAR . 132
S48_UNSAFE_SET_CDR . 132
S48_UNSAFE_SET_VALUE. 133
S48_UNSAFE_SHARED_BINDING_IS_IMPORTP 133
S48_UNSAFE_SHARED_BINDING_NAME 133
S48_UNSAFE_SHARED_BINDING_REF 133
S48_UNSAFE_SHARED_BINDING_SET 133
S48_UNSAFE_STRING_LENGTH 132
S48_UNSAFE_STRING_REF . 132
S48_UNSAFE_STRING_SET . 132
S48_UNSAFE_SYMBOL_TO_STRING 132
S48_UNSAFE_VECTOR_LENGTH 132
S48_UNSAFE_VECTOR_REF . 132
S48_UNSAFE_VECTOR_SET . 132
S48_UNSPECIFIC . 125
s48_value . 125
S48_VECTOR_LENGTH . 127
S48_VECTOR_P . 127
S48_VECTOR_REF . 127
S48_VECTOR_SET . 127
scheme-program-name . 6
search-tree-max . 107
search-tree-min . 107
search-tree-modify! . 107
search-tree-ref . 107
search-tree-set! . 107
search-tree? . 107
select . 89
send . 90
send-async . 91
send-rv . 90
sequence . 149
set . 148
set-close-on-exec?! . 147
set-condvar-has-value?! 86
set-condvar-value! . 86
set-current-proposal! . 84
set-file-creation-mask! 142
set-fluid! . 41
set-group-id! . 138
set-i/o-flags! . 147
set-leaf-predicate! . 22
set-port-data! . 62
set-port-index! . 62

Binding index 185

set-port-limit! . 62
set-port-lock! . 62
set-port-pending-eof?! . 62
set-port-status! . 62
set-translation! . 41
set-user-id! . 138
set-working-directory! 141
shared-binding-is-import? 119
shared-binding-ref 119, 122
shared-binding-set! . 119
shared-binding? . 119
shift-left . 158
signal . 52, 136
signal-condition . 52
signal-name . 136
signal-os-number . 136
signal-process . 137
signal-queue-monitored-signals 138
signal-queue? . 138
signal=? . 136
signal? . 136
silently . 60
singleton . 57
sleep . 79
socket-accept . 110
socket-client . 110
socket-port-number . 109
some-values . 32
space . 21
sparse-vector->list . 108
sparse-vector-ref . 108
sparse-vector-set! . 108
spawn . 79
stream% . 104
stream* . 103
string% . 104
string* . 103
string->immutable-string 115
string-end . 149
string-hash . 35, 47
string-length . 159
string-output-port-output 109
string-ref . 159
string-set! . 159
string-start . 149
strongly-connected-components 113
structure . 26
structure-ref . 24
structures . 26
sublist . 39
submatch . 150
subset . 26
subtract . 149
sync . 89
syntax-error . 53
syntax-error? . 55

T
table-ref . 47
table-set! . 47
table-walk . 47
table? . 47
template . 19
terminate-current-thread 79
text . 149
thread-name . 79
thread-queue-empty? . 95
thread-uid . 79
thread? . 79
time->string . 145
time-seconds . 145
time<=? . 145
time<? . 145
time=? . 145
time>=? . 145
time>? . 145
time? . 145
trail . 22
translate . 41
translations . 40
traverse-breadth-first . 22
traverse-depth-first . 22

U
u . 19
udp-address-address . 110
udp-address-hostname. 110
udp-address-port . 110
udp-address? . 110
udp-receive . 110
udp-send . 110
undefine-exported-binding 120
undefine-imported-binding 119
union . 149
unlink . 142
unload-dynamic-externals 123
unsigned-byte-ref . 164
unsigned-byte-set! . 164
unspecific . 37
upper-case . 149
use-case . 150
user-id->integer . 139
user-id->user-info . 139
user-id=? . 139
user-id? . 139
user-info-group . 140
user-info-home-directory 140
user-info-id . 140
user-info-name . 140
user-info-shell . 140
user-info? . 139
usual-leaf-predicate . 22
usual-resumer . 78

Binding index 186

V
values . 27, 157
variable . 33
vector% . 104
vector* . 103
vector-length . 159
vector-ref . 159
vector-set! . 159
vector-space . 21

W
wait-for-channel . 69
wait-for-child-process 135
walk-population . 48
walk-search-tree . 108
warn . 53
warning? . 55
weak-pointer-ref . 48

weak-pointer? . 48
whitespace . 149
with-current-ports . 60
with-handler . 53
with-input-from-file . 70
with-nack . 89
with-new-proposal . 84
with-nondeterminism . 113
with-output-to-file . 70
with-prefix . 26
word-ref . 164
word-set! . 164
working-directory . 141
wrap . 89
write . 71
write-block . 59, 165
write-char . 161
write-image . 77
write-integer . 161
write-string . 59, 161

Structure index 187

Structure index

A
architecture . 66
arrays . 106
ascii . 43

B
big-util . 114
bitwise . 56
byte-vectors . 56

C
cells . 45
channel-i/o . 68
channel-ports . 70
channels . 67
code-quote . 36
conditions . 51
condvars . 85

D
debug-messages . 36
define-record-types . 73
define-sync-record-types 82
defrecord . 73
destructuring . 112
dump/restore . 116
dynamic-externals . 118, 124

E
enum-case . 44
enum-sets . 98
enumerated . 43
exceptions . 51
extended-ports . 108
external-calls . 118, 121

F
features . 35
filenames . 39
finite-types . 98
fluids . 41
formats . 111

H
handle . 53

I
i/o . 59

i/o-internal . 60, 62, 64, 66

L
list-interfaces . 9

load-dynamic-externals 118, 123

locks . 94

loopholes . 48

M
mask-types . 97

masks . 97

meta-methods . 57

methods . 57, 72

mvlet . 116

N
nondeterminism . 113

P
placeholders . 86

ports . 61

posix . 134

posix-files . 134, 140

posix-i/o . 134, 145

posix-platform-names. 140

posix-process-data 134, 138

posix-processes . 134

posix-regexps . 134, 147

posix-signals . 136

posix-time . 134

posix-users . 134, 139

pp . 112

prescheme. 23, 156, 169

prescheme-compiler . 166

proposals . 80

ps-flonums . 162, 169

ps-memory . 163, 169

ps-receive . 163, 169

ps-record-types . 162, 169

Q
queues . 45

Structure index 188

R
reading . 71
receiving . 115
record-types . 75
records . 76
records-internal . 76
reduce . 101
regexp . 148
rendezvous . 89
rendezvous-async-channels 90
rendezvous-channels . 90
rendezvous-jars . 92
rendezvous-placeholders 91
rendezvous-time . 89

S
scheme . 23
search-trees . 107
shared-bindings . 118, 119
silly . 36
simple-conditions . 54
simple-signals . 52
sockets . 109, 110
sparse-vectors . 108

spatial . 21
srfi-7 . 16
srfi-9 . 73
strong . 113
structure-refs . 24

T
tables . 46
threads . 79
threads-internal . 94
time . 116
traverse . 22

U
udp-sockets . 109, 110
usual-resumer . 77
util . 37

W
weak . 47
write-images . 77
writing . 71

	Introduction
	This manual
	Acknowledgements

	User environment
	Running Scheme48
	Command processor introduction

	Emacs integration
	Using the module system
	Configuration mutation
	Listing interfaces

	Command processor
	Basic commands
	Switches
	Emacs integration commands
	Focus value
	Command levels
	Module commands
	SRFI 7
	Debugging commands
	Inspector
	Command programs
	Image-building commands
	Resource statistics and control

	Module system
	Module system architecture
	Module configuration language
	Macros in concert with modules
	Static type system
	Types in the configuration language

	System facilities
	System features
	Miscellaneous features
	Various utilities
	Filenames
	Filename translations

	Fluid/dynamic bindings
	ASCII character encoding
	Integer enumerations
	Cells
	Queues
	Hash tables
	Weak references
	Weak pointers
	Populations (weak sets)

	Type annotations
	Explicit renaming macros

	Condition system
	Signalling, handling, and representing conditions
	Displaying conditions

	Bitwise manipulation
	Bitwise integer operations
	Byte vectors

	Generic dispatch system
	I/O system
	Ports
	Port operations
	Current ports

	Programmatic ports
	Port data type
	Port handlers
	Buffered ports & handlers

	Miscellaneous I/O internals
	Channels
	Low-level channel operations
	Higher-level channel operations

	Channel ports

	Reader & writer
	Reader
	Writer
	Object disclosure

	Records
	Jonathan Rees's define-record-type macro
	Richard Kelsey's define-record-type macro
	Record types
	Low-level record manipulation

	Suspending and resuming heap images
	System initialization
	Manual system initialization

	Multithreading
	Basic thread operations
	Optimistic concurrency
	High-level optimistic concurrency
	Logging variants of Scheme procedures
	Synchronized records
	Optimistic concurrency example
	Low-level optimistic concurrency

	Higher-level synchronization
	Condition variables
	Placeholders
	Value pipes

	Concurrent ML
	Rendezvous concepts
	Delayed rendezvous
	Negative acknowledgements

	Rendezvous combinators
	Timing rendezvous

	Rendezvous communication channels
	Synchronous channels
	Asynchronous channels

	Rendezvous-synchronized cells
	Placeholders: single-assignment cells
	Jars: multiple-assignment cells

	Concurrent ML to Scheme correspondence

	Pessimistic concurrency
	Custom thread synchronization

	Libraries
	Boxed bitwise-integer masks
	Mask types
	Masks

	Enumerated/finite types and sets
	Enumerated/finite types
	Sets over enumerated types

	Macros for writing loops
	Main looping macros
	Sequence types
	Synchronous sequences
	Examples
	Defining sequence types
	Loop macro expansion

	Library data structures
	Multi-dimensional arrays
	Red/black search trees
	Sparse vectors

	I/O extensions
	TCP & UDP sockets
	TCP sockets
	UDP sockets

	Common-Lisp-style formatting
	Library utilities
	Destructuring
	Pretty-printing
	Strongly connected graph components
	Nondeterminism
	Miscellaneous utilities
	Multiple value binding
	Object dumper
	Simple time access

	C interface
	Overview of the C interface
	Scheme structures
	C naming conventions
	Garbage collection

	Shared bindings between Scheme and C
	Scheme shared binding interface
	C shared binding interface

	Calling C functions from Scheme
	Dynamic loading of C modules
	Old dynamic loading interface

	Accessing Scheme data from C
	Calling Scheme procedures from C
	Interacting with the Scheme heap in C
	Keeping C data structures in the Scheme heap
	C code and heap images

	Using Scheme records in C
	Raising exceptions from C
	Unsafe C macros

	POSIX interface
	Processes
	Signals
	Sending & receiving signals

	Process environment
	Users and groups
	Host OS and machine identification
	File system access
	Time
	I/O utilities
	Regular expressions
	Direct POSIX regular expression interface
	High-level regular expression construction
	Character sets
	Anchoring
	Composite expressions
	Case sensitivity
	Submatches and matching

	C to Scheme correspondence

	Pre-Scheme: A low-level dialect of Scheme
	Differences between Pre-Scheme & Scheme
	Type specifiers
	Standard environment
	Scheme bindings
	Tail call optimization
	Bitwise manipulation
	Compound data manipulation
	Error handling
	Input & output
	Access to C functions and macros

	More Pre-Scheme packages
	Floating point operation
	Record types
	Multiple return values
	Low-level memory manipulation

	Invoking the Pre-Scheme compiler
	Loading the compiler
	Calling the compiler

	Example Pre-Scheme compiler usage
	Running Pre-Scheme as Scheme

	References
	Concept index
	Binding index
	Structure index

